Your Attention Is All | Need

a high entropy presentation
about brains, computation, and more

by Karina Belokapov / 2024-04-30

ltinerary

» State of the relevant fields from most to least depressing

* Historical mathematical models in comp neuro

* Increasingly less bio inspired models

* TRANSFORMERS!

* Some side rants

* QUESTIONS!

* ldk how long this is gonna take so | have extra content on neuro

Some Background Info

* Brain emulation/computational neuroscience

* We've been trying to emulate the same worm since the 1960s. And failing!
* Normal Neuroscience

* Basically just biology and crappy fMRI studies
* Cellular automata

* Held up by Wolfram but honestly quite promising
» Exotic computing (reversible, optic, quantum)

* Good research, lotsa grifty companies, no real world usecase in sight
» Consciousness

* The buddha figured it all out and now we're trying to math these insights
Al

* Lotsa money lotsa talent lotsa progress ()

Computational Neuro!

* Trying to fit models to data we’ve recorded — spatial electrical
recordings, proteins, behavior

* Celegans
* Small-n neuron sims
* Basically every Al model

Hebbian Learning — Hopfield network

* Neurons that fire together, wire together
* Also used in optimization problems

Updating one unit (node in the graph simulating the artificial neuron) in the Hopfield network is performed using the following rule:
{+1 if Ej w.;jaj :_-"' ﬁi,
5; .
—1 otherwise.

where:

« w;; is the strength of the connection weight from unit j to unit i (the weight of the connection).
¢ 5; Is the state of unit i.

e B is the threshold of unit i.

welghts

Som

np.random.choice([-1, 1], size=(num_neurcns, num_neurcns))

np.fill_diagonal(weights, @)

ates = np.random.choice([-1,

for t in range(num_timesteps):

neuron_idx = np.random.randint(num_neurons)

input_sum = np.dot(weights[neuron_idx], neuron_states)

if input_sum >= @:

n

n

euron_states[neuron_idx] 1

euron_states[neuron_idx]

11,

3

size=num_neurons)

Hodgkin-Huxley model

* 4 dimensional differential equation, fits
EM theory to observed neuron data

dl,

I= Cm? + ggn (Vi — Vie) + Gnam® h(Vin — Viva) + §¢(Vin — Vi),
dn

dt = ay(Via (1 —n) — Bu(Via)n

%’:‘ = am(vm}(l - m) — Bm (Vm}m

dh

7 = on(Vim) (1 = h) = Bu(Viu)t

where [is the current per unit area and «; and /3; are rate constants for the i-th ion channel, which depend on voltage but not time. g, is the maximal
value of the conductance. n, m, and b are dimensionless probabilities between 0 and 1 that are associated with potassium channel subunit activation,
sodium channel subunit activation, and sodium channel subunit inactivation, respectively. For instance, given that potassium channels in squid giant
axon are made up of four subunits which all need to be in the open state for the channel to allow the passage of potassium ions, the n needs to be raised
to the fourth power. Forp = {n,m, h), o, and 8, take the form

C‘p(Vm] = pm{Vm}flTP
Bp (Vi) = (1 = pec (Vi) /7.

Doc and (1 — po,) are the steady state values for activation and inactivation, respectively, and are usually represented by Boltzmann equations as
functions of V;,,. In the original paper by Hodgkin and Huxley,™ the functions ar and B are given by

Extracellular Medium

T
C gtV gL
ERER
EnT ELT

6

Intracellular Medium

Basic components of Hodgkin—Huxley-type models which &7
represent the biophysical characteristic of cell membranes. The
lipid bilayer is represented as a capacitance (C,,,). Voltage-
gated and leak ion channels are represented by nonlinear (g,)
and linear (g,) conductances, respectively. The
electrochemical gradients driving the flow of ions are
represented by batteries (E), and ion pumps and exchangers
are represented by cumrent sources (/).

|2

Leaky Integrate and Fire

u(t)

ui‘ﬂl 1

Fig. 1.6: Electrical properties of neurons: the passive membrane. A. A neuron, which is enclosed by the cell membrane (big
circle), receives a (positive) input current I (t) which increases the electrical charge inside the cell. The cell membrane acts
like a capacitor in parallel with a resistor which is in line with a battery of potential u,.; (zoomed inset). B. The cell membrane
reacts to a step current (top) with a smooth voltage trace (bottom).

be discussed in Part || of the book can be seen as variations of this basic model.

