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GALILEO

Galileo created in “Dialogue Concerning the Two Chief World
System,” his 1632 defense of his scientific ideas, a thought
experiment which leads to a Relativity Principle in the
formulation of scientific law. The statements contained therein
directly contradict the assumptions about the world believed to
be true from antiquity and, by implication, support
heliocentrism.

Defending the physical truth of Copernican heliocentrism was
already deemed heretical in 1616. The Dialogues were found to
be a defence of this idea, in spite of Galileo’s denial, in 1633.
Galileo was thereupon confined to house arrest until his death
in 1642. His case was not helped by the fact that the
foolish-seeming Simplicio often argued as did the Pope, Pius
VIII, in his writings.
—————
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In this work Galileo creates a debate between the foil,
Simplicio, defender of Aristotle and Ptolemy, and Salviati, who
attempts to enlighten him with modern ideas about nature. In
particular, Salviati defends the idea that one should actually
look at the world to see how it works, rather than simply accept
ancient beliefs, unquestioningly. A third participant, Segredo,
acts as an—initially—neutral party, an “intelligent layman.”

(Segredo and Salviati are the names of two of Galileo’s friends.
Galileo claimed that Simplicio was named after Simplicius of
Cilicia, a sixth-century commentator on Aristotle, but
“Simplicio” could be a slightly veiled version of “Simpleton.”
The dialog targets two of Galileo’s critics Lodovico delle
Colombe and the Padovan Cesare Cremonini, who refused
Galileo’s offer to view his astronomical discoveries through the
new telescope.)

In Stillman Drake’s 1967 translation (page 186-7, The Second
Day) we find Salviati arguing as follows:
—————
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Shut yourself up with some friend in the main cabin below
decks on some large ship, and have with you there some flies,
butterflies, and other small flying animals. Have a large
bowl of water with some fish in it; hang up a bottle that
empties drop by drop into a wide vessel beneath it. With the
ship standing still, observe carefully how the little animals
fly with equal speed to all sides of the cabin. The fish swim
indifferently in all directions; the drops fall into the vessel be-
neath; and, in throwing something to your friend, you need
throw it no more strongly in one direction than another, the
distances being equal; jumping with your feet together, you
pass equal spaces in every direction.

—————
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When you have observed all these things carefully (though
there is no doubt that when the ship is standing still every-
thing must happen in this way), have the ship proceed with
any speed you like, so long as the motion is uniform and not
fluctuating this way and that. You will discover not the least
change in all the effects named, nor could you tell from any
of them whether the ship was moving or standing still.

—————
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This is a “thought experiment” but Galileo claims to have
actually done experiments of this kind.

The World is the collection of events, such as the position of a
flying insect at a particular time, that we want to describe. We
will denote the world by the symbol M.

A worldline is a function of time whose value at each time is a
certain event: a path in M. The moving butterfly traces out a
worldline, following along with L : R→M.

All of Galileo’s examples involve position and motion
and—what we would call—vectors that describe them. So we
are led (in our modern terms) to “coordinatize” the world by
choosing an origin and a basis of vectors.

We will describe events by recording the coordinates of the
position of the event at a certain time, and each worldline
corresponds to a path of coordinates.

—————
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So coordinates x or y are functions

x : M→ R4 or y : M→ R4.

Coordinates of worldlines are

x◦L : R→ R4 or y◦L : R→ R4 where x◦L = (x◦y−1)◦y◦L.

Of course, Newton was well aware of Galileo’s Dialogues as he
formulated his theory. Obviously he couldn’t use this
(then-non-existent) vocabulary, but Newton and other
practitioners of the day definitely understood the ideas.

Galileo posits here that orientation or location or a (constant)
velocity should not, alone, change our perception of physical
processes and, by implication, the physical laws that capture
some of their behavior.

—————
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A frame (of reference) is a choice of origin and basis and a way
of measuring time. An observer is said to “witness” or “preside
over” coordinates provided by a specific frame.

