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1. The Exterior Derivative

There are several different kinds of differentiation-related operations in common
use when discussing tensor fields. We will first define the exterior derivative on
each space of r-forms Λr (M) and, by application at each grade, the corresponding
Grassmann algebra G(M).

We already have a start on the exterior derivative. We have defined the differen-
tial df of a real-valued smooth function f on M, and that is the exterior derivative
on these functions, the number fields Λ0 (M).

Pick coordinate system x around one point p ∈M. We will suppress mention of
p to avoid clutter, but the tensors we produce will be restrictions to Ux of members
of Λr (Mp), and therefore members of Λr ((Ux)p), for various r.

For f ∈ Λ0 (Ux) = F∞(Ux) define

dxf = df = Di(f ◦ x−1) dxi =
∂f

∂xi
dxi ∈ Λ1 (Ux) .

In particular, dxx
i = dxi for each i.

In the higher grades, if ω = ωi1,...,ir (x) dxi1 ∧ · · · ∧ dxir ∈ Λr (M) (increasing
indices) we define

dxω = ( dωi1,...,ir (x) ) ∧
(
dxi1 ∧ · · · ∧ dxir

)
=

(
∂ ωi1,...,ir (x)

∂xj
dxj
)
∧
(
dxi1 ∧ · · · ∧ dxir

)
=
∂ ωi1,...,ir (x)

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir

where the indices i1, . . . , ir are increasing but j is arbitrary.

Since the coefficients ωi1,...,ir (x) are C∞ on Ux so too will be the coefficients
∂ ωi1,...,ir (x)

∂xj of dxω on Ux. The sum of wedge product of tensors is a tensor so we

have succeeded in creating a member of Λr+1 (Ux) from ω ∈ Λr (Ux).

We don’t know, however, if this procedure has tensor character. When you define
a multilinear function in a basis you can force it to be a tensor by defining it in
other bases to have the appropriately modified coefficients.

We would like to show that if y : Uy → Ry then on Uy∩Ux the tensor dxω agrees
with the tensor dyω calculated as

dyω =
∂ ωi1,...,ir (y)

∂yj
dyj ∧ dyi1 ∧ · · · ∧ dyir .

We accumulate a few interesting properties of dx (which are also possessed by
dy) that will characterize dx in useful ways and help with this.

First, it is obvious that in any grade, dx(ω + τ) = dxω + dxτ.

Further, if c is the constant function on M then dx(c ω) = c dxω.
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Third, we examine dx(ω ∧ τ) when both ω and τ are single-term tensors

ω = f dxi1 ∧ · · · ∧ dxir and τ = g dxj1 ∧ · · · ∧ dxjk .

In this case

dx(ω ∧ τ) = dx
(
fg dxi1 ∧ · · · ∧ dxir ∧ dxj1 ∧ · · · ∧ dxjk

)
=

(
∂f

∂xj
g +

∂g

∂xj
f

)
dxj ∧ dxi1 ∧ · · · ∧ dxir ∧ dxj1 ∧ · · · ∧ dxjk

=

(
∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir

)
∧
(
g dxj1 ∧ · · · ∧ dxjk

)
+ (−1)r

(
f dxi1 ∧ · · · ∧ dxir

)
∧
(
∂g

∂xj
dxj ∧ dxj1 ∧ · · · ∧ dxjk

)
= (dxω) ∧ τ + (−1)r ω ∧ dxτ.

The same result holds for any r-form ω and k-form τ (not just single-term tensors)
by the linearity properties of wedge product and dx.

These three properties, possessed by dx, are the defining characteristics of a
∧-antiderivation on G (Ux).