1.3.1 Integration of Inputs

The variable u; describes the momentary value of the membrane potential of neuron 1. In the absence of any input, the potential is at its resting value 1. . If an
experimentalist injects a current [(¢) into the neuron, or if the neuron receives synaptic input from other neurons, the potential u; will be deflected from its resting value.

In order to arrive at an equation that links the momentary voltage w; (t) — s to the input current I (t), we use elementary laws from the theory of electricity. A neuron is
surrounded by a cell membrane, which is a rather good insulator. If a short current pulse T (t) is injected into the neuron, the additional electrical charge g = f I(t)dt
has to go somewhere: it will charge the cell membrane (Fig. 1.6A). The cell membrane therefore acts like a capacitor of capacity (. Because the insulator is not perfect, the
charge will, over time, slowly leak through the cell membrane. The cell membrane can therefore be characterized by a finite leak resistance K.

The basic electrical circuit representing a leaky integrate-and-fire model consists of a capacitor C' in parallel with a resistor R driven by a current [(t); see Fig. 1.6.

Some fun ML facts

* Feedforward NNs with traditional activation functions are
Universal Function Approximators!

» Geometric deep learning is a thing

* We’'ve known how to do NNs for ages, we just didn’t have
compute (Moore’s law!)

* Groq!
* OpenAl vs Anthropic vs [Gemini, conjecture, etc]

MLP / feedforward NNs

input layer

 Aw)

'Tl(

y

A\“Z/"A
/4

’/ :

\

hidden layers |

lower layer

0,
X
Vf-i}%\
(53

upper layer

N
/N

output layer

Forward prop

» Data gets fed to hidden layer

» Hidden layer multiplies it by weights (of shape INPUT_SIZE,
LAYER_SIZE) and adds a bias sometimes (like y=mx+D)

* Example: input=[1, .1]
* Weights in hidden layer=[[.1, .2], [.5, .8]]
 final=[.1, .2]=.3, [.05,.08]=.11

» Each neuron’s weights are summed, and then an “activation
function” is applied to get out a new number

 LET's TALK ABOUT ACTIVATION

* The sigmoid

Activation functions

The weight initialization random dist you use depends on
which activation function you choose!

Differentiable!
Non-linear!
Maps values - (0,1)

Vanishing gradients :(

° RelLU

Non-linear!

Sparsity (cuz it turns off neurons)
Kinda like a neuron

No vanishing gradients

Sometimes unstable gradients cuz
unbounded

]

)

-10.0 -75 =50 -25 0.0 25 5.0 75

1

5(@) = l1+e®

max(0, value)

Backprop

* The last layer is our prediction!

* We calculate the error between the expected output and our
prediction

* Mean squared error for each layer
* Error is multiplied by sigmoid_derivative(predicted output)

* This derivative is multiplied with the weights in each layer, which
updates them appropriately up or down. This is scaled by a
“learning rate”

SGD, Adam

* GD moves all of the input data through the hidden layers, then calculates gradients for all of them
and backprops error through (once per epoch)

* SGD moves batches of input data through the hidden layers, and calculates gradients after each
batch (multiple calculations per epoch)

« Stochastic meaning random

* RMSProp updates learning rate (that thing you multiply gradients by) summing (with decay) root
mean squared past gradients, which allows for faster convergence

* AdamW is the better version of this, used in modern models, maintains exponential moving
average of the gradient and the squared gradient and uses that

Softmax

* Turns a real vector into a probability dist from 0-1, exactly how
you’'d expect

* Very important normalization step
* Also dropout layers are a thing I don’t wanna make a new slide

o(z); = furiz1,...,H'andz=[51,...,£K}EHH.