Galileo places restrictions on the frame. He says that the ship
should not “fluctuate this way and that.” Some frames are
admissible, and some are not.

The Relativity Principle

All admissible frames of reference are to be completely
equivalent for our formulation of Physical Law.

—————

9

Spacetime TOC Galileo and Newton Inner Products Spacetime and Observers The Galilean Group Newtonian Relativity

NEWTON

Newton’s First Law:

Every particle in a state of uniform motion tends to remain in
that state of motion unless it is under the influence of a force.

This tells you that if you are describing the world you can see
the effect of mysterious entities called “forces.”

Forces are real things in the world, but they may be detected by
measuring. They can be seen because they cause changes in
velocity.

One is led to consider changing velocities, and their vector
nature, and coordinates of events and forces.
—————
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Newton’s Second Law:

The relationship between a particle’s mass m, its acceleration
a and the applied force F is

F = m a.

This tells us forces are vectors. It also implies that the
motion—that is, coordinates x ◦ L of the world line
parameterized by time—of any particle is (at least) twice
differentiable. We can give a value to a force by observing a,
which is the acceleration of the “space part” of coordinates of
the worldline.

This equation encourages us to find the proportionality
constant, the number m mentioned above, for each particle.

This does not tell us where the force comes from, nor how to
calculate it absent a visible effect. And it definitely does not tell
us how to assign mass to our particles.
—————
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Newton simply described the mass as determined by the
volume and the density.

At the start of the Principia (1687) we have:

The quantity of matter is that which arises conjointly from its density
and magnitude. A body twice as dense in double the space is
quadruple in quantity. This quantity I designate by the name of body
or of mass.

And later:

It can also be known from a body’s weight, for (by making very
accurate experiments with pendulums) I have found it to be
proportional to the weight. . .

I think it is safe to say (please correct me with references to
examples if I am wrong) that for the first hundred years of its
application, any specific mass in Newtonian mechanics was
determined, ultimately, by a balance scale.
—————
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Newton’s Third Law:

For every action there is an equal and opposite reaction.

This is interpreted to mean that for any force caused by the
interaction between pairs of particles, the force F2

1 (as a vector)
on particle P1 caused by particle P2 will be the negative of the
force F1

2 on particle P2 caused by particle P1.

Implicitly, the Third Law is also interpreted to mean that the
interactions involved in systems of particles can be understood
by examining pairs of interacting particles, and the net force on
a particle is the sum of all the forces acting on that particle.

—————
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So Galileo set the coordinate framework (which Newton
completed by implication) and described the preferred
observers.

An observer O is witness to the values of an invertible function

x : M→ R4.

Newton laws, then, are a “call to action.” Look for the forces.
When you find them you will know (by solving the DE) the
coordinates of worldlines of interesting phenomena.
—————
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INNER PRODUCTS

If V is any real vector space, a bilinear form on V is a function

g : V × V → R

that is linear in each “slot” separately: that is, for each v ∈ V the
functions g(v, ·) and g(·, v) are linear.

Using coordinates x in a basis for V we have

g = gi j dxi ⊗ dxj.

The specific basis is “there” but is usually not mentioned! In
our application, you are supposed to just “know what to do”
when you switch from one coordinate system to another. . . and
from one place to another!
—————

15

Spacetime TOC Galileo and Newton Inner Products Spacetime and Observers The Galilean Group Newtonian Relativity

For us, V represents the tangent vectors starting from a particular
place in the world, derivatives of curves through the place, and
V∗, the dual of V, represents real valued functions in a small
neighborhood of that place, characterized by their family of level
surfaces: the gradient.

Using as an example the common rectangular-to-polar two
dimensional situation at a particular place in the world

g = g1 1(rect) dx⊗ dx + g1 2(rect) dx⊗ dy
+ g2 1(rect) dy⊗ dx + g2 2(rect) dy⊗ dy

= g1 1(pol) dr⊗ dr + g1 2(pol) dr⊗ dθ
+ g2 1(pol) dθ ⊗ dr + g2 2(pol) dθ ⊗ dθ.

