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TENSOR NOTATION

Since they appear in every calculation and almost every page in
books on General Relativity, we need to become comfortable
with mathematical entities called tensors and the standard
operations on them. These things looks like:

Xi
or Λα or gαβ or Rαβ γ δ

or Rαβ α δ → Rβ δ

or gαβ Rβ δ → Rα δ
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WHAT DOES “HANDLING” MEAN?

Except in carefully arranged cases these calculations are
impossible to perform in a timely fashion by a human.

So “handling” definitely does not mean taking a general tensor
and writing down all the coordinates in a basis.

“Handling” means knowing what is going on in simple cases
and understanding the basic properties of tensors.

. . . and being aware of that which is not written, understood by
all as background information: part of the “set-up”.
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LET’S BEGIN . . .

Xi or Xα

Notice that the index is “high” as if it were an exponent. It is
not. These are coordinates of a vector in a specific ordered basis
of some agreed-upon underlying vector space V. These are
called contravectors, or simply vectors.

The basis is not mentioned, so these are really real-valued
functions whose domain is the set of all ordered bases of the
vector space V: a different list of coordinates for each basis.

Following the standard convention of Linear Algebra, these
correspond to the entries of a column (that is, n× 1) matrix.
You tell me the basis, I tell you the matrix.
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Λα
Notice here that the index is “low”. These are coordinates in a
specific ordered basis of a member of the dual of our
underlying vector space. These are called covectors and the
dual vector space is denoted V∗.

Recall that members of the dual are linear functionals: linear
maps from the underlying vector space V to the real numbers.

Following the standard convention of Linear Algebra, these
correspond to the entries of a row (that is, 1× n) matrix.

Evaluating a functional on a vector corresponds to left matrix
multiplication by the functional representative of the vector
representative. 1× n times n× 1 is 1× 1, a real number.
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The underlying vector space we have in mind will have
dimension 4 and any subscripts or superscripts you see will
generally be assumed to run over four possible values,
independently of the values assigned to different subscripts or
superscripts.

So Rαβ γ δ will refer to 44 = 256 different numbers.
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Usually Mathematicians would follow something like Xi with
“i = 1, . . . , 4” to indicate the range of index values. . .

. . . but one typical Physics convention, which we will
occasionally use, is to let a lower case Greek index such as α
denote an integer 0, 1, 2 or 3 while a lower case Latin index
such as i denotes one of 1, 2 or 3.

The reason for this comes from the intended meaning of the
coordinates. X0 will often correspond to something like time,
while the last three coordinates have more to do with space,
and it shortens some formulae if there is a notation to reflect
this.
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THE SUMMATION CONVENTION

If you see two of these objects juxtaposed with different indices
such as

XαΛβ
the intent is that these numbers are to be multiplied. In our case
this represents 16 different numbers.

XγΛδ is the same 16 numbers: new unused index
symbols can be substituted without changing the meaning of
the expression.
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If you see juxtaposed terms with repeated indices, exactly once
“high” and exactly once “low” such as

XαΛα
the intent is that these numbers are to be summed (a sum of
products) over the range of the repeated index values.

The sum shown here is the result of causing the covector Λ to
act on the vector X and is physical. The result cannot depend on
choice of basis, and that is what we mean when we call
anything “invariant.”

For instance if Λ is a (constant-nothing dynamic here!) electric
field in ordinary three dimensional space and X is a
displacement vector the number ΛX is the electric potential
change experienced during the displacement.

Volts ∗m−1 ∗m = Volts. The number ΛiXi must be invariant.
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If there are unrepeated indices as in

Xαgαβ
the intent is to indicate four different sums, one for each value
of β.

Xαgαα and XαXα

are undefined. This restriction will help you avoid or recognize
mistakes. The usual summation with “Σ” must be used for
sums of products that look like this.

They virtually never occur.
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The Encyclopedia Brittanica article on Tensors refers to Tensor
Notation as an invention of “almost magical efficiency.”

Used properly the notation itself will guide you toward the
proper calculation and make most common mistakes obvious.

The rule:

Once high and once low in a product indicates summation.
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A FEW WORDS ABOUT WHAT IS MISSING

We will do calculations using convenient coordinates, but one
must keep straight what the coordinates represent.

Numerical coordinates are (practically) without physical
meaning unless an ordered basis is specified!!! The basis
“attaches” the numbers to reality.