Traaaanssssformeeeerssss

Omp':::ies
 Attention is all you need e
« GPTs! (a5 Nom)
* Current best model for —— | =
comp neuro oy || 2] ||
- w é:
* Next token prediction s | | [
—=l==4
Encong QO &~ Encodng
Emmng Emw
t t
Inputs Outputs
(shifted right)

Tokens/Byte-pair encoding

* Turns a corpus of sequential words into a most-frequent-symbols
vocabulary, which is good because it separates things like
common prefixes and stems (-ing, pre-, etc) while compressing
the corpus into its unique chunks

* Literally just a compresson alg from 1994
* Recursively replace recurring strings with “tokens” by frequency

 Differs from huffman coding because it deals in character pairs
Instead of one-passing byte strings

* Reversible and lossless by nature

Going back to our previous example, let's assume the words had the following frequencies:

(Ilhugll; 1{;}}; {"pug", 51‘ (Ilpunll; 12}; {“bun", "ﬂ}r {"hugs", 5}

meaning "hug" was present 10 times in the corpus, "pug" 5times, "pun” 12 times, "bun" 4 times, and "hugs" 5 times. We start
the training by splitting each word into characters (the ones that form our initial vocabulary) so we can see each word as a list of

tokens:

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "uw" "n", 12), ("b" "u" "n", 4}, ("h" "u" "g" "s", 5)

Then we look at pairs. The pair ("h", "u") is present in the words "hug" and "hugs", so 15 times total in the corpus. It’s not the

most frequent pair, though: that honor belongs to ("u", "g"), which is presentin "hug", "pug", and "hugs", for a grand total of

20 times in the vocabulary.

Thus, the first merge rule learned by the tokenizeris ("u", "g") -> "ug",which means that "ug" will be added to the
vocabulary, and the pair should be merged in all the words of the corpus. At the end of this stage, the vocabulary and corpus

look like this:

UOC&':IU]_E[IY: [IIbII‘ IIEII‘ IIhII‘ IInII‘ "p"‘ IISII‘ IIUII‘ Ilugll]
COIPUS: {Ilhll llngllr lE')r {Ilpll “Ug“, 5:]' {Ilpll Ilull Ilnll; 12}; {Ilbll IIUII "”“r 4), {Ilhll “Ug“ IISIIr 5}

19

Embedding!

* GPTs decoder-only
* One-hot encoding, just indexing
* Bag of words — frequency of each word in vocab

» Sliding window/skipgram (word2vec) — basically MLP architecture
where inputs are a word, outputs are surrounding word
probabilities (both positive, as in the ones that *were* around, and
negative, a sample of words that were not), and loss is SGD

* Queen-woman+man = king

Positional encoding

Positional Encoding Layer in Transformers

Let's dive straight into this. Suppose you have an input sequence of length L and require the position of the

kth object within this sequence. The positional encoding is given by sine and cosine functions of varying
frequencies:

o k
P(k,2i) = sin(m}

k

P(k,2i+ 1) = cos(
n2ir'd

)

Here:
k: Position of an object in the input sequence, 0 < k< L/2
d: Dimension of the output embedding space

P (k, j): Position function for mapping a position k in the input sequence to index (k, j) of the positional
matrix

N: User-defined scalar, set to 10,000 by the authors of Attention Is All You Need.

i: Used for mapping to column indices 0 = i < d/ 2, with a single value of i maps to both sine and cosine
functions

In the above expression, you can see that even positions correspond to a sine function and odd positions

correspond to cosine functions.

20
T

0

(=]
&
&
=
=
=]

ENCODER LAYER

* encodes

» Takes “residual”, which basically means those embeddings from
earlier, not the attention vectors (this is done so original input
keeps getting reintroduced and it doesn’t smooth out into
nothingness (vanishing gradients))

» Take the means and standard deviations of each layer
» Calculate a scaling factor Y as on right

* Train learnable parameters gamma*y +b
* Learnable parameters get SGDed

Self attention

* We have Key, Query, and Value matrices, which are randomly
Initialized and then multiplied with the input vector

* Attention scores = Input 1’s query multiplied with all other inputs’
keys

» Scaling — divided by square root of key dimension
* Attention scores softmaxxed

* Weighted values = scores * values of each input (THIS IS
WHERE GRADIENT DESCENT IS DONE)

* Sum(weighted values) = input one’s attention scores

MULTIPLE HEADS

* Do this like 7 more times
 Concatenate all of the attention vectors

* Ultimately this attention matrix is thrown into a residual in the next
feedforward layer

12395 &%
bsTTor X R L \".
i N ;
ErCalirt \ f"_l — — | 2
= — _.' I| o
= T 33 b ‘ Pt
i 1| '1' :—': }EC}-LR'.'TIJ"
I [| LE_NfD"I"'.-x
RS
\ =
Gt

3 x

: L —— —l G4
S| o \, ﬂm&'h’rn ||
|F‘:-|.'.|rb|-““L 1 \ l_ =) !