—————
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For two coordinate systems x and y the coefficients gi j(x) and
gi j(y) are related by the usual Jacobian factors evaluated at the
coordinates corresponding to “the place”.

g =gi j(x) dxi ⊗ dxj = gi j(x)
(
∂xi

∂yk dyk
)
⊗
(
∂xj

∂ym dym
)

=

(
gi j(x)

∂xi

∂yk
∂xj

∂ym

)
dyk ⊗ dym = gk m(y) dyk ⊗ dym.

In matrix form this is

( gk m(y) ) =
(
∂xi

∂yk

)T (
gi j(x)

) ( ∂xj

∂ym

)
.

—————
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The prototypical bilinear form is dot product on R3, but dot
product has other nice properties that may or may not hold for
a generic bilinear form.

If a bilinear form is symmetric and nondegenerate and positive
definite it is called an inner product.

Symmetry: g(v,w) = g(w, v) ∀v,w ∈ V

Nondegeneracy: g(v,w) = 0 ∀v ∈ V iff w = 0.

Positive Definiteness: g(v, v) > 0 unless v = 0.

If that last condition is removed and g(v, v) > 0 for some v but
g(v, v) < 0 for other v we have an indefinite inner product. The
Minkowski inner product, or “metric” in the Physics
vocabulary, is an indefinite inner product.
—————
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Any symmetric bilinear form corresponds to a symmetric
matrix Ma in a basis a-in-the-world.

If va and wa are vectors of coordinates of vectors-in-the-world v
and w for that basis then vT

a Ma wa corresponds to g(v,w).

By facts from Linear Algebra any symmetric matrix can be
brought to diagonal form by an orthogonal matrix of transition
Pb← a, where the columns of Pb← a are the coordinates of the old
basis in terms of the new basis. But for orthogonal matrices, the
inverse is the transpose. PT

b← a = P−1
b← a = Pa← b.

Conclusion: this diagonalized matrix is Mb, the matrix that
represents g in basis b, as can be seen by

vT
a Mawa =(Pa← bvb)

TMa(Pa← bwb) =
(

vT
b PT

a← b

)
Ma (Pa← bwb)

=vT
b

(
PT

b← aMaPa← b

)
wb = vT

b Mbwb.

—————
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So for symmetric g we have discovered a basis b-in-the-world
for which the matrix Mb representing g is diagonal. A basis of
this type is called orthogonal with respect to g.

These diagonal entries are the eigenvalues of the matrix of g in
any basis. Some of these diagonal entries will be positive, some
negative and some zero.

If g is an inner product all will be positive. If g is an indefinite
inner product some of the diagonal entries will be negative and
some will be positive but none are zero.

(A zero eigenvalue would violate the nondegeneracy
condition.)
—————
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With diagonalizing b in hand, obtained by an orthogonal
matrix of transition, we now make one final change of basis.
First, reorder b so that positive entries are first on the diagonal,
then the negative ones, and finish off with the eigenvectors
from b for eigenvalue 0.

Now normalize these re-ordered vectors b = { b1, . . . , bn } by
dividing the eigenvectors for nonzero eigenvalues by

√
g(bi, bi)

or
√
−g(bi, bi), sign chosen so the square root is real.

Call this new basis c. It is said to be orthonormal with respect
to g and Mc is diagonal with only ±1 or 0 on the diagonal. The
ones come first, then the minus ones, then zeros, if any.

Be aware that some sources reverse the order of ones and
minus ones.
—————
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For the Euclidean inner product on R3, the resulting matrix has
1 repeated three times. So the inner product is given by

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

This inner product actually reflects right angles, lengths and
projections in the world. Presumably, a sensible person would
have chosen a basis like this from the outset.
—————
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For the Minkowski inner product, on the other hand, 1 occurs
once and −1 occurs three times and zero does not occur.

