CHAPTER 4

THE CURVATURE OF
HIGHER DIMENSIONAL MANIFOLDS

A. AN INAUGURAL LECTURE

O n June 10, 1854 the faculty of Géttingen University heard a lecture entitled
Uber die Hypothesen, welche der Geometrie zu Grunde liegen (On the Hypotheses
which lie at the Foundations of Geometry). This lecture was delivered by Georg
Friedrich Bernhard Riemann, who had been born just a year before Gauss’
paper of 1827. Although the lecture was not published until 1866, the ideas
contained within it proved to be the most influential in the entire history of
differential geometry. To be sure, mathematicians had not neglected the study
of surfaces in the meantime; in fact, Gauss’ work had inspired a tremendous
amount of work along these lines. But the results obtained in those years can
all be proved with much greater ease after we have followed the long series
of developments initiated by the turning point in differential geometry which
Riemann’s lecture provided.

A short account of the life and character of Riemann can be found in the
biography by Dedekind* which is included in Riemann’s collected works (pub-
lished by Dover). His interest in many fields of mathematical physics, together
with a demand for perfection in all he did, delayed until 1851 the submission
of his doctoral dissertation Grundlagen fiir eine allegemeine Theorie der Functionen einer
verdnderlichen complexen Grisse (Foundations for a general theory of functions of
a complex variable). Gauss’ official report to the Philosophical Faculty of the
University of Gottingen stated “The dissertation submitted by Herr Riemann
offers convincing evidence of the author’s thorough and penetrating investiga-
tions in those parts of the subject treated in the dissertation, of a creative, active
truly mathematical mind, and of a gloriously fertile originality.”

Riemann was now qualified to seek the position of Privatdocent (a lecturer
who received no salary, but was merely forwarded fees paid by those students

* Even for those who can only plod through German, this is preferable to the account
in E. T. Bell’s Men of Mathematics, which is hardly more than a translation of Dedekind,
written in a racy style and interlarded with supercilious remarks of questionable taste.
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who elected to attend his lectures). To attain this position he first had to sub-
mit an “inaugural paper” (Habilitationsschrift). Again there were delays, and it
was not until the end of 1853 that Riemann submitted the Habilitationsschrift,
Uber die Darstellbarkeit einer Function durch eine trigonometrische Reihe (On the repre-
sentability of a function by a trigonometric series). Now Riemann still had to
give a probationary inaugural lecture on a topic chosen by the faculty, from a
list of three proposed by the candidate. The first two topics which Riemann
submitted were ones on which he had already worked, and he had every reason
to expect that one of these two would be picked; for the third topic he chose the
foundations of geometry. Contrary to all traditions, Gauss passed over the first
two, and picked instead the third, in which he had been interested for years.
At this time Riemann was also investigating the connection between electric-
ity, magnetism, light, and gravitation, in addition to acting as an assistant in
a semuinar on mathematical physics. The strain of carrying out another ma-
jor investigation, aggravated perhaps by the hardships of poverty, brought on a
temporary breakdown. However, Riemann soon recovered, disposed of some
other work which had to be completed, and then finished his inaugural lecture
in about seven more weeks.

Riemann hoped to make his lecture intelligible even to those members of
the faculty who knew little mathematics. Consequently, hardly any formulas
appear and the analytic investigations are completely suppressed. Although
Dedekind describes the lecture as a masterpiece of exposition, it is questionable
how many of the faculty comprehended it. In making the following translation *
I was aided by the fact that I already had some idea what the mathematical
results were supposed to be. The uninitiated reader will probably experience a
great deal of difficulty merely understanding what Riemann is trying to say (the
proofs of Riemann’s assertions are spread out over the next several chapters).
We can be sure, however, that one member of the faculty appreciated Riemann’s
work. Dedekind tells us that Gauss sat at the lecture “which surpassed all his
expectations, in the greatest astonishment, and on the way back from the faculty
meeting he spoke to Wilhelm Weber, with the greatest appreciation, and with an
excitement rare for him, about the depth of the ideas presented by Riemann”.

*The original is contained, of course, in Riemann’s collected works. Two English
translations are readily available, one in Volume 2 of Smith’s Source Book in Mathematics
(Dover), and one in Clifford’s Mathematical Papers (Chelsea).
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On the Hypotheses which lie at
The Foundations of Geometry

Plan of the Investigation.

As is well known, geometry presupposes the concept of space, as well as
assuming the basic principles for constructions in space. It gives only nominal
definitions of these things, while their essential specifications appear in the form
of axioms. The relationship between these presuppositions is left in the dark;
we do not see whether, or to what extent, any connection between them is
necessary, or a priori whether any connection between them is even possible.

From Euclid to Legendre, the most famous of the modern reformers of
geometry, this darkness has been dispelled neither by the mathematicians nor by
the philosophers who have concerned themselves with it. This is undoubtedly
because the general concept of multiply extended quantities, which includes
spatial quantities, remains completely unexplored. I have therefore first set
myself the task of constructing the concept of a multiply extended quantity
from general notions of quantity. It will be shown that a multiply extended
quantity is susceptible of various metric relations, so that Space constitutes only
a special case of a triply extended quantity. From this however it is a necessary
consequence that the theorems of geometry cannot be deduced from general
notions of quantity, but that those properties which distinguish Space from other
conceivable triply extended quantities can only be deduced from experience.
Thus arises the problem of seeking out the simplest data from which the metric
relations of Space can be determined, a problem which by its very nature is not
completely determined, for there may be several systems of simple data which
suffice to determine the metric relations of Space; for the present purposes,
the most important system is that laid down as a foundation of geometry by
Euclid. These data are — like all data — not logically necessary, but only of
empirical certainty, they are hypotheses; one can therefore investigate their
likelihood, which is certainly very great within the bounds of observation, and
afterwards decide upon the legitimacy of extending them beyond the bounds of
observation, both in the direction of the immeasurably large, and in the direction
of the immeasurably small.

I. Concept of an nfold extended quantity.

In proceeding to attempt the solution of the first of these problems, the
development of the concept of multiply extended quantity, I feel particularly
entitled to request an indulgent hearing, as I am little practiced in these tasks



152 Chapter 4, Part A

of a philosophical nature where the difficulties lie more in the concepts than
in the construction, and because I could not make use of any previous studies,
except for some very brief hints on the subject which Privy Councilor Gausshas
given in his second memoir on Biquadratic Residues, in the Gottingen Gelehrte
Anzeige and in the Gottingen Jubilee-book, and some philosophical researches
of Herbart.

1.

Notions of quantity are possible only when there already exists a general
concept which admits particular instances. These instances form either a con-
tinuous or a discrete manifold, depending on whether or not a continuous tran-
sition of instances can be found between any two of them; individual instances
are called points in the first case and elements of the manifold in the second.
Concepts whose particular instances form a discrete manifold are so numerous
that some concept can always be found, at least in the more highly developed
languages, under which any given collection of things can be comprehended
(and consequently, in the study of discrete quantities, mathematicians could
unhesitatingly proceed from the principle that given objects are to be regarded
as all of one kind). On the other hand, opportunities for creating concepts whose
instances form a continuous manifold oceur so seldom in everyday life that color
and the position of sensible objects are perhaps the only simple concepts whose
instances form a multiply extended manifold. More frequent opportunities for
creating and developing these concepts first occur in higher mathematics.

Particular portions of a manifold, distinguished by a mark or by a boundary,
are called quanta. Their quantitative comparison is effected in the case of
discrete quantities by counting, in the case of continuous quantities by measur-
ement. Measuring involves the superposition of the quantities to be compared; it
therefore requires a means of transporting one quantity to be used as a standard
for the others. Otherwise, one can compare two quantities only when one is a
part of the other, and then only as to “more” or “less”, not as to “how much”.
The investigations which can be carried out in this case form a general division
of the science of quantity, independent of measurement, where quantities are
regarded, not as existing independent of position and not as expressible in terms
of a unit, but as regions in a manifold. Such investigations have become a
necessity for several parts of mathematics, e.g., for the treatment of many-
valued analytic functions, and the dearth of such studies is one of the principal
reasons why the celebrated theorem of Abeland the contributions of Lagrange,
Pfaffand Jacobi to the general theory of differential equations have remained
unfruitful for so long. From this portion of the science of extended quantity,



B. Riemann: The Foundations of Geometry 153

a portion which proceeds without any further assumptions, it suffices for the
present purposes to emphasize two points, which will make clear the essential
characteristic of an nfold extension. The first of these concerns the generation
of the concept of a multiply extended manifold, the second involves reducing
position fixing in a given manifold to numerical determinations.

2.

In a concept whose instances form a continuous manifold, if one passes from
one instance to another in a well-determined way, the instances through which
one has passed form a simply extended manifold, whose essential characteristic
is, that from any point in it a continuous movement is possible in only two
directions, forwards and backwards. If one now imagines that this manifold
passes to another, completely different one, and once again in a well-determined
way, that is, so that every point passes to a well-determined point of the other,
then the instances form, similarly, a doubly extended manifold. In a similar
way, one obtains a triply extended manifold when one imagines that a doubly
extended one passes in a well-determined way toa completely different one, and
it is easy to see how one can continue this construction. If one considers the
process as one in which the objects vary, instead of regarding the concept as
fixed, then this construction can be characterized as a synthesis of a variability
of n + 1 dimensions from a variability of » dimensions and a variability of one
dimension.

3.

I will now show, conversely, how one can break up a variability, whose
boundary is given, into a variability of one dimension and a variability of lower
dimension. One considers a piece of a manifold of one dimension — with a fixed
origin, so that points of it may be compared with one another — varying so
that for every point of the given manifold it has a definite value, continuously
changing with this point. In other words, we take within the given manifold a
continuous function of position, which, moreover, is not constant on any part of
the manifold. Every system of points where the function has a constant value
then forms a continuous manifold of fewer dimensions than the given one. These
manifolds pass continuously from one toanother as the function changes; one can
therefore assume that they all emanate from one of them, and generally speaking
this will occur in such a way that every point of the first passes toa definite point
of any other; the exceptional cases, whose investigation is important, need not
be considered here. In this way, the determination of position in the given
manifold is reduced to a numerical determination and to the determination of



154 Chapter 4, Part A

position in a manifold of fewer dimensions. It is now easy to show that this
manifold has » — 1 dimensions, if the given manifold is an nfold extension. By
an ntime repetition of this process, the determination of position in an 7 fold
extended manifold is reduced to % numerical determinations, and therefore
the determination of position in a given manifold is reduced, whenever this is
possible, to a finite number of numerical determinations. There are, however,
also manifolds in which the fixing of position requires not a finite number, but
either an infinite sequence or a continuous manifold of numerical measurements.
Such manifolds form, e.g., the possibilities for a function in a given region, the
possible shapes of a solid figure, etc.