If X is a vector in the underlying vector space V and
A = {a0,a1,a2,a3 } is an ordered basis of V then

X = Xαaα

for certain real numbers Xα.

These numbers obviously depend on A so in the interests of
precision if not clarity we may write Xα(A) to remind us of the
basis-dependence of these four numbers.
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Define the standard ordered basis E of R4 to have αth basis
member eα which is (and will always be) the unit column
vector with the number one α down from the top.

The coordinate vector for X in the basis is

[X]A = Xα(A)eα

which is the column vector in R4 we mentioned before.

It is convenient to think of [X]A as a complete description of X
in “language” A.
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The actual vector is X = Xα(A)aα.

Its representative in R4 in this basis is

[X]A = Xα(A)eα.
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Suppose A∗ = {a0,a1,a2,a3 } is the ordered basis of V∗ dual to
A, which is defined by the condition

aαaβ = δαβ

where δαβ is the “Kronecker delta” symbol.

The functional aα “picks off” the coefficient on aα when you
represent a vector such as X in terms of basis A.

For example E∗ is (identified with) the ordered basis containing
the row matrices eα, which have one α spaces from the left and
zeroes elsewhere.

eα Xβ eβ = Xα.
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Our description in what follows requires us to decide in
advance which underlying vector space is to provide the
vectors and which will provide the covectors. Both choices are
legitimate—the dual of the dual can be identified with the
original space—but we must choose.

The only effect of a different choice would be to switch which
indices are “high” and which are “low.”
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If Λ is a covector, a member of the dual vector space, then there
are constants Λα(A) for which

Λ = Λα(A)aα = Λ(aα)aα.

We then define the row matrix

[Λ]A = Λα(A)eα = ( Λ(a0) Λ(a1) Λ(a2) Λ(a3) )

which is the matrix that represents Λ when we start with basis
A on our original space of vectors.

We think of [Λ]A as a complete description of covector Λ when
members of the original vector space are understood to be
described using “language” A.
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CHANGING BASES

Suppose we change bases from basis A to basis B on our
original vector space. We need to know how this affects
coordinates of vectors and covectors.

Define the matrix of transition from basis A to basis B to be the
square matrix

PB←A =

(
[a1]B . . . [an]B

)
.

A calculation now shows that for any vector X

[X]B = PB←A [X]A .

In other words, left multiplication by the matrix PB←A is the
translator from language A to language B.

And it follows easily that PA←B = (PB←A)−1 .
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The situation is very similar for covectors. If Λ is a covector and
X any vector the number ΛX cannot depend on basis. Therefore

Λ X = [Λ]A [X]A = [Λ]B [X]B = [Λ]B PB←A [X]A .

It now follows that [Λ]B = [Λ]A PA←B.

In other words, right multiplication by the matrix PA←B is the
translator from language A to language B for coordinates of
covectors.

An internal narrative might go as follows. [Λ]B is the row
matrix that calculates ΛX using the description of X in the B

language. Reading from right to left, this number can be
calculated by translating the coordinate vector [X]B to the A

language, and then using [Λ]A, which understands A-speak.
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THE SIMPLEST TENSORS
We need a concise way of referring to the entries of the matrix
of transition PB←A.

We will refer row α column β entry of PB←A by dBα

dAβ .

Since PA←BPB←A is the identity matrix we have dAα

dBγ
dBγ

dAβ = δαβ .

And Xα(B) = dBα

dAβ Xβ(A).(
new vector coordinates = d new coordinates

d old coordinates old vector coordinates
)

And Λα(B) = Λγ(A) dAγ

dBα .

So

ΛX = Λα(B)Xα(B) = Λγ(A)
dAγ

dBα

dBα

dAβ
Xβ(A)

= Λγ(A) δγβ Xβ(A) = Λγ(A) Xγ(A).

Abs Min TOC Notation Sum Miss Chng Basis + Miss Alt+Sym Trace Raise+Lower Tens Prod Wedge Manifolds

EXAMPLE IN R2

Suppose given vector v with coordinate vector
(

1
2

)
= [v]A.

Suppose we have a second basis both B with each vector
one-fifth as long as the corresponding vector from A. So
5 b1 = a1 and 5 b2 = a2.

Since the basis vectors are shorter, coordinates in the new basis
will all be 5 times bigger.(

5
10

)
= [v]B = d new coordinates

d old coordinates [v]A =

(
5 0
0 5

)(
1
2

)
.
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COORDINATE CHANGES FOR TENSORS OF HIGHER

ORDER

So how do more complicated tensors, such as gαβ and

Rαβ γ δ change coordinates?