T b

E*‘F\f_l o

MAX SEDUENCE. LENGT H

Self-attention

query

score score score

key

value key value key value

f t f t f

input #1 input #2 input #3

* Final linear layer that acts as a
classifier (literally just a weight matrix
that gets multiplied, with some
biases, no nonlinear activation
necessary)

» Softmax to get logits — these are now
Interpretable as token probabilities

o

(shifted right)

Probabilities
Softmax
(tinear)
i ™
Add & Norm
Md_& Mdﬂ Head
Feed
Forward } }] Nx
e—]
Add & Norm
.—-[Add & Norm | e
Multi-Head Multi-Head
Aftention Attention
.‘ * ’ { [’
_ —
@ Positional
Encoding
Output
Embedding
Outputs

Attention masking

 PAD tokens

* Autoregressive tasks

s
0 -0 —
0 0 —00
0 0 0
0 0 0

Matrix representation of the look-ahead mask

K bK K

ol bE
a9 [a% % a9%% a%f -
b9 | %X 9K BcK -0
c? [cRa® QK ReX —o
D@ [D9 X DX DK —xo

Query-key matrix added to the padding mask matrix

QKT+ M=

Anything added to -oc becomes -2, s0 the resulting column D¥ is a column of

-co, Now, what happens when softmax is applied to the matrix?

af bE K DE

a? [(a%f a%% a9,
@ity = | 65 068
e? | (cRa¥ 9K RcH)g
D? [(D%X DX D%X)g

Softmax of the result from adding the query-key matrix to the mask matrix

o O O o

Error?

» Self supervised, so just checking if the logits for the next word are
as predicted then backpropping with MSE (I think? Hard to find
Info here for sm reason)

* These are done in batches much like

when input is tensor([18]) the target: 47

when input is tensor([18, 47]) the target: 56

when input is tensor([18, 47, 56]) the target: 57

when input is tensor([18, 47, 56, 57]) the target: 58

when input is tensor([18, 47, 56, 57, 58]) the target: 1

when input is tensor([18, 47, 56, 57, 58, 1]) the target: 15

when input is tensor([18, 47, 56, 57, 58, 1, 15]) the target: 47
when input is tensor([18, 47, 56, 57, 58, 1, 15, 47]) the target: 58

IIiiiIIII

Tada! That's how transformers work

: : : g
* GPT is decoder only. This means it rovepies
doesn’'t have any enc blocks and just
does the masking | mentioned on the last (e
slide Fovas
/ —)
||| Ol
Forward SIS Nx
|MU&Norrn]::
i —
Input Output
Embeddngl Embedding
Inputs Out!mls

m

S’more random stuft

) B ecause Why n Ot Step 3: Ring-Based Communication and Overlapping

o Once a host finishes processing its block, it begins to pass its key-value pairs
to the next host in the ring. Simultaneously, it receives the key-value pairs

. from the previous host. This process is overlapped with computation,
ensuring minimal idle time. For instance:

°

R I n g atte ntl O n l -> + Host 1 sends data to Host 2 and receives from Host 3.

e Host 2 sends data to Host 3 and receives from Host 1.

s Host 3 sends data to Host 1 and receives from Host 2.

This step ensures that each host gradually gets access to the key-value pairs

from other blocks, which are necessary for calculating the attention scores
that involve tokens from different blocks.

Neural coding- basically mechinterp

* VAEs

» Autoencoder that enforces sparsity in its
loss with KL divergence

* Linear probes

 Literally just throw a bunch of data at your
model and do classification on the inputs
and outputs

t t

) F i n d “fe at u re S " Input Data Encoded Data Reconstructed Data

* Try to interpret them

RNNSs

* These are like a cross between transformers and MLPs- they can
update their own weights during non-backprop parts of training,
using the input *and* the state of the previous layer, and this
makes them good at handling sequential data

¢ 2 2 2

& o6& & &

Questions!!