Finally, if ω = f dxi1 ∧ · · · ∧ dxir consists of a single term then

dxdxω = dx
∂ f

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxir

=
∂2 f

∂xjxk
dxj ∧ dxk ∧ dxi1 ∧ · · · ∧ dxir

where the indices i1, . . . , ir are increasing but j and k are arbitrary. Requiring j
and k to be unequal (dropping only terms that are zero with this restriction), the
last becomes a sum of terms of the form∑

j<k

(
∂2 f

∂xjxk
− ∂2 f

∂xkxj

)
dxj ∧ dxk ∧ dxi1 ∧ · · · ∧ dxir .

Under our differentiability conditions, the mixed partials are equal and we conclude
that dxdxω = 0. Since any r-form is the sum of r-forms like this single-term ω, the
additivity property mentioned above implies that dxdxω = 0 for any r-form and
any r.

We now come to the main result.

Suppose d is any ∧-antiderivation on G (Ux) that agrees with dx on
Λ0 (Ux) and for which d

(
Λj (Ux)

)
⊂ Λj+1 (Ux) for each j. If d ◦ d = 0

then d = dx. In other words, the exterior derivative can be calculated
by the same formula (as given above in basis x) using any coordinates.

It follows that dxω = dyω at points on the manifold in Ux ∩ Uy.

So the procedure given locally by dx serves to define a ∧-antiderivation
d on all of G (M) that agrees with the original definition of d on Λ0 (M),
satisfies d

(
Λj (M)

)
⊂ Λj+1 (M) for all j, and for which d ◦ d = 0.

And d is the only ∧-antiderivation on G (M) with these properties.
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The proof has several steps. First, we have the result we seek (by assumption)
when d and dx are applied to functions. In particular, dxi = dxx

i for each i.

Suppose we have shown d
(
dxi1 ∧ · · · ∧ dxir−1

)
= 0 for all increasing sequences

i1, . . . , ir−1 where r > 1.

So if i1, . . . , ir is an increasing sequence

d
(
dxi1 ∧ · · · ∧ dxir

)
= d

(
dxi1 ∧ · · · ∧ dxir−1

)
∧ dxir + (−1)r−1

(
dxi1 ∧ · · · ∧ dxir−1

)
∧ d(dxir )

= 0 + 0.

So by induction on r we have d
(
dxi1 ∧ · · · ∧ dxr

)
= 0 for all increasing sequences

i1, . . . , ir and any r > 0. As a special case, this result holds if d = dx.

Now we find that if f is any differentiable function on M and for all increasing
sequences i1, . . . , ir and any r > 0

d
(
f dxi1 ∧ · · · ∧ dxir

)
− dx

(
f dxi1 ∧ · · · ∧ dxir

)
= (df) ∧

(
dxi1 ∧ · · · ∧ dxir

)
− (dxf) ∧

(
dxi1 ∧ · · · ∧ dxir

)
+ fd

(
dxi1 ∧ · · · ∧ dxir

)
− fdx

(
dxi1 ∧ · · · ∧ dxir

)
.

The first two of the last four terms are equal and the last two are both zero. So

d
(
f dxi1 ∧ · · · ∧ dxir

)
= dx

(
f dxi1 ∧ · · · ∧ dxir

)
.

Since any r-form is the sum of r-forms of the type in this last calculation, d = dx
on each Λr (M) and so, therefore, on G (M).

Define the exterior derivative d : G (Ux)→ G (Ux) at each grade by

dω = dxω =
∂ ωi1,...,ir (x)

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir

as calculated in any coordinates, where j is an arbitrary index and the summation
indices i1, . . . , ir are increasing.

As noted above, this local procedure serves to define d on all of G (M).

As a final point, tensor operations such as contraction or tensor product, can be
made to apply to tensor fields by implementing them point-by-point. To calculate
them at a point in the resulting field you do not need to know the values of the
fields nearby, only at the point itself. Though construction of the tangent map H∗
and the pullback H∗ does involve the values of H itself at nearby points, once these
maps are created they are applied to field values point-by-point. Knowledge of field
values away from the point are not needed.