Just like the simpler coordinates do!

Specifically, each “high” index will correspond to a PB←A = dBα

dAβ

factor, and each “low” index induces a PA←B = dAα

dBβ factor.
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gαβ(B) = gγ δ(A) dAγ

dBα
dAδ

dBβ

Rαβ γ δ(B)

= Rτζ σ µ(A)dBα

dAτ
dAζ

dBβ
dAσ

dBγ
dAµ

dBδ
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TENSORS OF HIGHER ORDER

Now let’s get back to gαβ and Rαβ γ δ
in a fixed basis A.

In this basis these numbers are the coefficients from

gαβ aα ⊗ aβ

and

Rαβ γ δ aα ⊗ aβ ⊗ aγ ⊗ aδ.
(Note that basis dependence is missing from the coefficients. It
is “understood” unless you are changing coordinates.)
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But what do aα ⊗ aβ and aα ⊗ aβ ⊗ aγ ⊗ aδ mean?

They are real-valued functions from products of V and V∗ in an
order specified by the left-to-right position of the index in the
coefficients (each has its own column there) and the consequent
order in the tensor product of basis vectors.

Specifically, aα ⊗ aβ : V × V → R is given by

aα ⊗ aβ(X,Y) = aα(X) aβ(Y) = XαYβ

where Xα and Yβ are coordinates of X and Y in the A basis.
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And aα ⊗ aβ ⊗ aγ ⊗ aδ : V∗ × V × V × V → R is given by

aα⊗aβ ⊗ aγ ⊗ aδ(Λ,X,Y,Z)

= aα(Λ) aβ(X) aγ(Y) aδ(Z) = ΛαXβYγZδ.

These functions are linear in each “slot” separately: fix a vector
or covector in each “slot” but one and the result is linear.

So any linear combination of tensors (with the same domain) is
linear in each slot.

Abs Min TOC Notation Sum Miss Chng Basis + Miss Alt+Sym Trace Raise+Lower Tens Prod Wedge Manifolds

ALTERNATING AND SYMMETRIC TENSORS

A tensor is called covariant if all its indices are low. It is called
contravariant if all indices are high.

A covariant or contravariant tensor is called symmetric if
switching any two index values in a given basis leaves the
coefficient value unchanged. If this is true in one basis, it is true
in any basis.

A covariant or contravariant tensor is called alternating if
switching any two index values in a given basis introduces a
minus sign in the coefficient value, but otherwise leaves the
coefficient unchanged. If this is true in one basis, it is true in
any basis.
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Suppose θ is a covariant tensor with L indices—these are called
L-forms— and A is a basis.

PL is the group of all permutations on the set { 1, . . . ,L }.

Alt(θ) =
1
L!

∑
Q∈PL

sgn(Q) θi1,...,iL aiQ(1) ⊗ · · · ⊗ aiQ(L)

=
1
L!

∑
Q∈PL

sgn(Q) θiQ(1),...,iQ(L) ai1 ⊗ · · · ⊗ aiL .

(Sum on an index pair im and iQ(q) whenever m = Q(q).)
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Sym(θ) =
1
L!

∑
Q∈PL

θi1,...,iL aiQ(1) ⊗ · · · ⊗ aiQ(L)

=
1
L!

∑
Q∈PL

θiQ(1),...,iQ(L) ai1 ⊗ · · · ⊗ aiL .

(Sum on an index pair im and iQ(q) whenever m = Q(q).)

Alt(θ) = θ if and only if θ is alternating, while Sym(θ) = θ if and
only if θ is symmetric.
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EXAMPLE

Suppose θ = a1 ⊗ a2 and σ = a1 ⊗ a2 ⊗ a3.

Alt(θ) =
1
2

( a1 ⊗ a2 − a2 ⊗ a1 )

Three-index tensors generate six terms for each original term:

Alt(σ) =
1
6

( a1 ⊗ a2 ⊗ a3 − a2 ⊗ a1 ⊗ a3

− a3 ⊗ a2 ⊗ a1 + a2 ⊗ a3 ⊗ a1

− a1 ⊗ a3 ⊗ a2 + a3 ⊗ a1 ⊗ a2 )
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CONTRACTION, OR THE TRACE OPERATION

The contraction or trace operation is a means of reducing the
rank of a tensor by two indices, one contravariant and one
covariant index. The result of doing this also has tensor character.