We will presume that, whatever basis-in-the-world we started
with, we have created an orthonormal basis-in-the-world and
are using it to describe vectors and g. We let x denote
coordinates in that basis. Then

g = dx0 ⊗ dx0 − dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3.

Be aware that some sources reverse this for the Minkowski
metric and have

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

There is no physical significance to this difference, but it causes
some translation difficulties when going from one source to
another.
—————
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SPACETIME—BACK TO THE PHYSICAL WORLD

We want to describe locations in space and time, and we
presume we know what that means. We also want to imagine
something physical happening at a place and time and moving,
at other times and in a continuous way, to different places.

Something that happens at a particular place and time is called
an event, and a worldline is a choice of events for an interval of
times.

(As we build our relativistic structure in later work we will see
that not every choice of events, that you might hope constitutes
a worldline of an object in the world, is physically realizable.
But that will be a result of our theory, not a presupposition.)
—————
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We have decided to represent events in our world by 4-tuples
where the first coordinate represents time and the last three
represent location in space relative to a choice of origin and
axes.

In the Euclidean world the inner product does not involve
time, but only the space coordinates.

But later we will see, in relativistic mechanics, that time (the
first coordinate) and space (the last three) are tangled up in an
unusual way and this is reflected in the Minkowski inner
product.
—————
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ALLOWABLE OBSERVERS

Some of the most important underlying assumptions in both
classical and relativistic mechanics involve the possibility of
finding coordinates (i.e. a basis in the world) with certain
properties. That association with these special properties will
be called “an allowable observer.”

We understand that perfect observation is impossible and do
not require that of our allowable observers, but we describe
below procedures that we assume can be carried out accurately
to any desired precision.
—————
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We assume that we can describe a clock that everyone would
agree measures time accurately and independently of other
aspects of our association. The vibration modes of certain
unmoving atoms comes to mind as a good choice. All
allowable observers use the same type of clock to measure time
displacements. This allows us to define a time unit, the second,
which would be agreed-upon by all allowable observers.
—————
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Space seems to be a three dimensional real vector space, and
our allowable observer assumes this, and this observer knows
when two displacements in the world are at right angles to
each other.

When the observer takes a stick whose length was measured
and rotates that stick to a direction at right angles to its former
direction we presume that the observer cannot detect any
length change.
—————
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We presume that there are objects in the world accessible to all
observers which exhibit a fixed size. Two marks on a hunk of
platinum/iridium sitting in your lab, perhaps. Or if that is not
good enough, some other unit of distance.

Here, we don’t argue about technical details.

We simply assume that a unit of distance can be agreed-upon
and our observers all agree to use it. We will call this unit the
meter.
—————
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And we presume that our observer has access to telescopes and
other basic tools and has picked a non-rotating frame that has
constant velocity with respect to some presumed,
non-accelerating standard object. Possibly the average velocity
of nearby stars will be good enough. Or your lab tabletop.

Galileo would have insisted, so we do too.
—————
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Up to this point the setup for classical and relativistic
mechanics is the same.

But now we insist, as did Galileo and Newton, that all
admissible observers should measure the same distances
between events.

This means that the space-part of the function x ◦ y−1 that
translates between coordinates x for observer O and
coordinates y for observer O′ is an isometry from R3 to itself.

If we do a quick translation to account for a moving
constant-velocity origin with respect to one observer or the
other, we have at each instant an isometry that sends the origin
to the origin.
—————
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The Mazur-Ulam theorem tells us that this isometry must be
linear and so the translator from O space coordinates to O′

space coordinates corresponds to matrix multiplication by
some matrix M. Because distances are preserved M is
orthogonal and so corresponds to a reflection, a rotation (two
reflections) or a rotation and a reflection (three reflections). This
is the Cartan-Dieudonné Theorem.

And because the distant stars do not appear to rotate to either
observer, this rotation matrix is constant as time passes.
—————
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The translators from one coordinate system to another form a
group with composition of functions, called the Galilean group.