On the other hand, the exterior derivative (and the Lie derivative we define using
it in the next sections) are operations on tensor fields. Without knowledge of how
field values change in a (possibly tiny) neighborhood of a point you cannot calculate
the exterior derivative and the actual value of a tensor field is not involved at all.
The Lie derivative which follows will involve both field values and local changes,
and is also, inherently, a “field” construction in this sense.
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2. The Lie Derivative Applied to Number and Vector Fields

The Lie derivative LX(f) of a smooth number field f with respect to a smooth
vector field X on M is just X(df). This is a new smooth number field on M.

To calculate it at point p pick differentiable curve c in Xp with c(α) = p. Then
LX(f)(p) = (f ◦ c)′(α). This is the rate of change of f when moving through p at
the pace and in the direction determined by the curves, such as c, in Xp.

Since each Xp is a point derivation we have LX(fg) = fLX(g) + gLX(f).

LX(f) is often called the directional derivative of f with respect to X.

When this vocabulary is used, the symbol ∇Xf may be found in reference to it.

It is also possible to create a Lie derivative on fields of tangent vectors
producing, as a result, another vector field. We turn our attention to this new
process.

Most typically, you will see a bracket notation, the Lie bracket, employed below.

LX(Y ) = [X,Y ] = XY − Y X ∈ T1
0(M) for X, Y ∈ T1

0(M).

This operation, also called the Lie derivative with respect to X, looks like
it should mean something. But what?

Thinking of tangent vectors as acting on (and determined by their action upon)
differentiable functions (number fields) this is intended to mean

LX(Y )(f) = [X,Y ](f) = X(Y (f))− Y (X(f)),

the composition of the actions of the vectors involved applied to generic smooth
function f , one after the other.

It is clear that for constant r and vector fields Y and Z

LX(Y + r Z)(f) = LX(Y )(f) + rLX(Z)(f).

The tangent vectors X and Y correspond to derivations on number fields, and
this implies (after a calculation) that for twice continuously differentiable number
fields f and g, and evaluated at each point in the manifold,

LX(Y )(fg) = f LX(Y )(g) + gLX(Y )(f).

So LX(Y ) is also a derivation for each Y at each point in the manifold. Hence
there is a unique vector field corresponding to this action: that is, LX(Y ) evaluated
at point p is in Mp for each p ∈M. It remains to verify that the vector field defined
by this process is smooth.

If x is a coordinate system on M then at points p in Ux we have a representation
Xp = [x, p, v] and Yp = [x, p, w] so evaluated at p

LX(Y ) = vi
∂

∂xi
wj

∂

∂xj
− wi

∂

∂xi
vj

∂

∂xj

where the coefficients vi and wi depend, of course, on x and by assumption vary
from point to point in Ux in a smooth way.
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Calculating directly, when applied to a number field f and using these coordi-
nates and evaluated at a point in Ux, the action of LX(Y ) is given by

LX(Y )(f) = vi
∂

∂xi

(
wj

∂

∂xj
f

)
− wi

∂

∂xi

(
vj

∂

∂xj
f

)
= vi

∂wj

∂xi
∂f

∂xj
+ viwj

∂2f

∂xi∂xj

− wi
∂vj

∂xi
∂f

∂xj
− wivj

∂2f

∂xi∂xj
.

In the last two lines above the second and fourth terms (they are, each, sums)
cancel because of the equality of mixed partial derivatives. The first and third
terms become

LX(Y )(f) =
n∑
j=1

(
vi
∂wj

∂xi
− wi

∂vj

∂xi

)
∂

∂xj
(f).

The coefficients are obviously differentiable and so at any point in Ux

LX(Y ) = [X,Y ] =

n∑
j=1

(
vi
∂wj

∂xi
− wi

∂vj

∂xi

)
∂

∂xj
∈ T1

0(Ux).

Since this can be carried out for each chart in an atlas we have LX(Y ) ∈ T1
0(M).