Basically everything cool in neuroscience so far

> Place cells Grid cells
_ Mirror neurons Neuronal oscillations
. Sleep splndles Synesthesia: Neuronal avalanches
* Spatial vortexes Neurogenesis Synaptic pruning
* The glymphatic system Optogenetics
« The role of g“a Default mode network
Engrams

* hormonal signalling »
Neuroplasticity

° types of neurotransmitters Epigenetic modifications

* neuromodulators Microglia

Works cited aka my search history

https://stackoverflow.com/questions/6392739/what-does-the-at-symbol-do-in-python
https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950
https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/

https://jalammar.github.io/illustrated-transformer/

https://leimao.github.io/blog/Layer-Normalization/

https://en.wikipedia.org/wiki/Hebbian_theory

https://en.wikipedia.org/wiki/Feedforward_neural_network

https://arxiv.org/abs/1409.3215

https://www.youtube.com/watch?v=00FppeD_xXQ&list=PL7m7hLIgAOhgsReJONYhyN3xiFQW9kolh&index=2
https://www.pnas.org/action/oidcCallback?idpCode=connect&error=login_required&error_description=Login+required&state=anacHyh1K_51XzU1Qg1F9hyXpG2LLdSrCLeFWu-tPho
https://en.wikipedia.org/wiki/Feedforward_neural_network#Multilayer_perceptron
https://www.analyticsvidhya.com/blog/2021/03/forward-propagation-and-errors-in-a-neural-netwrok/

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

https://en.wikipedia.org/wiki/Self-organized_criticality

https://towardsdatascience.com/transformers-explained-visually-not-just-how-but-why-they-work-so-well-d840bd61a9d3

https://www.youtube.com/watch?v=G45TuC6zRf4

https://neuronaldynamics.epfl.ch/online/Ch1.S3.html

https://en.wikipedia.org/wiki/Bisection_method

https://en.wikipedia.org/wiki/Spiking_neural_network
https://en.wikipedia.org/wiki/Multilayer_perceptron#:~:text=A%20multilayer%20perceptron%20(MLP)%?20is,that%20is%20not%20linearly%20separable.
http://iwww.pmaweb.caltech.edu/Courses/ph136/yr2012/1203.1.K.pdf
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fillustrated-self-attention-2d627e33b20a&source=post_page---two_column_layout_nav- global_nav-
https://paperswithcode.com/method/layer-normalization
https://pubs.acs.org/doi/abs/10.1021/acsami.0c14325#:~:text=The%20Bienenstock%E2%80%93Cooper%E2%80%93Munro%20(,spike%2Dtiming%2Ddependent%20plasticity.
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

https://en.wikipedia.org/wiki/Wolfe_conditions

https://en.wikipedia.org/wiki/Feedforward_neural_network#Perceptron

https://en.wikipedia.org/wiki/BCM_theory

https://pubmed.ncbi.nim.nih.gov/23049852/

https://realpython.com/gradient-descent-algorithm-python/#basic-gradient-descent-algorithm

https://machinelearningmastery.com/transformer-models-with-attention/

https://github.com/ttngu207/najafi-2018-nwb/tree/master?tab=readme-ov-file
https://deepai.org/machine-learning-glossary-and-terms/rmsprop#:~:text=RMSProp%2C%20which%20stands%20for%20Root,in%20training%20deep%20neural%20networks.
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://www.reddit.com/r/singularity/comments/13vr70t/someone_managed_to_decode_a_tiny_transformer_the/

https://arxiv.org/pdf/2301.05217.pdf

https://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html

https://iopscience.iop.org/article/10.1088/0954-898X/8/4/002

https://www.neelnanda.io/modular-addition-walkthrough-2

https://en.wikipedia.org/wiki/Multilayer_perceptron#:~:text=A%20multilayer%20perceptron%20(MLP)%20is,that%20is%20not%20linearly%20separable

https://mirror.explodie.org/universality_in_elementary_cellular_automata_by_matthew_cook.pdf
https://en.wikipedia.org/wiki/Reinforcement_learning

https://en.wikipedia.org/wiki/Hopfield_network

https://en.wikipedia.org/wiki/Distribution_function_(physics)
https://www.youtube.com/watch?v=XHMa-Ba-2Mo
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
http://www.scholarpedia.org/article/Attractor_network

http://jalammar.github.io/illustrated-transformer/
https://datascience.stackexchange.com/questions/57996/is-gradient-descent-also-used-during-feed-forward-propagation-in-neural-network
https://www.science.org/doi/10.1126/science.aal4835