II. Metric relations of which a manifold of » dimensions
is susceptible, on the assumption that lines have a length
independent of their configuration, so that every line
can be measured by every other.

Now that the concept of an » fold extended manifold has been constructed,
and its essential characteristic has been found in the fact that position fixing
in the manifold can be reduced to » numerical determinations, there follows,
as the second of the problems proposed above, an investigation of the metric
relations of which such a manifold is susceptible, and of the conditions which
suffice to determine them. These metric relations can be investigated only
in abstract terms, and their interdependence exhibited only through formulas.
Under certain assumptions, however, one can resolve them into relations which
are individually capable of geometric representation, and in this way it becomes
possible to express the results of calculation geometrically. Thus, although an
abstract investigation with formulas certainly cannot be avoided, the results can
be presented in geometric garb. The foundations of both parts of the question
are contained in the celebrated treatise of Privy Councilor Gauss on curved
surfaces.

1.

Measurement requires an independence of quantity from position, which can
occurin more than one way. The hypothesis which first presents itself, and which
I shall develop here, is just this, that the length of lines is independent of their
configuration, so that every line can be measured by every other. If position-
fixing is reduced to numerical determinations, so that the position of a point in the
given »n fold extended manifold is expressed by » varying quantities x;, xg, ©3,
and so forth up to ), then specifying a line amounts to giving the quantities
as functions of one variable. The problem then is, to set up a mathematical
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expression for the length of a line, for which purpose the quantities x must be
thought of as expressible in units. I will treat this problem only under certain
restrictions, and I first limit myselfto lines in which the ratios of the quantities du
— the increments in the quantities x — vary continuously; one can then regard
the lines as broken up into elements within which the ratios of the quantities d«
may be considered to be constant, and the problem then reduces to setting up a
general expression for the line element ds at every point, an expression which
will involve the quantities « and the quantities dx. 1 assume, secondly, that the
length of the line element remains unchanged, up to first order, when all the
points of this line element suffer the same infinitesimal displacement, whereby
I simply mean that if all the quantities dx increase in the same ratio, the line
element changes by the same ratio. Under these assumptions, the line element
can be an arbitrary homogeneous function of the first degree in the quantities
dx which remains the same when all the quantities dx change sign, and in which
the arbitrary constants are functions of the quantities x. To find the simplest
cases, I first seek an expression for the (n — 1)fold extended manifolds which
are everywhere equidistant from the origin of the line element, i.e., I seek a
continuous function of position which distinguishes them from one another. This
must either decrease or increase in all directions from the origin; I will assume
that it increases in all directions and therefore has a minimum at the origin. Then
if its first and second differential quotients are finite, the first order differential
must vanish and the second order differential cannot be negative; I assume that
it is always positive. This differential expression of the second order remains
constant if ds remains constant and increases quadratically when the quantities
dx, and thus also ds, all increase in the same ratio; it is therefore = constant. ds®
and consequently ds = the square root of an everywhere positive homogeneous
function of the second degree in the quantities dx, in which the coefficients are
continuous functions of the quantities x. In Space, if one expresses the location
of a point by rectilinear coordinates, then ds = V 2(dx)?, Space is therefore
included in this simplest case. The next simplest case would perhaps include
the manifolds in which the line element can be expressed as the fourth root
of a differential expression of the fourth degree. Investigation of this more
general class would actually require no essentially different principles, but it
would be rather time consuming and throw proportionally little new light on the
study of Space, especially since the results cannot be expressed geometrically;
I consequently restrict myself to those manifolds where the line element can be
expressed by the square root of a differential expression of the second degree.
One can transform such an expression into another similar one by substituting
for the n independent variables, functions of » new independent variables.
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However, one cannot transform any expression into any other in this way;
for the expression contains » "jl coefficients which are arbitrary functions of
the independent variables; by the introduction of new variables one can satisfy
only 7 conditions, and can therefore make only % of the coefficients equal to

given quantities. There remain n 5= L others, already completely determined by

the nature of the manifold to be represented, and consequently n—zl functions
of position are required to determine its metric relations. Manifolds, like the
Plane and Space, in which the line element can be brought into the form \/Zdacz
thus constitute only a special case of the manifolds to be investigated here;
they clearly deserve a special name, and consequently, these manifolds, in
which the square of the lines element can be expressed as the sum of the
squares of complete differentials, I propose to call flat. In order to survey
the essential differences of the manifolds representable in the assumed form,
it is necessary to eliminate the features depending on the mode of presentation,
which is accomplished by choosing the variable quantities according to a definite
principle.

2.

Forthis purpose, one constructs the system of shortest lines emanating from
a given point; the position of an arbitrary point can then be determined by the
initial direction of the shortest line in which it lies, and its distance, in this line,
from theinitial point. It cantherefore be expressed by the ratios of the quantities
dx, ie., the quantities dx at the origin of this shortest line, and by the length s
of this line. In place of the dx one now introduces linear expressions de formed
from them in such a way that the initial value of the square of the line element will
be equal to the sum of the squares of these expressions, so that the independent
variables are: the quantity s and the ratio of the quantities da. Finally, in place
of the da choose quantities x;, xy, ..., &, proportional to them, but such that
the sum of their squares equals s%. If one introduces these quantities, then
for infinitely small values of x the square of the line element = Xda?, but the
next order term in its expansion equals a homogeneous expression of the second
degree in the n 5= ” 1 quantities (x; deg — xp diy), (2 deg — xg dxy), ..., and is
consequently an mﬁmtely small quantity of the fourth order, so that one obtains
a finite quantity if one divides it by the square of the inﬁnitel_y small triangle
at whose vertices the variables have the values (0, 0, 0, ...), (x1, x2, x3...),
(dwy.dag,dg, . ..). This quantity remains the same aslong as the quantities x and
dx are contained in the same binary linear forms, or as long as the two shortest
lines from the initial point to & and from the initial point to dwx remain in the
same surface element, and therefore depends only on the position and direction
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of that element. It obviously = zero if the manifold in question is flat, i.e.,ifthe
square of the line element is reducible to >dx?, and can therefore be regarded
as the measure of deviation from flatness in this surface direction at this point.
When multiplied by —%— it becomes equal to the quantity which Privy Councilor
Gauss has called the curvature of a surface. Previously, n’—lg—l functions of
position were found necessary in order to determine the metric relations of
an nfold extended manifold representable in the assumed form; hence if the
curvature is given in n"T”l surface directions at every point, then the metric
relations of the manifold may be determined, provided only that no identical
relations can be found between these values, and indeed in general this does not
occur. The metric relations of these manifolds, in which the line element can be
represented as the square root of a differential expression of the second degree,
can thus be expressed in a way completely independent of the choice of the
varying quantities. A similar path to the same goal could also be taken in those
manifolds in which the line element is expressed in a less simple way, e.g., by the
fourth root of a differential expression of the fourth degree. The line element in
this more general case would not be reducible to the square root of a quadratic
sum of differential expressions, and therefore in the expression for the square of
the line element the deviation from flatness would be an infinitely small quantity
of the second dimension, whereas for the other manifolds it was an infinitely
small quantity of the fourth dimension. This peculiarity of the latter manifolds
therefore might well be called plainness in the smallest parts. For present
purposes, however, the most important peculiarity of these manifolds, on whose
account alone they have been examined here, is this, that the metric relations
of the doubly extended ones can be represented geometrically by surfaces and
those of the multiply extended ones can be reduced to those of the surfaces
contained within them, which still requires a brief discussion.

3.

In the conception of surfaces, the inner metric relations, which involve only
the lengths of paths within them, are always bound up with the way the surfaces
are situated with respect to points outside them. We may, however, abstract
from external relations by considering deformations which leave the lengths of
lines within the surfaces unaltered, i.e., by considering arbitrary bendings —
without stretching — of such surfaces, and by regarding all surfaces obtained
from one another in this way as equivalent. Thus, for example, arbitrary
cylindrical or conical surfaces count as equivalent to a plane, since they can
be formed from a plane by mere bending, under which the inner metric relations
remain the same; and all theorems about the plane — hence all of planimetry
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— retain their validity. On the other hand, they count as essentially different
from the sphere, which cannot be transformed into the plane without stretching.
According to the previous investigations, the inner metric relations at every
point of a doubly extended quantity, if its line element can be expressed as the
square root of a differential expression of the second degree, which is the case
with surfaces, is characterized by the curvature. For surfaces, this quantity
can be given a visual interpretation as the product of the two curvatures of
the surface at this point, or by the fact that its product with an infinitely
small triangle formed from shortest lines is, in proportion to the radius, half
the excess of the sum of its angles over two right angles. The first definition
would presuppose the theorem that the product of the two radii of curvatures
is unaltered by mere bendings of a surface, the second, that at each point the
excess over two right angles of the sum of the angles of any infinitely small
triangle is proportional to its area. To give a tangible meaning to the curvature
of an nfold extended manifold at a given point, and in a given surface direction
through it, we first mention that a shortest line emanating from a point is
completely determined if its initial direction is given. Consequently we obtain
a certain surface if we prolong all the initial directions from the given point
which lie in the given surface element, into shortest lines; and this surface has
a definite curvature at the given point, which is equal to the curvature of the
nfold extended manifold at the given point, in the given surface direction.

4.

Before applying these results to Space, it is still necessary to make some
general considerations about flat manifolds, i.e., about manifolds in which the
square of the line element can be represented as the sum of squares of complete
differentials.

In a flat n fold extended manifold the curvature in every direction, at every
point, is zero; but according to the preceding investigation, in order to determine
the metric relations it suffices to know that at each point the curvature is zero
in n'ig—l independent surface-directions. The manifolds whose curvature is
everywhere = 0 can be considered as a special case of those manifolds whose
curvature is everywhere constant. The common character of those manifolds
whose curvature is constant may be expressed as follows: figures can be moved
in them without stretching. For obviously figures could not be freely shifted
and rotated in them if the curvature were not the same in all directions, at all
points. On the other hand, the metric properties of the manifold are completely
determined by the curvature; they are therefore exactly the same in all the
directions around any one point as in the directions around any other, and thus
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the same constructions can be effected starting from either; consequently, inthe
manifolds with constant curvature figures may be given any arbitrary position.
The metricrelations of these manifolds depend only onthe value of the curvature,
and it may be mentioned, as regards the analytic presentation, that if one denotes
this value by a, then the expression for the line element can be put in the form

1
1+ §Za?

