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Itinerary

● State of the relevant fields from most to least depressing
● Historical mathematical models in comp neuro
● Increasingly less bio inspired models
● TRANSFORMERS!
● Some side rants
● QUESTIONS!
● Idk how long this is gonna take so I have extra content on neuro
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Some Background Info
● Brain emulation/computational neuroscience

● We’ve been trying to emulate the same worm since the 1960s. And failing!

● Normal Neuroscience

● Basically just biology and crappy fMRI studies

● Cellular automata

● Held up by Wolfram but honestly quite promising

● Exotic computing (reversible, optic, quantum)

● Good research, lotsa grifty companies, no real world usecase in sight

● Consciousness

● The buddha figured it all out and now we’re trying to math these insights

● AI

● Lotsa money lotsa talent lotsa progress (!!!)
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Computational Neuro!

● Trying to fit models to data we’ve recorded – spatial electrical 
recordings, proteins, behavior

● C elegans
● Small-n neuron sims
● Basically every AI model
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Hebbian Learning → Hopfield network

● Neurons that fire together, wire together
● Also used in optimization problems



  6

Some code
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Hodgkin–Huxley model

● 4 dimensional differential equation, fits 
EM theory to observed neuron data

●
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Leaky Integrate and Fire
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Some fun ML facts

● Feedforward NNs with traditional activation functions are 
Universal Function Approximators!

● Geometric deep learning is a thing
● We’ve known how to do NNs for ages, we just didn’t have 

compute (Moore’s law!)
● Groq!
● OpenAI vs Anthropic vs [Gemini, conjecture, etc]
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MLP / feedforward NNs
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Forward prop

● Data gets fed to hidden layer
● Hidden layer multiplies it by weights (of shape INPUT_SIZE, 

LAYER_SIZE) and adds a bias sometimes (like y=mx+b)
● Example: input= [1, .1]
● Weights in hidden layer=[[.1, .2], [.5, .8]]
● final=[.1, .2]=.3, [.05,.08]=.11
● Each neuron’s weights are summed, and then an “activation 

function” is applied to get out a new number
● LET’s TALK ABOUT ACTIVATION

●
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Activation functions

● The sigmoid

● Differentiable!

● Non-linear!

● Maps values → (0,1)

● Vanishing gradients :(

● ReLU

● Non-linear!

● Sparsity (cuz it turns off neurons)

● Kinda like a neuron

● No vanishing gradients

● Sometimes unstable gradients cuz 
unbounded

max(0, value)

The weight initialization random dist you use depends on 
which activation function you choose!
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Backprop

● The last layer is our prediction!
● We calculate the error between the expected output and our 

prediction 
● Mean squared error for each layer
● Error is multiplied by sigmoid_derivative(predicted_output)
● This derivative is multiplied with the weights in each layer, which 

updates them appropriately up or down. This is scaled by a 
“learning rate”
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SGD, Adam

● GD moves all of the input data through the hidden layers, then calculates gradients for all of them 
and backprops error through (once per epoch)

● SGD moves batches of input data through the hidden layers, and calculates gradients after each 
batch (multiple calculations per epoch)

● Stochastic meaning random

● RMSProp updates learning rate (that thing you multiply gradients by) summing (with decay) root 
mean squared past gradients, which allows for faster convergence

● AdamW is the better version of this, used in modern models, maintains exponential moving 
average of the gradient and the squared gradient and uses that
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Softmax

● Turns a real vector into a probability dist from 0-1, exactly how 
you’d expect

● Very important normalization step
● Also dropout layers are a thing I don’t wanna make a new slide
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Traaaanssssformeeeerssss

● Attention is all you need
● GPTs!
● Current best model for 

comp neuro
● Next token prediction
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Tokens/Byte-pair encoding

● Turns a corpus of sequential words into a most-frequent-symbols 
vocabulary, which is good because it separates things like 
common prefixes and stems (-ing, pre-, etc) while compressing 
the corpus into its unique chunks

● Literally just a compresson alg from 1994
● Recursively replace recurring strings with “tokens” by frequency
● Differs from huffman coding because it deals in character pairs 

instead of one-passing byte strings
● Reversible and lossless by nature
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Embedding!

● GPTs decoder-only
● One-hot encoding, just indexing
● Bag of words – frequency of each word in vocab
● Sliding window/skipgram (word2vec) – basically MLP architecture 

where inputs are a word, outputs are surrounding word 
probabilities (both positive, as in the ones that *were* around, and 
negative, a sample of words that were not), and loss is SGD

● Queen-woman+man = king



  21

Positional encoding
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ENCODER LAYER

● encodes
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LayerNorm

● Takes “residual”, which basically means those embeddings from 
earlier, not the attention vectors (this is done so original input 
keeps getting reintroduced and it doesn’t smooth out into 
nothingness (vanishing gradients))

● Take the means and standard deviations of each layer
● Calculate a scaling factor Y as on right
● Train learnable parameters gamma*y +b
● Learnable parameters get SGDed
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Self attention

● We have Key, Query, and Value matrices, which are randomly 
initialized and then multiplied with the input vector

● Attention scores = Input 1’s query multiplied with all other inputs’ 
keys

● Scaling – divided by square root of key dimension
● Attention scores softmaxxed
● Weighted values = scores * values of each input (THIS IS 

WHERE GRADIENT DESCENT IS DONE)
● Sum(weighted values) = input one’s attention scores
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MULTIPLE HEADS

● Do this like 7 more times
● Concatenate all of the attention vectors
● Ultimately this attention matrix is thrown into a residual in the next 

feedforward layer
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DECODING TIME

● Final linear layer that acts as a 
classifier (literally just a weight matrix 
that gets multiplied, with some 
biases, no nonlinear activation 
necessary)

● Softmax to get logits – these are now 
interpretable as token probabilities
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Attention masking

● PAD tokens
● Autoregressive tasks
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Error?

● Self supervised, so just checking if the logits for the next word are 
as predicted then backpropping with MSE (I think? Hard to find 
info here for sm reason)

● These are done in batches much like
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Tada! That’s how transformers work

● GPT is decoder only. This means it 
doesn’t have any enc blocks and just 
does the masking I mentioned on the last 
slide
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S’more random stuff

● Because why not
●

●

● Ring attention! ->
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Neural coding- basically mechinterp

● VAEs 
● Autoencoder that enforces sparsity in its 

loss with KL divergence

● Linear probes
● Literally just throw a bunch of data at your 

model and do classification on the inputs 
and outputs

● Find “features”
● Try to interpret them
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RNNs

● These are like a cross between transformers and MLPs- they can 
update their own weights during non-backprop parts of training, 
using the input *and* the state of the previous layer, and this 
makes them good at handling sequential data
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Questions!!
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Basically everything cool in neuroscience so far

● Place cells
● Sleep spindles
● Spatial vortexes
● The glymphatic system
● The role of glia
● hormonal signalling
● types of neurotransmitters
● neuromodulators
●

Grid cells

Mirror neurons

Synesthesia: 

Neurogenesis

Optogenetics

Default mode network

Engrams

Neuroplasticity

Epigenetic modifications

Microglia

Neuronal oscillations

Neuronal avalanches

Synaptic pruning
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