For instance

Rαβ γ δ aα ⊗ aβ ⊗ aγ ⊗ aδ : V∗ × V × V × V → R

can be converted to

Rβ δ aβ ⊗ aδ : V × V → R

where Rβ δ is the sum Rαβ α δ.

This example will be important to us. If the original tensor is
the Riemann curvature tensor then this contraction is the Ricci
curvature tensor. Einstein’s field equations are expressed using
the Ricci curvature.
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RAISING AND LOWERING INDICES

Indices are raised or lowered by specifying a metric tensor by
analogy with the way functionals on Euclidean space are
represented by vectors acting via the dot product, or how bras
and kets from QM can be transformed into each other using the
inner product on the state space.

A metric in this context is a symmetric nondegenerate bilinear
form defined, for us, on a 4 dimensional vector space. In basis
A a metric g can be represented as

g = gαβ aα ⊗ aβ
.
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Symmetry of gαβ aα ⊗ aβ means here that gαβ = gβ α and
nondegeneracy means that, as a matrix, ( gαβ ) is invertible.

The inverse matrix ( gαβ )−1 is also symmetric, and the entries
of the inverse matrix are denoted gαβ.

So gαγ gγ β = δαβ .

g? = gαβ aα ⊗ aβ
is also a tensor, said to be conjugate or dual to the metric tensor.
It is an inner product on V∗.

Indices are raised or lowered using these two tensors.
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Suppose given covector and vector

Λα aα and Xα aα.

The “raised index version” of Λ has coordinates

Λα = Λβ gαβ

which corresponds to the vector Λα aα.

Similarly the “lowered index version” of X has coordinates

Xα = Xβ gαβ

corresponding to the covector Xα aα.

These procedures are inverse to each other: lowering followed
by raising has no net effect.
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Let’s look at a 4 dimensional vector space V and suppose we
have a metric tensor g given in basis A by

g = −a0 ⊗ a0 + a1 ⊗ a1 + a2 ⊗ a2 + a3 ⊗ a3.

This is a very atypical basis since twelve of the sixteen possible
gαβ values are 0. Thought of as the entries in a matrix, the
nonzero coefficients are ±1 and on the diagonal.

If X and Y are vectors, then using coordinates in this basis

g(X,Y) = −X0Y0 + X1Y1 + X2Y2 + X3Y3.
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The conjugate metric tensor has coordinates which are
numerically the same in this unusual basis: i.e. gαβ = gαβ . But
the tensor to which these coordinates refer is

g? = −a0 ⊗ a0 + a1 ⊗ a1 + a2 ⊗ a2 + a3 ⊗ a3.

If Λ and Ψ are covectors, then using coordinates in this basis

g∗(Λ,Ψ) = −Λ0Ψ0 + Λ1Ψ1 + Λ2Ψ2 + Λ3Ψ3.
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Let’s lower the index of vector X in this basis.

Xα = gαβXβ means vector

X = X0a0 + X1a1 + X2a2 + X3a3

has been converted into covector

Xαaα = X0a0 + X1a1 + X2a2 + X3a3

=− X0a0 + X1a1 + X2a2 + X3a3.
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Raising the index on a covector is handled similarly.

Λα = gαβΛβ means covector

Λ = Λ0a0 + Λ1a1 + Λ2a2 + Λ3a3

has been converted into vector

Λαaα = Λ0a0 + Λ1a1 + Λ2a2 + Λ3a3

=− Λ0a0 + Λ1a1 + Λ2a2 + Λ3a3.
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We can apply this procedure to a more general tensor in any
basis and the process becomes automatic with practice. Let’s
consider our friend the Riemann curvature tensor.

Rαβ γ δ aα ⊗ aβ ⊗ aγ ⊗ aδ : V∗ × V × V × V → R

We can lower the first index or raise the third index to produce

Rαβ γ δ aα ⊗ aβ ⊗ aγ ⊗ aδ : V × V × V × V → R

and Rα γ
β δ aα ⊗ aβ ⊗ aγ ⊗ aδ : V∗ × V × V∗ × V → R

where Rαβ γ δ = gαµ Rµβ γ δ and Rα γ
β δ = gγ µ Rαβ µ δ.

In the very special basis discussed earlier this gives

R0β γ δ = −R0
β γ δ and R0 γ

β δ = −R0
β µ δ

and Riβ γ δ = Ri
β γ δ and Ri γ

β δ = Ri
β µ δ.
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TENSOR PRODUCT

Tensors of higher rank can be created from tensors of lower
rank by tensor product. We illustrate this by example.