\/dez

5.

The consideration of surfaces with constant curvature may serve for a
geometric illustration. It is easy to see that the surfaces whose curvature is
positive can always be rolled onto a sphere whose radius is the reciprocal of the
curvature; but in order to survey the multiplicity of these surfaces, let one of
them be given the shape of a sphere, and the others the shape of surfaces of
rotation which touch it along the equator. The surfaces with greater curvature
than the sphere will then touch the sphere from inside and take a form like
the portion of the surface of a ring, which is situated away from the axis; they
could be rolled upon zones of spheres with smaller radii, but would go round
more than once. Surfaces with smaller positive curvature are obtained from
spheres of larger radii by cutting out a portion bounded by two great semi-
circles, and bringing together the cut-lines. The surface of curvature zero will
be a cylinder standing on the equator; the surfaces with negative curvature will
touch this cylinder from outside and be formed like the part of the surface of a
ring which is situated near the axis. If one regards these surfaces as possible
positions for pieces of surface moving in them, as Space is for bodies, then pieces
of surface can be moved in all these surfaces without stretching. The surfaces
with positive curvature can always be so formed that pieces of surface can even
be moved arbitrarily without bending, namely as spherical surfaces, but those

with negative curvature cannot. Aside from this independence of position for |

surface pieces, in surfaces with zero curvature there is also an independence of
position for directions, which does not hold in the other surfaces.

IIT. Applications to Space.

1.

Following these investigations into the determination of the metric relations
of an n fold extended quantity, the conditions may be given which are sufficient
and necessary for determining the metric relations of Space, if we assume
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peforehand the independence of lines from configuration and the possibility of
expressing the line element as the square root of a second order differential
expression, and thus flatness in the smallest parts.

First, these conditions may be expressed by saying that the curvature at
every point equals zero in three surface directions, and thus the metric relations
of Space are implied if the sum of the angles of a triangle always equals two right
angles. ‘

But secondly, if one assumes with Euclid not only the existence of lines
independently of configuration, but also of bodies, then it follows that the cur-
vature is everywhere constant, and the angle sum in all triangles is determined
if it is known in one.

In the third place, finally, instead of assuming the length of lines to be
independent of place and direction, one might assume that their length and
direction is independent of place. According to this conception, changes or
differences in position are complex quantities expressible in three independent
units.

2.

In the course of the previous considerations, the relations of extension or
regionality were first distinguished from the metric relations, and it was found
that different metric relations were conceivable along with the same relations of
extension; then systems of simple metric specifications were sought by means
of which the metric relations of Space are completely determined, and from
which all theorems about it are a necessary consequence. It remains now to
discuss the question how, to what degree, and to what extent these assumptions
are borne out by experience. In this connection there is an essential difference
between mere relations of extension and metric relations, in that among the
first, where the possible cases form a discrete manifold, the declarations of
experience are to be sure never completely certain, but they are not inexact,
while for the second, where the possible cases form a continuous manifold, every
determination from experience always remains inexact — be the probability
ever so great that it is nearly exact. This circumstance becomes important when
these empirical determinations are extended beyond the limits of observation
into the immeasurably large and the immeasurably small; for the latter may
obviously become ever more inexact beyond the boundary of observation, but
not so the former. _

When constructions in Space are extended into the immeasurably large,
unboundedness is to be distinguished from infinitude; one belongs to relations
of extension, the other to metric relations. That Space is an unbounded triply
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extended manifold is an assumption which is employed for every apprehension
of the external world, by which at every moment the domain of actual perception
is supplemented, and by which the possible locations of a sought for object
are constructed; and in these applications it is continually confirmed. The
unboundedness of space consequently has a greater empirical certainty than
any experience of the external world. But its infinitude does not in any way
follow from this; quite to the contrary, Space would necessarily be finite if one
assumed independence of bodies from position, and thus aseribed to it a constant
curvature, as long as this curvature had ever so small a positive value. If one
prolonged the initial directions lying in a surface direction into shortest lines,
one would obtain an unbounded surface with constant positive curvature, and
thus a surface which in a flat triply extended manifold would take the form of a
sphere, and consequently be finite.

3.

Questions about the immeasurably large are idle questions for the expla-
nation of Nature. But the situation is quite different with questions about the
immeasurably small. Upon the exactness with which we pursue phenomena into
the infinitely small, does our knowledge of their causal connections essentially
depend. The progress of recent centuries in understanding the mechanisms
of Nature depends almost entirely on the exactness of construction which has
become possible through the invention of the analysis of the infinite and through
the simple principles discovered by Archimedes, Galileo, and Newton, which
modern physics makes use of. By contrast, in the natural sciences where the
simple principles for such constructions are still lacking, to discover causal
connections one pursues phenomenon into the spatially small, just so far as
the microscope permits. Questions about the metric relations of Space in the
immeasurably small are thus not idle ones.

If one assumes that bodies exist independently of position, then the curva-
ture is everywhere constant, and it then follows from astronomical measure-
ments that it cannot be different from zero; or at any rate its reciprocal must be
an area in comparison with which the range of our telescopes can be neglected.
But if such an independence of bodies from position does not exist, then one
cannot draw conclusions about metric relations in the infinitely small from those
in the large; at every point the curvature can have arbitrary values in three
directions, provided only that the total curvature of every measurable portion
of Space is not perceptibly different from zero. Still more complicated relations
can oceur if the line element cannot be represented, as was presupposed, by the
square root of a differential expression of the second degree. Now it seems that
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the empirical notions on which the metric determinations of Space are based, the
concept of a solid body and that of a light ray, lose their validity in the infinitely
small; it is therefore quite definitely conceivable that the metric relations of
Space in the infinitely small do not conform to the hypotheses of geometry; and
in fact one ought to assume this as soon as it permits a simpler way of explaining
phenomena.

The question of the validity of the hypotheses of geometry in the infinitely
smallis connected with the question of the basis for the metric relations of Space.
In connection with this question, which may indeed still be ranked as part of the
study of Space, the above remark is applicable, that in a discrete manifold the
principle of metric relations is already contained in the concept of the manifold,
but in a continuous one it must come from something else. Therefore, either
the reality underlying Space must form a discrete manifold, or the basis for the
metric relations must be sought outside it, in binding forces acting upon it.

Ananswer to these questions can be found only by starting from that concep-
tion of phenomena which has hitherto been approved by experience, for which
Newton laid the foundation, and gradually modifying it under the compulsion
of facts which cannot be explained by it. Investigations like the one just made,
which begin from general concepts, can serve only to insure that this work is not
hindered by unduly restricted concepts, and that progress in comprehending
the connection of things is not obstructed by traditional prejudices.

This leads us away into the domain of another science, the realm of physics,
into which the nature of the present occasion does not allow us to enter.
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B. WHAT DID RIEMANN SAY?

Upon a first reading, Riemann’s lecture may appear to have almost no math-
ematical content. But this is only because the analytic investigations, which
occur in Part II, have been drastically condensed, while Part I explains, in gen-
eral philosophical terms, important mathematical concepts which succeeding
generations of investigators were eventually able to express with mathematical
precision; finally, Part III of the lecture deals with applications of the mathe-
matical discoveries to questions in physics, a process which is perhaps not yet
complete.

In this commentary on Riemann’s lecture, we will follow closely the order of
Riemann’s exposition, referring often to the various sections (1, 2, etc.) within
each part (I, II, IIT). It should not be expected that all details will be cleared up,
even in the remaining portions of this chapter, for the complete consideration of
Riemann’s ideas will occupy several of the succeeding chapters. Consequently,
the remaining parts of Chapter 4 may be the hardest reading encountered in
either of the two volumes of these notes. Nevertheless, we hope that in the end
a clear view of all these ideas will be obtained.

In the “Plan of the Investigation”, Riemann begins by accounting for the
confusion over the status of non-Euclidean geometry, which at this time was still
not completely accepted. In 1829, Lobachevsky and Bolyai had independently
constructed a system of geometry which began by assuming that through a
point not on a line there was more than one line parallel to it (as opposed to the
assumption that there is only one parallel line, which is equivalent to Euchd’s
Fifth Postulate); but it was still supposed by some that contradictions in this
system would eventually be found.

Riemann attributes the difficulties encountered in the study of non-Euclidean
geometry to the fact that geometers had never separated what we would call
the topological properties of space from its metric properties; in the axiomatic
development of geometry, even the notion of space itself is undefined, and its
properties are developed through the axioms.

Riemann proposes to distinguish the metric properties from the topological
properties, and promises that we will discover how different metric structures
can be put on the triply extended quantity which constitutes Space, so that one
cannot possibly expect to deduce the parallel postulate of Fuclid from topolog-
1cal considerations alone. This implies that experimental data must be used to
determine what metric properties Space actually has, and raises the question
which data we should seek, and what we can expect to say about the regions of
Space too distant, or too small, to be investigated experimentally.
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In Part I, “Concept of an # fold extended quantity”, Riemann is clearly trying
to define a manifold.

It is impossible to tell from this lecture, intended for non-mathematicians,
how far Riemann had advanced toward the precise solution of this problem,
and whether he had any way of expressing concretely the notion of a metric or
topological space, which is essentially prerequisite to the definition of a manifold.
However, it is quite obvious that the notion was thoroughly clear in his own
mind and that he recognized that manifolds were characterized by the fact that
they are locally like n-dimensional Euclidean space. It is also clear that he
understood the importance of infinite dimensional spaces, such as the set of
all real-valued functions on a space (it is interesting that quite recently some
of these infinite dimensional spaces have been given the structure of “infinite
dimensional manifolds”, and differential geometric methods have been applied
to them with great success).

Part II contains nearly all the mathematical results, and the discussion of this
Part will take up most of the present chapter.

The difficulties in Part II begin right with the title, “Metric relations of which
a manifold of n dimensions is susceptible, on the assumption that lines have a
length independent of their configuration, so that every line can be measured by
every other”. To understand what Riemann means, it is necessary to recall the
process by which lengths are assigned to curves in the plane or 3-dimensional
space of analytic geometry. In this case, we begin with the notion of distance
between pairs of points, which amounts to saying that we first assign a length to
straight lines; the length of other lines is then defined as the least upper bound
of inscribed curves made up of straight lines, a process which can be reduced
to integration. In this method of assigning lengths to curves, it may be said that
all curves are measured by means of straight lines.