If only one of Xp or Yp is 0 there is no reason to suppose1 LX(Y )p = 0. The
point here is that knowing Xp and Yp does not tell you much about LX(Y )p. You
need to know also the rates of change of X and Y at p to determine LX(Y )p.

Let’s remind ourselves of the structure of the argument given above. First we
showed that this Lie derivative was a point derivation on F∞(M) at each point so
there is a tangent vector at each point that implements the Lie derivative at that
point. At that point we had not, however, shown that these tangent vectors fit
together in a smooth way. For that we went to coordinates at a point, found a for-
mula for the Lie derivative output on the corresponding coordinate neighborhood,
and observed that the coefficient functions were smooth in that neighborhood. And
since they are smooth in a neighborhood of every point they are smooth on M.

It is interesting to note2 using the same ideas that the operator XY on F∞(M)
is not a vector field. Its values when applied to a smooth function depend only
on the “local” values of the function so it can be calculated using derivatives in
coordinates. But these calculations do not reduce to the action of a tangent vector.

Generally, XY = Y X when and only when [X,Y ] = 0 from which we deduce
that these vector fields commute when and only when, within the domain of any
coordinate system x, we have

vi
∂wj

∂xi
= wi

∂vj

∂xi
for j = 1, . . . , n.

1Though if both are 0 at p then LX(Y )p = 0.
2For smooth functions f and g calculate XY (fg) − fXY (g) − gXY (f). Show that this is

not always 0 unless the value Xp of the vector field X is the zero tangent vector whenever Yp is

nonzero. So in this case XY is not a point derivation everywhere on M.
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The vector fields ∂
∂xi and ∂

∂xj corresponding to the coordinate gridcurves them-

selves do commute as members of T1
0(Ux), and we phrase a converse to this obser-

vation later.

Other facts involving the Lie bracket are also straightforward to show. For
instance for f, g ∈ F∞(M) we have the formula

LfX(gY ) = [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

The special case of LX(gY ) = gLX(Y ) + (Xg)Y tells us how the Lie derivative
differs from an F∞(M)-module homomorphism.

The Jacobi identity holds for the bracket:

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

Temporarily writing [X,Y ] as X ∗ Y and using X ∗ Y = −Y ∗ X the Jacobi
identity tells us that

(X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z) + Y ∗ (Z ∗X)

so this operation is not associative on generic vector fields. Also,

LY (X ∗ Z) = X ∗ LY (Z) + Z ∗ LY (X).

In other words, the Lie derivative with respect to a fixed vector field is a deriva-
tion on the (non-associative) algebra of vector fields with the ∗ operation.

3. The Lie Derivative on the Grassmann Algebra

Before we generalize this notion to forms, we first introduce interior product on
our manifold to help us with notation.

The interior product is a family of functions on G (M) indicated by the nota-
tion Xy for various tensor fields X ∈ T1 (M).

We calculate the interior product on 1-term forms, extending to all of G (M) by
linearity.

If f has grade 0 (i.e. a smooth number field) we define Xy (f) = 0.

When r > 0 it is calculated on θ ∈ Λr(M) as (Xy θ)(p) = Xpy θp for each p ∈M,
pushing the definition to a local calculation, defined next.

Xpy θp is defined to be evaluation of the first index “slot” of θp at Xp. In terms
of tensor operations, this is the tensor product Xp ⊗ θp followed by contraction of
Xp against the first index of θp.

This operation on G (M) has a number of properties.

If θ ∈ Λr(M) then Xy θ ∈ Λr−1(M). Thus, we have a grade-reducing map

Xy : G (M)→ G (M) .

Further, Xy (Y y θ) = −Y y (Xy θ) so Xy (Xy θ) = 0.

And, finally, Xy is a ∧-antiderivation on G (M):

Xy (θ ∧ τ) = (Xy θ ) ∧ τ + (−1)r θ ∧ (X y τ )
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Getting back to Lie derivatives, define

LX : Λr(M)→ Λr(M) by LX(θ) = Xy dθ + d(Xy θ)

for any r-form θ, and to any multi-form field by application at each grade. You will
note that this agrees with the earlier definition on functions: for smooth function
θ the second term is zero and the first term is X(dθ).