Suppose given tensors

R = Rαβ aα ⊗ aβ : V∗ × V → R and X = Xα aα : V∗ → R.

The tensor T = R⊗ X is defined to be

Tα γ
β aα ⊗ aβ ⊗ aγ : V∗ × V × V∗ → R

with coordinates calculated as Tα γ
β = Rαβ Xγ .
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It is important to note that even though the numbers Rαβ Xγ

and XγRαβ are equal, the tensors R⊗ X and X ⊗ R are not.

For instance, the domain of R⊗ X is V∗ × V × V∗ while the
domain of X ⊗ R is V∗ × V∗ × V.

But even if the domains are equal, which will be the case for
example if both tensors are covariant, these tensor products
need not be equal.

Tensor product is not commutative.
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WEDGE PRODUCT

Define wedge product between s-forms and t-forms by

σ ∧ τ =
(s + t)!

s! t!
Alt(σ ⊗ τ).

From the standpoint of calculation this can be impossibly
arduous in view of the fact that PL has L! members. However, it
is not completely unmanageable when L is 4 or less, as it
usually is.
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EXAMPLE
Suppose now that M is a 3-manifold and σ = 4 a1 + 8 a2 and
τ = 6 a1 + 5 a3.

P2 contains two permutations only: the identity and the
permutation that switches 1 and 2.

γ = σ ∧ τ =
(2)!

1! 1!
Alt(σ ⊗ τ) = 2 Alt(σ ⊗ τ)

= 2 Alt( 24 a1 ⊗ a1 + 20 a1 ⊗ a3 + 48 a2 ⊗ a1 + 40 a2 ⊗ a3 )

= 24 a1 ⊗ a1 + 20 a1 ⊗ a3 + 48 a2 ⊗ a1 + 40 a2 ⊗ a3

− (24 a1 ⊗ a1 + 20 a3 ⊗ a1 + 48 a1 ⊗ a2 + 40 a3 ⊗ a2)

= 20 (a1 ⊗ a3 − a3 ⊗ a1)− 48 (a1 ⊗ a2 − a2 ⊗ a1)

+ 40 (a2 ⊗ a3 − a3 ⊗ a2)

= 20 a1 ∧ a3 − 48 a1 ∧ a2 + 40 a2 ∧ a3.
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BACK TO MANIFOLDS

On a manifold at point p we have made several equivalent
definitions of the tangent space Mp and its dual M∗p.

Members of Mp are equivalence classes of differentiable curves
through the point p at time 0 all of which have the same
derivative at time 0. If c : (a, b)→M is one such curve, [c]p is the
class and we call these classes tangent vectors. We defined
vector operations making Mp a vector space.

Members of M∗p are equivalence classes of differentiable real
valued functions defined on a neighborhood of p all of which
have the same derivative at p. If f : U→ R is one such function,
dfp is the class and we call these classes cotangent vectors. We
defined vector operations making M∗p a vector space.
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Mp and M∗p are the vector spaces V and V∗ which we will be
using for our tensors, and we took pains to show that these
vector spaces were defined independently of any particular
coordinate system.

We then created specific bases for these vector spaces using
coordinate maps such as x : Ux → R4 and y : Uy → R4 around p.

The dxi
p form a basis for M∗p and the tangent vectors ∂

∂xi

∣∣
p

form
a basis for Mp.

dfp =
∂f
∂xi (p) dxi

p and [c]p =
d(xi ◦ c)

dt
(0)

∂

∂xi

∣∣∣∣
p
.

dfp and [c]p act on each other by

dfp [c]p =
∂f
∂xi (p)

d(xi ◦ c)
dt

(0) = (f ◦ c)′(0).
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A most convenient representation for these vectors and
covectors is as equivalence classes

[x, σ]p ∈M∗p with σ ∈ R4∗ and [x, v]p ∈Mp with v ∈ R4.

Representatives act on each other by [x, σ]p[x, v]p = σ v.

And coordinate changes—changing representatives—can be
accomplished by multiplying by the appropriate Jacobian
matrices.

σ v = σ

(
∂xi

∂yj (p)

)(
∂yi

∂xj (p)

)
v

Letting τ = σ
(
∂xi

∂yj (p)
)

and w =
(
∂yi

∂xj (p)
)

v we have

[y, τ ]p = [x, σ]p and [y,w]p = [x, v]p.
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