By contrast, Riemann proposes to consider a uniform method of assigning
lengths to all curves in a manifold, a method which does not depend on first
distinguishing a particular class of curves. This is to be done by measuring the
lengths of tangent vectors, so that the lengths of curves can be defined by an
ntegral (a restriction to C! curves is first indicated). Riemann assumes that
this “length” function f is continuous on each tangent space and also positive
homogeneous—the length f(Av) of Av is |A| times the length f(v) of v.

Now there are many kinds of positive homogeneous functions on a finite
dimensional vector space; any subset of the vector space which is symmetric
with respect to the origin, and intersects each ray through 0 just once, can be
used as the set of vectors of length 1. Riemann notes that the partial derivative
of f? (with respect to some basis of the tangent space M) must vanish at
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0 € M, and that the matrix of second order partial derivatives is positive semi-

- vectors of length 1

definite. He then assumes, as the simplest possibility, that it is actually positive

definite. This means that / can be expressed as \/fgij (p)dx® - dx’ for certain
numbers g;;(p). An assignment to each tangent space M, of such a norm, or
more precisely the inner product from which it comes, is, of course, what we
now call a Riemannian metric on the manifold M.

Riemann points out that it is merely to save time, and to allow geometric
descriptions of the results, that he restricts his attention to the special case.
Certain more general cases, though not the most general of all, were investigated
by Finsler in his thesis (1918), and are now known as Finsler metrics; it seems
clear, however, that Riemann must have already known the basic facts about
these more general metrics (some information on Finsler metrics is given in the

Addendum).

Having restricted his attention to “Riemannian manifolds”, Riemann now
asks the crucial question: when does the introduction of a new coordinate sys-
tem change the metric Y gi;dy’ ®dy’ into some given metric ¥ a;;dx' @dx7;
in other words, when are two Riemannian manifolds locally isometric? Rie-
mann here presents one of his famous “counting arguments”, which enabled
him to guess results that in some cases were not rigorously proved until a hun-
dred years later. Rlemann argues that the expression ) gijdx' ® dx/ contains
n"Jrl functions (not n2, for g;; = gj;) while a new coordinate system involves
only n functions, so that we can change only n of the gij, leaving n— other
functions which depend on the metric; consequently, Riemann argues, there
should be some set of n% functions which will determine the metric com-
pletely.

In section 2 of Part II, Riemann indicates how such functions are to be
found. We are going to apply a standard technique for the study of differentiable
functions—we examine the Taylor polynomials approximating the functions ;.
If xisa Coordmate system on M, with x(p) = 0, and the Riemannian met-
ric is given by ( , ) = " gijdx’ ® dx/, then for the Taylor expansion of the
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' R"” - R we have

function g;j o X~

gij o x7H(1) = (gij 0 Xx)(0) + Y Di(gyj o x~)(0)eF
k=1

l n
+ = ) Dralgij o x O3 +o(lt ).
2 k=1

Hence on M we have

" dgij I 0%gy
® g =8P+ ai',ﬁ (x4 ) ax,i';,(p)xkxl +o(x[),
k=1 k=1

where o(|x|?) denotes a function f on M such that

f@)

p X2

However, and this is the important device Riemann introduces, we will select
a very special coordinate system around each point p € M. We choose an
orthonormal basis Xi, ..., X, € M,, and define a coordinate system x: M, —
R" on M, by X(ZaiXi) = (a',...,a"). Then we let x be the coordinate

system X o exp~'. (This coordinate system is introduced at the very beginning

of section 2, but it takes a little work to decipher Riemann’s description of it.)

The coordinate system x is not uniquely determined, for it depends on the
choice of the orthonormal basis Xi,..., X, € Mp; but any two differ by an
element of O(n), so it will not be hard to take into account the way any of our
results depend on this choice. These coordinate systems are called Riemannian
normal coordinates at p. Notice that since exp,: (Mp)o — M) is the identity
(upon 1dentifying (Mp)o with Mp), we have

d
W :eXp*X,-:X,' EMP'
i 14

We can quickly give some information about the first two terms in the expan-
sion (%) of g;;:
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1. PROPOSITION. In a Riemannian normal coordinate system x at p we
have

gij(p) = dij
agij
=0.
Bk (p)

PROOF. The first set of equations is clear, for

d
gij(p) = <5;

To prove the second set of equations, we recall the equations for a geodesic y:

d
R

> = (X, Xj) = d;j-
P

n

d2yk X d)/i d)/j
72 + Z F,-j()’(f))'zt——dt- =0.

i,j=1

In Riemannian normal coordinates the geodesics through p are just exp o ¢,
where ¢ is a straight line in Mp. This means that for all n-tuples (£, ..., M),
the geodesics through p are the curves y with y* (1) = £kr. Hence

n
Z ["l‘j (y()EE =0 for the geodesic  y* (1) = g4,
i,j=1
In particular, since p = y(0) is on all these geodesics, we have
e . .
Y rh(p)g'e/ =0 for all n-tuples (E',.. . EM.
i,j=1

This shows that all [';‘j (p) are 0: choosing all §% = 0 except £ = 1 gives F{‘i =0
then choosing all §* = 0 except gl =&/ =1 gives

0 =& (p) + TX(p) + Th(p) + T (p) = 2T (p).
It follows that

n
[ij,k]1= gul} =0 atp.
a=1

Making use of equation (¥) on pg. I.331, we have finally,

0gij
dxk

= [ik, j]1+ [jk.i]=0 at p. %
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In view of Proposition 1, we can now use () to expand the squared norm
2
I I as

n
I 12= )" gidx'dx’

i,j=1

n
=Y dx'dx'+ - / xkxldxtdx? + o(1x|?).
2 : Z gl () (IxI%)
i=1 i, jik, 1
[This is an equation for tangent vectors near p, and o(|x|?) now denotes a
function f on tangent vectors; in order to have
v,
S(vg) 0

lim =
—>p |x]|

b

we must restrict vg to be of some bounded length.] Riemann’s main assertion
mnvolves the term

1 82 .. R . : ;
3 Z 8x’§91jcl (p)x*xldxidx) = Z c,-j,klxkxldx’dx’, say.
ijik,l ijik,l

Riemann asserts that there are numbers Cj; g such that we can write

Z c,-j,klxkxldx"dxj = Z C,-j,kl(xkdx" —xtdx*y . (x'dx) — xTdx").
i,jk,l ijk,1

This assertion immediately suggests three questions—Why did Riemann suspect
this was true? How did he prove 1t? What 1s its significance?

We will begin by giving a partial answer to the third of these questions. No-
tice that the equation in question 1s supposed to hold for all tangent vectors v
at all points ¢ in a neighborhood of p. Consequently, the numbers dx’(v)
[and x/(g)] can take on all [sufficiently small] values. The coordinate sys-
tem x and the Riemannian metric { , ) are used to obtain the n* numbers
Cijkl = %82g,-j/8xk8xl(p); but beyond this, the above equation has nothing
to do with the manifold at all. If we define a quadratic polynomial Q in 2n
variables bv

QX.Y)=Q(Xi.... Xy Y1, ) = Y cijuXiX; Yy,
i,jik,l
then Riemann is asserting that this quadratic polynomial can be written as

QX.Y)= Y Cyu(Xi¥i — XY (X;Y1 — XiY)).
ijikd
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To obtain the geometric consequences of this fact, we observe what it says when
we select two vectors Up, wp € M), and let X; = dx*(vp) and ¥; = dx’ (wp);
denoting Q(X,Y) by Q(vp, wp), we have

Q(vp,wp) = Z cij k1 dx' (vp) dx? (vp) - dx* (wp) dx' (wp)
i, ik,

= Z C,-j,kl[(dx" A dxk)(vp,wp)] . [(dxj A dxl)(vp,wp)].
i, jik,d

[We can also write

0= i g dxidx] @ dxFdx! = Cii xi(dx’ A dx®y . (dx? A dxh),
Js Js
i,jik,l i, jik,d

a little more simply.] Now suppose v'p,w’p € Mp span the same subspace as
Up, Wp, SO that we can write
!
Vp =anvp +anwp

det(a,'j) £ 0.

w'p = aiavp +anwp
The right side of the above equation for Q(vp, wp) shows that
Q(U/P’ w/p) = [det(aij )]2 : Q(Upa Wp),

since each dx® A dx# is multiplied by the factor det(a;ij). If we use |lvp, wp | to
denote the area of the parallelogram spanned by vp and wp, then we also have

2 2 2
10 p, w'pll* = [det(aij)]” - llvp, wpll”

Consequently, .

Q p W p) _ Q(Upa wp)

15 wpli2 " llup, wpl®
We therefore have a way of assigning a number to every 2-dimensional subspace
of the tangent space at p. (Riemann sticks to the original quadratic function
of the x' and dx’, which puts him in the position of having to divide by the
squared area of a very strange triangle, with one vertex at x’, and one at dx".)

It is easy to see that if we pick a different Riemannian normal coordinate sys-

tem at p, then the resulting function on the 2-dimensional subspaces of Mp will
be the same, for Q(vp, wp) = Qdx'(vp), . .. ,dx"(vp), dx' (wp), . ... dx"(wp))
will change by (det B)%, where B € O(n), so that det B = +1. We will ex-
amine later the significance of this new function on 2-dimensional subspaces of
the tangent space. For the present we take up the other questions—Why did
Riemann think it was true, and how did he prove it?
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Of course, an answer to the first question is not only doomed to be mere
conjecture, but is always foolhardy to put forth, for there is no accounting for
genius. The best suggestion I can offer is that the dependence of Q(vp, wp) on
the span of v, and w) alone is certainly an attractive one, and as we shall see
later, in one special case which Riemann may have investigated first, the result
appears In a rather natural way. It is also impossible to say for sure how Rie-
mann proved the result, for his own investigations were never published. I have
used the remarks by H. Weber in Riemann’s collected works (pp. 405-409),
as well as the commentary given by Herman Weyl in a special edition of Rie-
mann’s lecture. There are two parts to the proof, a purely algebraic one about
quadratic functions, which determines what relations the numbers ¢;; & ought
to satisfy, and an analytic one which establishes these relations.