All admissible observers agree on the passage of time and the
unit of distance. The origins may move with constant relative
velocity. The axis differences may involve reflection and
rotation.

C


a0

a1

a2

a3

 =


x0

x1

x2

x3

+ a0


0
v1

v2

v3

+


1 0 0 0
0 m11 m12 m13
0 m21 m22 m23
0 m31 m32 m33




a0

a1

a2

a3


The orthogonal three by three matrices have dimension 3 so
this is a ten dimensional Lie group with function composition.
—————
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If M is the 3× 3 orthogonal matrix in the lower right and
x =

(
x0 x1 x2 x3)T is a vector in R4 we define the 4× 4 matrix M̃

and the member x of R3 by

M̃ =


1 0 0 0
0 m11 m12 m13
0 m21 m22 m23
0 m31 m32 m33

 and x =

x1

x2

x3

 .

Then if v is the vector
(
v1 v2 v3)T in R3 we have

C
(

a0

a

)
=

(
x0

x

)
+ a0

(
0
v

)
+ M̃

(
a0

a

)
=

(
x0

x

)
+

(
0

a0v

)
+

(
a0

M a

)
=

(
x0 + a0

x + a0v + M a

)
.

—————
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We will interested in the derivative of C = y ◦ x−1 : R4 → R4.

The derivative of this kind of function will generally be a 4× 4
matrix whose entries are functions of position, the linear map
that best represents the changes in C near a. But because of the
form of C this derivative is constant: it doesn’t depend on a.

C
(

a0

a

)
=

(
x0 + a0

x + a0v + M a

)
⇐⇒ C′(a) =


1 0 0 0
v1 m11 m12 m13
v2 m21 m22 m23
v3 m31 m32 m33

 .

If C is the translator form coordinates x to coordinates y we
often see C′ indicated by the Jacobian matrix

(
∂yj

∂xi

)
.

—————
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If G is another Galilean transformation

D
(

a0

a

)
=

(
y0

y

)
+

(
0

a0w

)
+

(
a0

N a

)
.

then D ◦ C is given by

D ◦ C(a) =
[

y +

(
0

x0w

)
+ Ñ x

]
+ a0

(
0

w + Nv

)
+ ÑM a.

So the composition of two Galilean transformations is another.
—————
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It is easy to show C is one-to-one and hence invertible. We can
produce an inverse by looking at the composition

D ◦ C(a) =
[

y +

(
0

x0w

)
+ Ñ x

]
+ a0

(
0

w + Nv

)
+ ÑM a.

Guessing N = M−1 and setting D ◦ C(a) = a we find in turn that
y0 = −x0 and w = −M−1v and finally y = x0M−1v−M−1x.

So the set of Galilean transformations actually does form a
group.
—————
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Also

C(a) =x + a0
(

0
v

)
+ M̃a = x + M̃

[
a + a0M̃−1

(
0
v

)]
=x + M̃

[
a + a0

(
0

M−1v

)]
So C can be thought of as composed of three consecutive
operations.

First, a movement in space with velocity
(

0
M−1v

)
.

Second, a rotation/reflection in space.

Then a translation of all four coordinates.

The inverse of C can, of course, be calculated by “doing” the
opposite of these three operations in the opposite order.
—————
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Looking at a generic member of the Galilean group

C


a0

a1

a2

a3

 =


x0

x1

x2

x3

+ a0


0
v1

v2

v3

+


1 0 0 0
0 m11 m12 m13
0 m21 m22 m23
0 m31 m32 m33




a0

a1

a2

a3


we can see lots of subgroups of this 10-dimensional Lie group.

• The simple translation subgroup. (dim 4)

• The translation-moving-origin subgroup. (dim 7)

• The reflection/rotation only subgroup. (dim 3, two
components) This is called the Euclidean group.

• The rotation-only subgroup (det(M) = 1) (dim 3, one
component) These are called the direct Euclidean isometries.