https://en.wikipedia.org/wiki/Segq2seq
https://medium.com/me/notifications?source=---two_column_layout_nav-
https://stats.stackexchange.com/questions/474440/why-do-transformers-use-layer-norm-instead-of-batch-norm
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a?source=-----2d627e33b20 post_regwall &skipOnboarding=1
https://stats.stackexchange.com/questions/31930/difference-between-som-and-hopfield
https://en.wikipedia.org/w/index.php?title=Attractor_network&action=edit§ion=6
https://en.wikipedia.org/wiki/Phase_space
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://medium.com/mlearning-ai/how-do-self-attention-masks-work-72ed9382510f
https://realpython.com/gradient-descent-algorithm-python/
https://stackoverflow.com/questions/72806582/do-layer-normalization-in-pytorch-without-learnable-parameters
https://ai.stackexchange.com/questions/25053/what-is-the-cost-function-of-a-transformer
https://en.wikipedia.org/wiki/Neural_coding#Correlation_coding
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://nip.seas.harvard.edu/2018/04/03/attention.html
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://en.wikipedia.org/wiki/Bifurcation_diagram
https://stackoverflow.com/questions/6392739/what-does-the-at-symbol-do-in-python/28997112#28997112
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5318375/

https://en.wikipedia.org/wiki/Gradient_boosting

https://en.wikipedia.org/wiki/Bifurcation_memory

https://neelnanda.io/grokking

https://linuxize.com/post/how-to-set-or-change-timezone-in-linux/

https://en.wikipedia.org/wiki/Neural_coding
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34

http://papers.neurips.cc/paper/8689-understanding-and-improving-layer-normalization. pdf
https://en.wikipedia.org/wiki/Gradient_descent
http://arxiv.org/pdf/2301.05217
https://medium.com/get-started/plans
https://paperswithcode.com/method/sparse-autoencoder#:~:text=A%20Sparse%20Autoencoder%20is%20a,are%20penalized%20within%20a%20layer.
https://gmongaras.medium.com/how-do-self-attention-masks-work-72ed9382510f

https://en.wikipedia.org/wiki/Measure_(mathematics)
https://www.databricks.com/glossary/adagrad#:~:text=Adaptive%20Gradient%20Algorithm%20(Adagrad)%20is,incorporating%20knowledge%200f%20past%20observations.
https://www.pnas.org/action/oidcStart?redirectUri=%2Fdoi%2Ffull%2F10.1073%2Fpnas.132651299

https://discuss.huggingface.co/t/encoder-decoder-loss/4335

https://w1l.death-note-manga.com/manga/death-note-chapter-63/
https://stackoverflow.com/questions/71581197/what-is-the-loss-function-used-in-trainer-from-the-transformers-library-of-huggi

https://qgri.org/blog/symmetry-theory-of-valence-2020

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895988/

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

https://en.wikipedia.org/wiki/Feigenbaum_constants

https://en.wikipedia.org/wiki/Reinforcement_learning#Model-based_algorithms
https://www.youtube.com/watch?v=00FppeD_xXQ&list=PL7m7hLIgAOhgsReJONYhyN3xiFQW9kolh&index=3
https://www.neelnanda.io/mechanistic-interpretability/modular-addition-walkthrough

https://machinelearningmastery.com/the-transformer-model/

https://github.com/ttngu207/najafi-2018-nwb/blob/master/notebooks/Najafi-2018_example.ipynb

https://roman.computer/projects
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016278/#:~:text=Long%2Dterm%20potentiation%200f%20synaptic,proteins%20%5B5%E2%80%937%5D.
https://medium.com/@seshu8hachi/stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-9c29698b3a9b#:~:text=Stochastic%20Gradient%20Descent%3A%20Faster%20convergence,entire%20dataset%20for%20each
%?20iteration.

https://medium.com/@tanu;j22july/breaking-the-boundaries-understanding-context-window-limitations-and-the-idea-of-ring-attention-170e522d44b2
https://towardsdatascience.com/build-your-own-transformer-from-scratch-using-pytorch-84c850470dch
https://guava.physics.uiuc.edu/~nigel/courses/563/Essays_2012/PDF/banerjee.pdf

https://arxiv.org/pdf/1706.03762

https://www.reddit.com/r/MachineLearning/comments/bnejs3/d_what_does_the_feedforward_neural_network_in/
https://ai.stackexchange.com/questions/40179/how-does-the-decoder-only-transformer-architecture-work

https://en.wikipedia.org/wiki/Residual_neural_network

https://builtin.com/machine-learning/common-loss-functions
https://datascience.stackexchange.com/questions/68220/how-are-g-k-and-v-vectors-trained-in-a-transformer-self-attention
https://builtin.com/artificial-intelligence/transformer-neural-network