For the algebraic part, we will be considering a quadratic function Q of 2n
variables

QX Y)=0(X1,..., X, Vi, Y = Y i XiXg i)
i,jik,l

Note that for our Q we have
Cij .kl = Cjikl = Cij Ik,

(using gij = gji, and 82/3x*3x! = 82/3x!ax*). If A = (a;) is a 2 x 2 matrix,
we will use A(X, Y) to denote the 2n-tuple

AX,Y) = (anX +an?, annX +anY)
= (auXi +auti, ..., anX, +anty,, apnXi +anh, ..., aXy +anty,).

2. PROPOSITION. Let Q be a quadratic function of 2n variables,

QXYY =Y cijuXiX;Yi¥,

ijik,d
where
(0 Cij .kl = Cjikl = Cijlk-
Then

Q(A(X,Y)) = (det A)*Q(X, Y)

for all 2 x 2 matrices 4 if and only if:

(2) Cij .kl = Ckl,ij
(3) Cli,jk + Clj ki + Cik,ij = 0.
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PROOF. First of all, the equation Q(A(X,Y)) = (det 4)2Q(X,Y) clearly holds
for all 2 x 2 matrices A if and only if it holds for the non-singular ones, since
both sides of the equation are continuous functions of A, and the non-singular
matrices are dense.

Now it is well known that all non-singular 2 x 2 matrices can be written as a
product of the matrices

a 0 1 0 0 1 1 0 11

0 1)’ 0 a)’ 1 0)° 1 1) 0 1)’
[This comes from the fact that any non-singular matrix can be obtained from
the identity matrix by a sequence of elementary row operations, and every row
operation may be accomplished by multiplying by one of the above matrices.]

So our condition holds for all 4 if and only if it holds for the above matrices.
We can disregard the last matrix, since

(6 )= 0)G D0 )

For the matrix A = (O 1) , the condition Q(A(X,Y)) = (det A)*Q(X,Y)

becomes simply
Q@X,Y)=a’Q(X.Y),

which is automatically true. The same result holds for the second matrix on
our list, so all the conditions finally come down to

@) O(Y, X) = Q(X.Y) A=(? (‘))
(b) O(X +Y.Y) = Q(X,Y) Az(i ?)

Now equation (a) becomes
Z cij it Xi Xj Y'Y = Z cijkt YiY; Xp X
i,jik.l i,Jkl

Since this must be a polynomial identity, we obtain (2) immediately, by looking
at the coefficient of X;X;YxY; on both sides.
Equation (b) becomes

Z cipga(Xi + Y (X; + Y)Y Yo = Z ¢ij kit Xi Xj Yi X1,
ijik,l i,jsk,1
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or
Y i aal XYy YiYs + X YiYeYs + YiY; Y Y] = 0.
i, jik,1

Letting X = 0, we obtain

(bl) Y cijaYiYiYa¥r =0
i, jik,l

and then, in consequence,

(b2) Y XYY + XYY Y] = 0.
i,fik,d

On the other hand, (b2) implies (bl), so (b) is equivalent to (b2) alone. Finally,
since ¢;j kI = ¢ji,kl, equation (b2) is equivalent to

(b3) Y XYY Y =0,
i,fik,1

Looking at the coefficient of a particular X;Y;Y;Y¥; we obtain
Cij kl  Cij Ik + Cik,jl F Cik,1j + €il, jk + Citkj = 0.

Using the symmetry with respect to the last two indices, this is equivalent to
equation (3). <

3. PROPOSITION. A quadratic function

OX.Y)= Y cijuXiX;Yi¥i
i, 5k,

with
() Cij.kl = Cjikl = Cij .kl

satisfies the two equivalent conditions of Proposition 2 if and only if it can be
written as

OX.Y)= Y CyuXi¥y - XYy - (X;Y) - X1Y)).
ijik,d
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PROOF. If Q can be written this way, then we will clearly have Q(A(X,Y)) =
(det A)2Q(X,Y) for all A. Conversely, suppose this holds for all 4, so that we
also have

(2) Cij kI = Cklij

(3) cli, jk + c1jki + Cik,ij = 0-

We begin by writing four equivalent expressions for Q:

QX,Y) =Y cijuXiXiYili

= chk,ilXijYin
=Y cup XiXiY; Y
= ext,ij Xk X1 YiYj.

Now, by (3) we have

Cik,il = —Cji,lk — Cjl.ki>
SO
Y craXpXe¥i¥i == Y cinXiXe¥i¥i = 3 ki X Xe YY)
i,j.k,l i,j.k,1 i,j.k,1
=- Z cji ik Xj X Yi ¥y — Z ek, ji Xj XiYip
i,j.k,l i,jkl

(interchanging j and k in the second sum)

=-2 Z cijkt Xj X YiXl, using (1) and (2).
i,j.k.l
If we apply a similar process to the third expression for Q, use (2) on the fourth,
and leave the first unaltered, we obtain

Q(X, Y) = Zcij,leinYkYI
%Q(X’Y) = —Zc‘ij,leijYin
%Q(X, Y)= —ZCU,HX,-X[Y]-Y,(

QX.Y) = cipha X Xi YY)
Adding, we obtain the desired result,

30X =Y cju(XiYe — XX - (G ¥ = XiX)).
i, ik,
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We now proceed with the hardest part of the investigation, a hairy calculation
indeed.

4. PROPOSITION. In a Riemannian normal coordinate system x at p, the
numbers 22
_ 1 9%
Cij .kl = 3 8x"8x1 (P)

satisty
Cijkl = Ckl,ij
i, jk + Cljki + Ciie,ij = 0.
PROOF. We begin with an equation derived in the proof of Proposition 1. For
the geodesic vk = g%t we have
Z TE(y))E'E =0;
i,j=1
multiplying by 2, we have
Z TE (@) (r()x/ (y(2)) = 0.
i,j=1

Since these geodesics go through all points in a nelghborhood of p, we have
the following relation between the functions F and x':

n
) Y Thxix/ =o.

Lj=1

Since the tangent vector to the geodesic y¥(t) = £*t has constant length, we

also obtain
<dy dy) Z(s 7,

which leads, in the same way, to the equation

) Z giyxixl = Z(\ ).

i,j=1
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Now equation (1) leads to

n
3 fij, klx'x! =0,

i,j=1
1e., to
n

Z ! (3g,-k_ + ——agﬂ.‘ _day xix! =0.

Lo \ax T oaxt axk

i,j=1
Interchanging the indices i and j in the second term, we can write

Z ag k 1 ag
Ysik _ 1954 L —

®) ”2_:1 ( axj 2 0oxk ) X )

Our penultimate goal is to break this equation up into two sums, each of which
is individually 0; the conditions on the ¢’s, which are our ultimate goal, will then
follow fairly easily. To achieve this, our antepenultimate goal is to prove that
xP =Y, gpax®; these equations are at least reasonable, for they imply (2). To
prove these relations, we first introduce the functions ¥# defined by

n
P = Z gpa X
a=1

Note that
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Now by (2) and the definition of %%, we have

so we obtain

n ook
0= __8x _x/ — xk
ax/
j=t
“ 8(5ck — xk) :
= n x7/.
“ ax/
Jj=1

This equation shows that along any geodesic y(t) = £'t we have

dizt — @) _
dt -

so that x¥ — x¥ is constant along the geodesic. Since gij(p) = 8, we clearly
have ¥%(p) = x¥(p). Moreover, these geodesics pass through all ponts ina
neighborhood of p. Thus %% = x* in a neighborhood of p, so that we finally
obtain the desired equations

n
(4> Z gkaxa = xk-
a=l
Now we differentiate (4) to obtain
n

dgk
5 =X+ grt = Sk

a=l1 X

multiplying by x/ and summing, we obtain

n
agka N \_[
axt 7

a.l=1

n

1 1

= E —grX + 8y x,
=1

which, together with (4) gives

n
0
gka N \_[

k ko
VIR —x" 4+ x" =0,

a.l=1
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and we have thus obtained the first part of our penultimate goal,

0
(5) ag;f xixl =0,
i,j=1

Together with (3), it implies the other part,

n 9 G
(6) Z —g%x’xf =0.

— Ox
i,j=1

We now obtain the desired equations as follows. Along the geodesic vk =
gkt we have, by (6),

de;
™ Z By )Ese =0
i,j=1
This implies that
dgi
®) Z Sy =0
i,j=1

for t # 0, and hence even for ¢ = 0, by continuity. Differentiating (7) with
respect to ¢ gives

0= 3 B0 e+ Y L Ganse

i,j=1 i,j. =1
n a ;
= Y iLapgee, by @)

i,j, =1

consequently,
n a ;
0= Y sy OEEE
i, j,i=1

for all £ # 0, and hence also for ¢ = 0. Setting ¢ = 0, we obtain

n 92 ;
Y s lpEEE =0

i,f, =1



178 Chapter 4, Part B

This equation holds for all n-tuples gl,...,&" From this we easily derive
(A) Cij ki + Cil jk + ¢t ik = 0.
Applying the same process to (5), we obtain
(B) Cki,jl + Ckjti + Cki iy = 0.
In (B) we interchange k and /, to obtain
Cli, jk + Clj ki + Ckiij = 0.
Comparing this equation with (A), we obtain the first of the desired relations,
Cij kl = Ckl ij-

Moreover, using this relation with either (A) or (B), we obtain the second of the
desired relations,

Cli,jk + ¢ty ki + Cicij = 9.

And thus we are done!

When we put all these results together we see that the quadratic function

1 , ,
Q(vp, wp) = 3 dx'(vp) dx’ (vp) dxk(wp) dxl(wp)

LK,

can be written

1 . .
Q(vp. wp) = 5 Y cijratdxt Adx¥y - (dx) A dx")(vp, wp).
i, jik,l

We thus see that the quadratic function Q, obtained from the Taylor expan-

sion of || ||> in Riemannian normal coordinates, has special properties which
allow us to define, for any 2-dimensional subspace W C Mj, a number
Vp. Wp) .
QW) = Qp-wp) Up, Wp any basis for W.

”Upswpnz

The work of the last four Propositions, which establishes this fact, is completely
suppressed in Riemann’s account, where the final result is merely stated, at the
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beginning of section 2 of Part II. Riemann then makes some remarkable claims.
First, Riemann interprets Q for a surface:

() If M is 2-dimensional and W = M, then —3Q(W) is just the Gaussian
curvature K(p) given by Theorem 3-7; we thus have an intrinsic def-
inition of K, obtained by picking a special class of coordinate systems
determined by the metric. (Riemann needs the factor —3/4 because he
divides Q(vp, wp) by the square of the area of the triangle spanned by vp
and wp.)