• The rotation-around-fixed-axis-only subgroup. (dim 1 or 8)

• The translation-moving-origin-rotation subgroup. (dim 10)
—————
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The Relativity Principle

All admissible frames of reference are to be completely
equivalent for our formulation of Physical Law.

C


a0

a1

a2

a3

 =


x0

x1

x2

x3

+ a0


0
v1

v2

v3

+


1 0 0 0
0 m11 m12 m13
0 m21 m22 m23
0 m31 m32 m33




a0

a1

a2

a3


In this context, what this means is the following.

If observer O comes up with a solution to some physical
question using Newtonian mechanics and transforms the
answer in an appropriate way corresponding to some C then
observer O′, who is related to O via translator C, should
produce that transformed answer when he or she “solves the
same problem” directly.
—————
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In view of our representation of members of the Galilean group
of coordinate transformations as consecutive applications of

• constant velocity motion
• rotation/reflection and then
• translation

if we can understand how physically important quantities
change under these three simple transformations one at a time
we’ll know how any admissible observer’s predictions should
adapt to new admissible coordinates.
—————
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NEWTONIAN RELATIVITY

Newtonian mechanics is a complex body of knowledge with
many branches and alternate representations. But the roots of it
are in the analysis of interactions of particles according to
Newton’s laws.

I will list a few well-known consequences of single particle
dynamics to determine if they satisfy the Relativity Principle
for observers related to each other by the Galilean group.

Coordinates give points in R4 but the first coordinate is always
measured in standard, agreed-upon units and differences there
are only in choices of “time zero.” So—for convenience
only—we will assume that “time zero” has been established to
coincide in all frames. With this convention, the time
coordinate of any worldline is fixed and we need only examine
the space coordinates.
—————
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We suppose we are tracking a particle of mass m subject to
Newton’s laws and feeling a force. The worldline of the particle
is a function

L : R→M.

In admissible coordinates x or y

x : M→ R4 or y : M→ R4

the coordinates of the worldline are given by

r = x ◦ L =

(
r0

r

)
: R→ R4 and s = y ◦ L =

(
s0

s

)
: R→ R4.

It is to these coordinates that Newton’s Laws apply.

The relationship between these coordinates is given by

s = y ◦ L = (y ◦ x−1) ◦ x ◦ L = (y ◦ x−1) ◦ r = C ◦ r.

—————
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The gradient of a function V : R3 → R is given by numerous
different notations.

In fact, the gradient is a contravector, the “raised index
version” of the differential, which is a covector.

The difference lies in how the coordinates transform from one
basis to the next but . . . we are working with the Euclidean
space metric and only using orthonormal bases so coordinates
of the differential and the gradient for fixed basis choice
coincide.

—————
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We do need to refer to the basis when we calculate them,
however, since the whole point of this section is to consider the
effect of this.

In coordinates x define gradx or ∇x or, better,

∂

∂ x
=

(
∂

∂ x1 ,
∂

∂ x2 ,
∂

∂ x3

)
in the obvious way.

It produces a column vector when applied to V.

For worldline coordinates r =
(

r0

r

)
we define ṙ =

(
1
ṙ

)
to be d r

d t ,

the derivative with respect to time, whose value is recorded as

r0. Then r̈ =
(

0
r̈

)
is d2r

d t2 .
—————
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If a force acts on a particle of mass µ, Newton’s Second Law
tells us that there is a vector function F representing the force
for which (

0
F

)
=

d
dt

(µ ṙ) = µ r̈ =
(

0
µ r̈

)
.

Forces act at points in the world, M, and come from things in
the world, not coordinates. Their influence may be seen in
coordinates by their effect on changes in coordinate values,
according to the second law.

F is not the force. F is just a bunch of numbers.
—————
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Isaac Newton presumes there is a real thing in the world,
independent of coordinates, called force.

F just represents the force in these coordinates!

Forces change coordinates as accelerations do, not like position
coordinates or velocities.

Position coordinates change like s = x + r0v + Mr.