The Lie derivative on the Grassmann algebra has numerous useful properties, of
which we will explore few. We do note that the Lie derivative is a ∧-derivation on
the Grassmann algebra, not a ∧-antiderivation. By this we mean that if θ and τ
are two r-forms and c is a constant function and µ is a k-form then

LX(c θ + τ) = cLX(θ) + LX(τ) and LX(θ ∧ µ) = LX(θ) ∧ µ+ θ ∧ LX(µ).

The first equation is obvious, while the second follows by expanding the wedge
products and application of the antiderivation sign pattern for d and Xy.

It is also obvious, but useful, that

LX+cY (θ) = LY (θ) + cLX(θ) for constant c and vector fields X and Y.

Next: LgX(θ),LX(gθ),LX(Y f),LX(Y df)

4. Lie Derivatives Via the Local Flow

For smooth vector field X, the various versions of Lie derivative LX applied to
functions, vector fields and forms, are not defined solely “at points” in the sense that
to determine them at a point you must have knowledge of the functions, fields and
forms on some (any) neighborhood around that point. But this kind of information,
which might be described as “local,” suffices.

We will concentrate here on a single point p ∈ M so that X determines a local
flow T : (−2r, 2r)× U→ V for open neighborhood U of p.

Let’s define Ut = Tt(U) and suppose V is
⋃
t∈(−2r,2r) Ut.

Each Tt is a diffeomorphism onto its image Ut.

Tt+s = Tt ◦ Ts for all s, t ∈ (−r, r) and so T0(q) = q for all q ∈ U.

We will suppose x : Ux → Rx is a coordinate system around p and V ⊂ Ux.

Xq is tangent to cp, defined by cp(t) = Tt(p), whenever q is in the range of cp.

In particular Xq = [x, q, (x ◦ cq)′(0)] for each q ∈ U.

By Theorem 19.4 of Part I we can specify x so that Xq = [x, q, e1] everywhere
in U: that is, all integral curves follow the coordinate gridcurves so cq = Ge1x,q.

If f ∈ F∞M we have defined LX(f)p to be (f ◦ cp)′(0).
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This ordinary derivative is

LX(f)p =Xp(f) = lim
ε→0

f(cp(ε))− f(p)

ε
= lim
ε→0

f(Tε(p))− f(p)

ε

= lim
ε→0

(T−ε)∗p(f)− f(p)

ε
= lim
ε→0

(Tε)
∗
p(f)− f(p)

ε
.

We have defined the Lie derivative on functions in terms of pullbacks or tangent
maps using the diffeomorphisms from the local flow.

We can do the same thing for Lie derivatives on vector fields and one-forms.

Suppose ω ∈ T1(M). Near p we can represent ω as σi dx
i for smooth σi.

Define Aε(ω) =
(Tε)

∗
p(ω)− ωp
ε

.

We would like to show that limε→0Aε(ω) converges, and the limit is

LX(ω)p = (Xy dω )p + ( d(Xyω) )p,

but first we have to be clear about what (Tε)
∗
p(ω) actually is.

It pulls back the action of ω at cp(ε) to p.

So if g is a real-valued function in ωcp(ε) then g ◦ Tε is in (Tε)
∗
p(ω).

That is, (Tε)
∗
p(ω) = d(g ◦ Tε)p.

We have proven that



Index

[X,Y ], 5

LX , 5

∇Xf , 5
d, 4

antiderivation, 3

derivation, 8

derivative

exterior, 4
Lie, 5

directional derivative, 5

exterior

derivative, 4

interior product, 7

Jacobi identity, 7

Lie

bracket, 5

derivative on forms, 5
derivative on vector fields, 5

product
interior, 7

10