At the end of section 2, Riemann interprets Q for an n-manifold:

(2) If M is n-dimensional, W C Mp is a 2-dimensional subspace, and @ C
W is a neighborhood of 0 € W on which exp is a diffeomorphism, then
—3Q(W) is the Gaussian curvature at p of the surface exp(©9), with the
metric it inherits as a submanifold of M.

But the most important claim is made in section 2. In an n-dimensional vector
space there are n% “independent” 2-dimensional subspaces: if vi,...,Vn Isa
basis, we can choose the subspaces spanned by v; and vy, for i < j. Riemann
claims that the metric { , ) is determined if Q(W) is known for n"—;l indepen-
dent 2-dimensional subspaces W C My at each point g, for example, if Q is

known for the subspaces spanned by each 3/9x'|4 and 8/0x7 |q (i < j).

A very special case of this general claim is the following, which we will hence-
forth call the Test Case:

(3) If M is n-dimensional and Q =0 for n% independent 2-dimensional
subspaces of each Mg, then M is flat, that is, M is locally isometric to R”
with its usual inner product.

In connection with the Test Case, it should be pointed out that a local isometry
with R” is the best we can hope for, since there are Riemannian manifolds
which are not homeomorphic to R”, but which are locally isometric to R", and
hence have Q = 0 everywhere. The simplest example of such a manifold, the
“flat torus”, is constructed as follows. The torus T' can be obtained from R? by
identifying (x, y) with (x', ') if and only if

y -y, X —-xel

(compare pg 1.372). The map m: R? — T, defined by taking (x,}) to its
equivalence class, is locally a diffeomorphism, and there is clearly a unique
metric { , ) on T such that 7*( , ) is the usual Riemannian metric on RZ
consequently, (T,( , )) is locally isometric to R2? with its usual Riemannian
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metric. Notice that the usual torus in R?, with the induced Riemannian metric,
is not flat; it has positive Gaussian curvature on the part furthest from the axis,

and negative Gaussian curvature on the part nearest the axis. However, if we
consider S C R2, then it is easy to see that ' x §' C R? x R?, with the
induced Riemannian metric, is flat.

One other remark should probably be made about the Test Case. At first
sight, the Test Case might seem to be little more than a theorem about func-
tions whose second partial derivatives are everywhere zero. However, it is ac-
tually quite different from this simple sort of result, since the value of Q at
different points is defined in terms of different coordinate systems, each chosen
specifically for one point.

Now our aim in the rest of this chapter is to prove assertions (1), (2), and (3).
(The general claim that Q determines the metric will be considered later, as will
the information given in sections 4 and 5 of Part 1I.) However, we will defer the
proofs of assertions (1), (2), and (3) to another section of this chapter, not only
in order to provide ourselves with a brief respite, but also to allow Riemann to
add one or two more brilliant ideas.
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C. A PRIZE ESSAY

The second edition of Riemann’s collected works includes an unpublished
paper, in Latin, which was submitted to the Paris Academy in 1861, to compete
for a prize on a question involving heat conduction. In 1868, ten years after it
had been offered, the prize was finally withdrawn. Because the way of obtaining
the results of his essay were not fully explained, the prize was not awarded to
Riemann, whose health prevented the more detailed handling of the subject
which he had intended.

An extract from this paper is given below* It should not be very hard to
read, but the significance of the equations obtained there is only suggested by
Riemann’s final remarks; in the next part of this chapter we will have a great deal
more to add. In the translation I have made some minor changes of notation.

An Extract From Riemann’s Paper of 1861

Second Part

On the transformation of the expression Z gij dy' dy’
]
into the given form ) a;; dat dad.
)]

When the inquiry of the third Academy is restricted to homogeneous bodies,
in which the resuiting conductivities are constants, we develop the first condition
that the expression ) _ g;; dy' dy’, in which the y* are functions of the &', can be

iJ
transformed into the form ) a;; dx' dx’ with given constant coefficients a;;.
LJ
The expression Z ajj dx! da/, if it is, as we shall suppose, a positive form in
L)
the dat, can always be put in the simplified form Z (dx))?. Thus if Z gi;dy' ' dy/

can be transformed into the form ) a;; dx' "di/, it can likewise be reduced to
1)
the form ) _ (d +1)2 and vice versa. We therefore ask whether it can be put in the

3
form > (dx').
i

* Certain omissions, indicated by = ... ", are considered in Addendum 2 to Chapter 6.
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Let G = det(g;;) and let ;; be the cofactor; in this way ) _g;;v;; = G and
i
Y gijvie =015 2 k.
1

If ng dy' dy! = Z (dx')? for arbitrary values of the da!, substituting

iJ
d + & for d leads also to Z gij dy' 8yl = Z dx' 8z for arbitrary values of the
ij
dx' and &'

Consequently, if the dy' are expressed in terms of the dxt and the 8x' in
terms of the 8y', it follows that

axB _

(1) — ng

and consequently

8yi Yai dxh

2 Oy _ N Yai 027
@ dxP  ~ G Jy~

Thus we further deduce, seeing that

dyt G dy' dx® oo

Z Y 8y = and Z—a;a_d—y] =0 if sz,

ox® dx® dut oyl iy

(3) —— = = gij, 4) oYy oy _ Yy
dyt dy’ : ~ Jx® du® G

and differentiating formula (3),

02 Ja® 0P dx® gy
Zaiakﬁ+z(yi3,k'ai:all;?'
= 0y oyt oy = dyloy* oy Y

Now from these expressions for

Agij  dgik gk
gk’ oyl dy

we can write

PP dx gy | dgi Ok

(5) 2y = 4 :
Z,: dylayk dyt ayk oyl ay




The Curvature of Higher Dimensional Mantfolds 183

and if these quantities are designated by p;i, then

920 oy
(6 ZW = Z 5;6;1%1&"
13

Differentiating the quantities p;j; again yields

Ipijk 0Pt _ 3 Par P 23" N
oyl dyk dyJ dyk aytay dyl oyl dytoyk’

14 v

whence finally, substituting the values found in (6) and (4),

Rgi | Pgy dPgu P
dyloyl  dylayk  oyiayk  dy'dy!

1 Y
¢) t5 Z (Paji PBik — pailpﬁjk)—gﬁ =0.
a’B

The functions g;; must necessarily satisfy these equations whenever
Y Gij dy' dy’ can be transformed into the form 3 (dax')?: we denote the left

17.7
side of this equation by
(¥7,kD).

... Given an acquaintance with the traditional methods, it is demonstrated
without difficulty that these ... conditions when they are satisfied, suffice . . ..
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D. THE BIRTH OF THE
RIEMANN CURVATURE TENSOR

All the developments in this part of the chapter have their origin in the fol-
lowing question, which Riemann considers in the paper of Part C: When is a
Riemannian manifold (M, { , }) flat (locally isometric to R” with its usual Rie-
mannian metric)? In other words, when is there a coordinate system x!,..., x"
on M for which

M ()= dx'®dx'?

i=1

We are going to seek an answer to this question in as straightforward a manner
as possible; the quadratic function Q will not be used at all, but at the end it
will make a surprise appearance.

We begin by choosing an arbitrary coordinate system y, in terms of which
the metric { , ) can be written

(2) ()= gijdy @dyl;

i,j=1

and we then seek conditions on the g;; in order for (1) to hold for some co-
ordinate system x. Since this is a purely local question, we can assume that
y',...,y" is just the standard coordinate system on R”.

If we express the dx in terms of the dy/, and equate the coefficients of
dy' ® dy’ in (2) with the resulting coefficients in (1), we find that the coordinate
1 ...,x™ has the desired property if and only if

system x°,
ox% ox“
3 Ty

From equation (3) we can immediatelv derive another, for we obtain

281‘ ’38»(/3
_Za} 8¥“= -

3y/ vk 3xY 9x §y/ 9yk
> g
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which shows that if the coordinate system x',...,x" has the desired property,
then
ayt ay’ --
4 - =g
@ Xﬂ: axPaxp ¢

Conversely, (4) implies (3). These results are just the equations (3) and (4) that
Riemann obtains. Notice that Riemann begins with the square of the norm
12 =3 gij dy' - dy’, and then uses polarization to obtain the inner prod-
uct, which he writes as ) gi; dy' §y/. Riemann also treats the two coordinate
systems x and y on an equal footing throughout, so that his derivations of (3)
and (4) are somewhat different. From (4) we obtain

Zglj__.—_.‘ A~ A ~ 1 3
= oyt dyJ 9xB 0xB dy! oy

;0xH axY Z dyt dy/ oxH ax?
S J

=2 _ %8
f

and thus the coordinate system x!, ..., x" has the desired property if and only
if
;- 0x# 0xV
l y_ =
@) 2y gy = e

This equation, which we will find more useful than (4), can be derived directly
from (3) in the following way. If A={(aij) = (9x?/0y’), and G = (gij), then (3)
says that

A4 =G,

where At is the transpose of A; this is equivalent to
G—l — A—l . (At)—l,

and hence to
AGTTA =1,

which is just (4'). In particular, this shows immediately that (4') is equivalent
to (3).

Now equation (3) is a partial differential equation for the functions x%. In
Chapter 1.6 we developed a general theory for partial differential equations,
but we notice at once that (3) is not an equation of the type to which our theory
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applies. Our first task will thus be to obtain from (3) an equation that we
do know how to handle. The situation is very much like, and may profitably
be compared to, that which occurs in Problem 1.7-19, where the analysis of a
certain set of partial differential equations is reduced to Theorem L. 6-1, together
with the Poincaré Lemma. To treat equation (3), we begin by differentiating
(about all we can do), to obtain

Z Px Ix Z °x* 9x*  dgy
dylayk dyJ dpJayk dyt — ayk’

o o

By writing down this equation for

dgij  Ogik gk
ayk’ oyl oy’

and combining, we obtain an equation equivalent to Riemann’s,

82x°‘ ax“ 1 ag,-,- ag,-k ag,-k)
5 E e LA — = el T = .k, 1.
o — dyioyk oyt 2 (ay" Ty T oy k1]

Thus, the symbols [jk, ], which came up naturally in the calculus of variations,
also come up naturally in this different context. After Riemann’s Habilitations
lecture was published, in 1866, several mathematicians independently derived
his results or considered related questions. Christoffel, in particular, introduced
these combinations of the partial derivatives of the g;;’s, and the symbols [i ], k]
and F{‘j are called the Christoffel symbols of the first and second kinds, re-
spectively (Christoffel actually used [’,f] and {’Z}, which do not accommodate
themselves to the summation convention). In the next chapter we will see one
important use which Christoffel made of these symbols.