https://en.wikipedia.org/wiki/Line_search

https://stackoverflow.com/questions/66633813/sequence-to-sequence-loss
https://ai.stackexchange.com/questions/38905/please-help-me-understand-the-role-of-loss-function-in-neural-networks

https://arxiv.org/abs/2310.01889

https://towardsdatascience.com/a-complete-guide-to-write-your-own-transformers-29e23f371ddd

https://en.wikipedia.org/wiki/Kuramoto_model

https://pytorch.org/docs/stable/generated/torch.tril.html

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html
https://ethz.ch/content/dam/ethz/special-interest/mtec/chair-of-entrepreneurial-risks-dam/documents/Essay/0SX3463.pdf

https://arxiv.org/abs/1706.03762
https://www.quora.com/Whats-the-difference-between-a-single-output-RNN-and-an-MLP-whose-input-data-contains-all-of-the-features-of-the-given-time-steps
https://www.neelnanda.io/grokking

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://en.wikipedia.org/wiki/Attractor_network

https://en.wikipedia.org/wiki/Softmax_function

https://en.wikipedia.org/wiki/Abelian_sandpile_model

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315928/

https://medium.com/get-started/topics

https://www.pnas.org/doi/full/10.1073/pnas.132651299

https://scikit-learn.org/stable/modules/sgd.html

https://neelnanda.io/modular-addition-walkthrough-2
https://ai.stackexchange.com/questions/4320/why-are-the-initial-weights-of-neural-networks-randomly-initialised
https://math.stackexchange.com/questions/1973521/what-is-the-difference-between-line-search-and-gradient-descent
https://papers.neurips.cc/paper/8689-understanding-and-improving-layer-normalization. pdf
https://neuronaldynamics.epfl.ch/index.html

https://www.neelnanda.io/modular-addition-notebook
https://deepai.org/machine-learning-glossary-and-terms/bias-vector
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://medium.com/m/login-redirect?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Fillustrated-self-attention-2d627e33b20a
https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
https://medium.com/@kyeg/the-feedforward-demystified-a-core-operation-of-transformers-afcd3a136c4c
https://machinelearningmastery.com/why-initialize-a-neural-network-with-random-weights/
https://www.youtube.com/watch?v=HOXxSKBxUVpg

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

https://arxiv.org/pdf/2301.05217

https://en.wikipedia.org/wiki/Neural_coding#Population_coding

https://stackoverflow.com/a/28997112/229792
https://medium.com/analytics-vidhya/understanding-g-k-v-in-transformer-self-attention-9a5eddaa5960
https://en.wikipedia.org/wiki/Reinforcement_learning#Deep_reinforcement_learning
https://neelnanda.io/modular-addition-notebook
https://www.reddit.com/r/learnmachinelearning/comments/1bn3eyh/scale_and_shift_learnable_parameters_in_layer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html

https://neuronaldynamics.epfl.ch/online/index.html

https://optimization.cbe.cornell.edu/index.php?titte=AdaGrad
https://www.analyticsvidhya.com/blog/2021/07/lets-understand-the-problems-with-recurrent-neural-networks/
https://www.nature.com/articles/s41467-020-15158-3
https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian)
https://en.wikipedia.org/wiki/Deep_reinforcement_learning
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a?gi=4a0fe648ble4
https://pnas.scienceconnect.io/api/oauth/authorize?ui_locales=en&scope=affiliations+login_method+merged_users+openid+settings&response_type=code&redirect_uri=https%3A%2F%2Fwww.pnas.org%2Faction%2FoidcCallback
%3FidpCode%3Dconnect&state=anacHyh1K_51XzU1Qg1F9hyXpG2LLdSrCLeFWu-tPho&prompt=none&nonce=TevCJIK6%2B9nGXHqLdVck%2BcicrePJj6kw3yvHi%2F29SVrE%3D&client_id=pnas
https://towardsdatascience.com/gpt-3-rnns-and-all-that-deep-dive-into-language-modelling-7f67658ba0d5#: ~:text=Instead%200f%20learning%20a%?20set,function%200f%20this%20state%20vector.
https://www.galexander.org/osamaletter.html
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://www.pmaweb.caltech.edu/Courses/ph136/yr2012/1203.1.K.pdf
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