Then velocities (and displacements) change like ṡ = v + Mṙ.

Finally, accelerations (and therefore forces) change like s̈ = M ṙ.

(In terms of manifolds, force is a tangent vector field. The atlas
corresponding to admissible observers is tiny compared to the
differentiable structure on the Newtonian world.)
—————
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So when s represents the same worldline as r, except in y
coordinates rather than x coordinates (so s = C ◦ r) and if G
represents the same force as does F then

G(s) = µ s̈ ⇐⇒ F(r) = µ r̈.

G(s) = M F(r) = M F(C−1(s)).

It is interesting to note that even if F does not depend on the
time coordinate, C−1 will push a time dependence onto G if the
velocity v is nonzero.
—————
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According to basic facts about ODEs1 under any reasonable
conditions on the force there is a unique worldline (in M!) that
solves the equation (

0
F(r)

)
= µ r̈

in coordinates.

In fact there is a local flow for the force, which solves it for all
reasonable initial conditions.

(This “reasonableness” condition includes, or instance, our
“allowable observer” requirement that r0(t) = t + x0 for
constant x0, rather than the more general r0(t) = k t + x0 for
k 6= 1.)
—————

1See page 7 of http://susanka.org/Notes/manifolds1.pdf
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p = µ ṙ is called the linear momentum of the particle, and

T =
1
2
µ (ṙ)2 =

1
2µ

p2

is called the kinetic energy of the particle.

In another frame y with worldline coordinates s we will denote
the momentum and kinetic energy calculated using solution s
by p̂ and T̂.
—————
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These do depend on coordinates, but they are obviously
invariant under additive constant space coordinate changes.

And if a coordinate change involves just a space
rotation/reflection matrix M then p̂ = Mp but

T̂ =
1

2µ
p̂2 =

1
2µ

(M p) · (M p) =
1

2µ
p · p = T

so kinetic energy is invariant under this kind of change, though
linear momentum is not.

Finally, if the coordinate change involves just a velocity term v
then p̂ = p + µ v and T̂ = 1

2µ (p + µ v)2 so both of these
functions of time depend on the coordinate system in this way.
—————
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Sometimes there is a real valued function defined on a
neighborhood of interest in the world, which is independent of
time and which in coordinates is a function V for which

F = − ∂

∂x
V

and in that case V is called the potential of the force and F is
called conservative. (This implies that F also depends only on
space coordinates, not time.)

Of course if V is a potential, so is V + c for constant c. Any two
potentials (defined on an appropriately shaped region) differ
by a constant.

If there is such a function V we can define the total energy as a
function of time for coordinates of the worldline as

E = T + V(r) =
1
2
µ (ṙ)2 + V(r).

—————
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Differentiating with respect to time, we have

d
dt

E =
d
dt
(T + V(r)) = µ ṙ · r̈ + ∂

∂x
V(r) · ṙ

=µ ṙ · r̈− F(r) · ṙ = 0.

So the total energy is a constant along the coordinates of the
worldline of this particle.

But what about other coordinates?

Define W = V ◦ C−1 where C is the coordinate “translator”
from x coordinates to y coordinates and Ê = T̂ + W(s).

W will be a potential for G and there will be no change in
energy if s = r + x0 for constant x0.
—————
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Nor will anything change if we have s = M r for orthogonal M:
W = V ◦ C−1 will be a potential for the G, the y-coordinate
representation of the force, and

d
dt

Ê =
d
dt
(T̂ + W(s)) =

d
dt
(T̂ + V(r))

= µ
(

Mṙ
)
·
(

Mr̈
)
− F(r) · ṙ = 0.

—————
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But what about s = r + vt?

If, as above, G represents the force in y coordinates then again
G(s) = F(r) = F(s− vt) and there can be no time-independent
potential for G unless F is constant on all lines parallel to v.

The Hamiltonian, Lagrangian and Routhian reformulations of
Newtonian mechanics were created to better handle invariant
quantities in Newtonian mechanics.
—————
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