At this point we will depart slightly from Riemann’s treatment, in order to
obtain equations to which Theorem I.6-1 directly applies. From (5) we obtam

9xA 923 9x® Ix* .
v rik il = o 2 TR iy
lZy:g gy K] azy 817 9y% 8r7 8,7
92y Ix® Ix*
_ OX" 0X" iy
B ; 9yJayk (IZV: ayi 8}'Vg )
92xo

=L gugete B
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so we obtain, finally,

3%x* “ x
=Y : ¥
©) dyidpk Lk ayY

y=1

(which is easily seen to be equivalent to Riemann’s equation (6)); we will also

write this equation as
ax*
) o
A7) gy oxt
oy y=1 Ty

Notice that the index A plays no special role here; all functions x* satisfy the
same equation. Thus, for each A the n-tuple of functions

ax* ax*
=|-—,....,— - R* - R”
() e

satisfies the set of partial differential equations

0
(%) 5;’7@) = iy, a(y),

where fi: R" x R" — R" is given by
) n
flpo=)Y Thy -2
y=1

Since this is true for every A, the equation (¥) has n solutions whose initial values
at some point, 0 say, are linearly independent. Since constant linear combina-
tions of solutions of (¥) are also solutions, it follows that (x) has solutions with
arbitrary initial conditions at 0. From Theorem 1.6-1 we thus obtain necessary
integrability conditions,

afk afl . afk s
vl ayk + d-H /
n=1 u=1

n 8f1 u
gen e =0

In our case. looking at the ™ components of these equations, we obtain

S BF]?’k - BF]?', SN Ly ~ vy
ZWZY—ZWZY+ZFJkZF#1:y_ZFJ"X;FM(: =0.
y=1 - y=1 y=

y=1 =1 =1
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Since these relations must hold for all z = (z!, ..., z"), we obtain

ory, ory
(+%) 0=R"; &

n
+—§:(r“r” ~TETY)
u=1

as necessary conditions that Y g;; dy'®@dy’ = 3 dx'®dx* for some coordinate
system x = (x!,...,x™). Notice that the set of equations RYji = 01s equivalent
to the set of equations

def
Rijuc = thy Yite = 0.

The quantities R;jx can be expressed in another way, after a little calculation.
Note first that

n

n aFV 9 n a ;
Zg”’a —a—y,(X_:gin,?k) 2T Sy

y=1 ay

]k i Z ([il, y]1+ [¥1,11)-

Substituting into (), and remembering the definition of [ij, k], we obtain

1 [ g g g gk
(k) Rijic = = - - — - - —
ayfa)” dyidyk  dyiayk  dyiay!

+ Z P(Ul.al - [ik. B1 = [il, ] - [k, B1).
«,B=1
The condition R;jx = 0 is just the condition (I) which Riemann obtains (note
that Riemann’s p;jx equals 2[jk,i])—the quantity which we have denoted by
Rijik is what Riemann denotes by 2(ij, kl); the factor of 2 is not particularly
significant, nor is the interchange of / and k, for it is easily seen that Ry =
—Riji-
The notation R'jx; has been picked in anticipation of the following result.

5. PROPOSITION. On a Riemannian manifold (M, { , }) there 1s a tensor
of tvpe ( ) whose components in any coordinate system ) are
_ BF’ BF’k "
R = al.k - ] Z(Fﬁl‘;k F“ Fll)

(where ( ,) =Y gij dv' ® dv/, and the Christoffel symbols I' are defined as
usual).
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PROOF. We just compute that the components transform “correctly”!! In other
words, ift R jx are defined by the same formula, with respect to the coordinate
system )’, we show that

To do this, all one needs is the result from Problem 1.9-22,

vy o
F/aﬂ =

Ayl 9yl By~ Pyt 9y
g 0y oy’ oy +Z Y Y
i,j,k u=1

Sy ayB ok T 2 By o

and plenty of perseverance.
SLIGHTLY MORE MOTIVATED PROOF. Begin with the equation

> g dy’ ody =(,)=) gyd" ®dy”,

i iJ

and repeat the whole sequence of computations which we performed in the
special case that g';; = 8;j. The result will be the desired transformation law.
(The integrability conditions (x*) then follow as a necessary condition for the
existence of a coordinate system y' with g’;; = &;j, for in such a coordinate
system we clearly have R jk; = 0, which in turn implies that all Rijp =0.) %

We have thus stumbled onto a new tensor, the Riemann curvature tensor,
which in the coordinate system y equals

. , d
Z lekl dy’ ®dyk®dyl®é—;.
ikl Y

Eventually we hope to have a useful invariant definition of this tensor; this will
involve an enormous amount of exploration. For the time being, we simply ac-
cept the classical definition, which arises naturally as an integrability condition,
and explain how it is connected with curvature. In the process we will obtain
an invariant, but extraordinarily clumsy, definition of the curvature tensor.

It will be convenient to introduce a bit of modern terminology, and denote
by R the tensor with components R!jx;. Since this tensor is of type (3) it may
be regarded as a function taking three vectors to another vector. The value
of Ron X,Y,Z € M, will be denoted by

R(Y,Z)X € M,,
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and hence we have
d

9
R|—| , —
(ay" » Oy ,,) ayd |,

(the reason for choosing the notation R(Y, Z)X comes out in Proposition 6).
The numbers R;jx; = Zg,-y R i1 are also the components of a tensor, of

Z Riju(p) - ‘

i=1

type ( ), but it is unnecessary to perform any calculations to verify this. Clearly

d d d 0
Rijki(p) ={R| - — ,
! < (ayk P P) 0y’ 1, P>

b ayl b ayi
so the tensor in question is just the multilinear map

This function of four tangent vectors is closely connected with the quadratic
function introduced in Part B of this chapter:

(X,Y,Z, W) (R(Z, W)Y, X).

6. PROPOSITION. Let x be a Riemannian normal coordinate system at p,
and Q the quadratic function on M, x M), defined by

OX,Y)= Y cijuadx'(X)dx) (X)dx*(¥)dx'(Y),
ijik,d

where
1 a2g,-,-
2 9xkaxt’

Cij kl =
Then :
PROOF. We have seen that
30(X.Y) = Z cijri(dxt A dxk) - (dx) A dx')(X,Y)
i,j.k,l
= Y cyurdx (X)dx! (X)dx* (V) dx'(¥)
i,f.k,l
+ Y ey dxF () dx (X)) dxF(Y) dyT(Y)
i, j.k.,1

~ 3 G dxd (X) dx*(X) dx (V) dx'(Y)
i.j.k.,l

— Y ey dx (X)dx (X) dxT (V) dxF ().
i,j.k.,l



The Curvature of Higher Dimensional Manifolds 191

By switching indices we can rewrite this as

. . * t
3000Y) = Y e dx (X) dx! (1) dx*(X) dx'(Y) [interchange
i, j.k,l ] and k]
. » [interchange
- _Zklcﬂ,xk i and /]
i,j.k,
- Z iy » [change i to [;
ijklll’]k jtoi;ltoj]
_ Z Cip i ” [change i to k;
o e ktol;1 toi]
ik,
= Y (Cikjt + CiLik = Cil jk ~ cipn) dx! @ dx! @ dx* ® dx' (X, Y, X,Y).
i,j.k.l

Now in Riemannian normal coordinates, the Christoffel symbols [ij, k] are all 0
at p, since all Bg,-j/axk are 0 at p. Referring to equation (%) we thus have

30X, Y) = Y Riji(p) dx' @ dx’) @ dx* @ dx'(X,Y, X,Y)
i,j. k.l
== 3 Ryu(p)dx’ @dx) @ dx @ dx"(X,Y,X.Y)
i,j.k,l
= —(R(X, Y)Y, X). %

We are now ready to verify some of Riemann’s claims.

7. PROPOSITION. Let (M,{ ,))bea 7-dimensional Riemannian manifold,
and let X, Y € M), be lincarly independent. Let ||.X, Y || denote the area of the
parallelogram spanned by X and Y. Then

(R(X, Y)Y, X) [= (R(X, V)Y, X)if X and Y
K(p) = X, 7)Y, 4

X, Yl are orthornomal]
is the same as the Gaussian curvature at p defined by the formula in Theo-
rem 3-7 (in particular, this proves that the formula in Theorem 3-7 is indeed
independent of the coordinate system).

FIRST PROOF. Let (x,y) be a coordinate system on a neighborhood of p. It
obviously suffices to verify the theorem when X = 9/dx|p and ¥ = 3/9y\p,
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since by Proposition 6, and the results of Part B, the numerator is multiplied
by the same factor as the denominator when we change to any other pair of
vectors. In this case,

d d d d
(R(X,Y)Y,X)=<R(a— . )'a— oy >
Xlp WVip) OVip 9Xip
= Ri212(p).

If we write

(,)=FEdx®@dx+ Fdx®dy+Fdy®dx+Gdy ®dy,

so that
gun=E-
gun=gn=F
gn =0,

then (by the formula on pg. 1.308)
IX,Y|>=EG - F?,
$O we must prove that
4R1212(EG — F?) = 4(EG — F?)’K,

where the right side is given by the formula in Theorem 3-7. This is a fairly
straightforward calculation from (xx*) on page 188. The first term in (x**)
corresponds to the last in the formula for 4(EG — F?)?K. and the second cor-
responds to the first three in the latter formula. In carrying out the calculation,
note that

gll — G
EG — F?
_F
12 _ 21 __
8 =8 TEG_F?
E
22 i
& = EG-F2

the denominators cancel out the unwanted factor in 4R1212(EG — F?).
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SECOND PROOF (OUTLINE). Let (r,¢) be the coordinate system around p

which is introduced on page 136. We know that in this coordinate system
(,)=dr®dr+Gdp®dy

for some function G, and (see page 145) that

VG
K(p)=——5 ()

Introduce a Riemannian normal coordinate system x!, x? by the equations

x!' =rcosgp, x*>=rsing.

We can then calculate the g;; in terms of G, and use these results to show that
0

th( qualltlty

is equal to —K(p)/3. The result then follows from Proposition 6. ¢

8. PROPOSITION. Let (M,{ ,)) bea Riemannian manifold, and let W be
a 2-dimensional subspace of My, spanned by X,Y € Mp. Let O C W be a
neighborhood of 0 € M, on which exp is a diffeomorphism, let i: exp(0) —
M be the inclusion, and let R be the Riemann curvature tensor for exp(©@) with
the induced Riemannian metric i*{ , ). Then

(R(X,Y)Y,X) = (R(X,Y)Y, X).
Consequently,
(R(X,Y)Y,X)
X, Y|
is the Gaussian curvature at p of the surface exp(0).

FIRST PROOF. Tt obviously suffices to prove the theorem when X and Y
are orthonormal. Choose a Riemannian normal coordinate system at p with
X = 0/0x!p, Y = 3/3x?%|p; then x!',x2 is a coordinate system on exp(O).
Now we are trying to prove that Ri212(p) = Ri2i2(p). But in (k*%), the terms
involving Christoffel symbols vanish at p. The theorem is now obvious, since
the functions g;; (i, j = 1,2) defining the metric i*({ , ) are just the correspond-
ing g;; restricted to exp(9), and they have the same mixed partial derivatives
with respect to x' and x2.

SECOND PROOF. Tt is even more obvious that the quadratic form QO associated
with (exp(0),i*( , )) is the restriction to W of the quadratic form Q on Mp,

for they are the second non-zero terms in the Taylor expansion of the same
metric. ¢
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9. COROLLARY. Let (M,{ , }) be a Riemannian manifold, let X,Y € M),
span a 2-dimensional subspace W of M), and let @ C W be a neighborhood
of 0 on which exp is a diffeomorphism. If Q is the quadratic form on M
defined previously, then
30(X.Y) _ (RX,V)Y,X) _
X, Y| X, vz

where K is the Gaussian curvature at p of the surface exp(©).

The quantity (R(X,Y)Y, X)/[| X, Y||* appearing in Corollary 9 is called the
sectional curvature K(W) of W. It would seem that the function (X,Y)
(R(X, Y)Y, X) contains only a small portion of the total information contained
in the curvature tensor, but Propositions 10 and 12, which follow, show that R
satisfies certain identities which allow it to be determined in terms of the metric
( , ) and the quadratic function Q which it determines.

10. PROPOSITION. The curvature tensor satisfies the following identities:
(1) R(X,Y)Z =—-R(Y,X)Z, hence
(RIX,Y)Z, W) =—(R(Y, X)Z,W).

2) (RIX,Y)Z, W)= —(R(X, Y)W, Z).
(3) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0, hence

(RIX,Y)Z, W)+ (R(Y,Z)X, W)+ (R(Z, X)Y,W) =0.
@) (RIX,YZ,W)=(R(Z,W)X,Y).

PROOF. In a coordinate system x, these relations are equivalent to

(1) Ry =—Ry or Rk =—Riu

(2) Rijki = —Rjiki

(3) Rijgi+ Ruj+ Rijk =0 or  Rij + Rigtj + Rije =0
(4) Ruiiij = Riji.-

These are immediate from (x*) and (xxx). o

Notice that (R(X,Y)Z, W) is skew-symmetric in both (X,Y) and (Z, W),
which again shows that (R(X, Y)Y, X') changes by det(a;;)? when X and Y are
replaced by a1 X + a2 Y,a21X + a»Y. For later use, we insert a result which
shows that the fourth property of R is a formal consequence of the others.
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11. PROPOSITION. Let V be a vector space and ®: V x Vx V xV — R
a multilinear map satisfying

(1) RX,Y,Z,W)=R(Y,X,Z,W)
(2) RX,Y,Z,W)=R(X,Y,W,Z)
(3) RX,Y,Z,W)+RY,Z, X, W)+ R(Z,X,Y, W) =0.

Then ® also satsifies
4) RX,Y,ZW)=R(Z, W, X,Y).

PROOF. The proof is a tricky manipulation, cleverly systematized by the fol-
lowing diagram from Milnor’s Morse Theory.

R(X,Y,Z, W)

R, W, Z,X) pPR(Y, Z, X, W)

RX,W,Y, Z) 'u/////////////////%%// R(Z,X,Y, W)
(R(Z, W, X.,Y)

Equation (3) shows that the sum of the numbers at the vertices of triangle W
is zero. The sums of the vertices of triangles X, Y, and Z are also seen to be
zero, using (1) and (2). Adding these identities for the top two triangles, and
subtracting the identities for the bottom ones, we see that twice the top vertex
minus twice the bottom vertex is zero. <

12. PROPOSITION. Let V be avectorspaceand ®;: VxVxVxV — Riwo
multilinear maps satisfying (1)—(4) of Proposition 11. Suppose ®(X,Y, X,Y) =
Ro(X,Y, X,Y) forall X,Y € V. Then R; = R».

PROOF. Tt clearly suffices to prove that a multilinear ® satisfying (1)—(4) is 0 if
R(X,Y,X,Yy=0forall X,Y € V. Now we have
0=R(X,Y + W, X,Y + W)
=RX,Y, X, )+ RX,Y, X, W)+ RX, W, X, Y)+ R(X, W, X, W)
=RX,Y, X, W)+ R(X,W,X,Y)
—2R(X,Y, X, W).
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Using (1) and (2), we easily see that ® is alternating, and hence skew-symmetric.
Consequently, (3) gives

3R(X,Y,Z, W) =0.

Propositions 10 and 12 tell us that the curvature tensor R is completely de-
termined by the values of (R(X,Y)Y, X}, and hence by the quadratic func-
tion Q. [This means that in a sense we can frame a coordinate-free definition
of the curvature tensor, but it would certainly be an awkward one. Moreover,
given a multilinear map ®: V x V x V x V — R, satisfying (1)-(4), it is a
fairly difficult exercise to work out a formula for ® in terms of the quanti-
ties R(X,Y, X,Y).] In terms of a coordinate system, we see that the tensor
R(X,Y,Z,W) = (R(X,Y)Z,W) is determined by the components R;j;;, of
"2;1 with i < j. According to Riemann, these n% func-
tions must determine the metric completely; in other words, the tensor ® must
determine the metric.*

which there are n

Recall that we have selected one special case of this assertion as our Test
Case, which can now be restated as follows: If R = 0, then the manifold is flat.
We are ready to present the first, and longest, of our proofs of the Test Case.
It 1s separated 1nto three Steps, and all our subsequent proofs, no matter how
elegant and brief, essentially contain these same three Steps.

Recall that for a coordinate system y!, ..., p” we have the formula (pg. I.331)
dgij 0 o
) 50— lik, 1+ Uik, 1,
y

which 1s equivalent to the definition of the Christoffel symbols, as well as the
formula (pg. I.331)

og" — i) lj i
(¥x) == Z(g Flk + g7 Tp),
=1

ayk

which can be derived from it.

*This is not really the same as saying that R determines the metric, since we can’t
determine R(X,Y)Z from R(X,Y,Z, W) = (R(X,Y)Z, W) unless the metric is al-
ready known! In fact, any numbers R;ji; satisfying the identities of Proposition 6 can
be realized as the components, at a point, of R for some metric (the R;jx; determine
the second derivatives of the metric at the point).



The Curvature of Higher Dimensional Manifolds 197

13. THEOREM (THE TEST CASE; FIRST VERSION). Let (M,{ ,)) be
an n-dimensional Riemannian manifold for which the curvature tensor R is 0.
Then M is locally isometric to R” with its usual Riemannian metric.

PROOF. This is a purely local question, so we assume that M is R”, with the
standard coordinate system y!,...,»", and the Riemannian metric

n

i,j=1

Step 1. We claim that there are functions (h1,. .., hy,), with any desired initial
conditions (h;(0), . . ., h,(0)), satisfying the equations

(¥ Z Clichy.

The reason for this is, of course, that the relations RY jjx = 0, which express the
vanishing of R, are just the integrability conditions for (), as we have already
seen.

In particular, for @ = 1,...,n we can choose such a set (h(“)l,...,h(“),,)
satisfying the initial condition

(h®1 ), . hF®u(0))0 = Xa,
where Xi, ..., Xa € R% is orthonormal with respect to { , Yo.
Step 2. We claim that if (hy, ..., hy,) satisfies (x), then h = dx for some func-
tion x, i.e., hj = dx/dy’. In terms of the form
n=hydy' + -+ hndy",

we are just saying that 1 is exact. We know (Corollary L 7-15) that this is true if
and only 1f

oh; Oy
ayk - ay] ’
Glancing at (¥), we see that this is indeed true, since I'}, =T}

Now choose functions x® with #®); = 9x®/8y/. Then the functions x*
satisty

) Z [these are the equations (6),
yj ay jk ayV obtained earlier, page 187]
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and ¥
(axa ) ~ ( .
a 7 - . >
y X,
this matrix is non-singular, so xt, ..., x" is a coordinate system 1n a neighbor-
hood of 0.

Step 3. We claim that x is the desired coordinate system, 1.e., that

B OxMax®
&) v = Z g” 8);" ai}. [equation (4), page 185].
i,j=1

We know that this equation holds at 0, by the choice of the initial conditions
3x*/3y7(0). So it suffices to show that the right side of (£) has all partial deriva-
tives 3/dy* equal to 0. But

d - dxH ax? ag 9xH dx?
. ij OX OX
ay* (Z,g 0y ayf) 2 3y a7
o 0%xH 9x? dxH  9%xV
ij Ix
+I_Z]_:g 3y ayk ayf+izj,:g ayT aylayk
g’/ dx* dxV g y OxH x?
Tk oyt ayl IZ Z 9y dyi

y OxH dx?
ij
+Zg Dhayay O

Switching some indices, we thus have

d o OxH 9x? dxH dx? (dgh i
~ L Y — @ ] = A v Fl IVF]
e (250507 ) = X v iy (e + ST r)

=0 by (**)

This completes the proof of the theorem. &
As a brief review of the proof, we note that

Step 1 uses the integrability conditions, R = 0, to obtain certain forms
> h'9; dy’, with any desired initial conditions;
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Step 2 uses symmetry of the Christoffel symbols, F{‘j = F]k,-,
Y, h@; dy’ = dx® for some x*;

Step 3 uses the definition of the Christoffel symbols [ij, k] to prove that the
vectors 8/0x® are orthonormal.

to prove that

Despite its length, the proof is essentially a straightforward application of the
integrability conditions for partial differential equations. As Riemann says, at
the end of the section in Part C, “Given an acquaintance with the traditional
methods, it is demonstrated without difficulty that these ... conditions, when
they are satisfied, suffice.”

We have thus proved one special case of Riemann’s assertion that the curva-
ture determines the metric. We will not return to the more general assertion
until Chapter 7, for our immediate task will be to begin systematizing all the
results which have been uncovered so far.



