
Your Attention Is All I NeedYour Attention Is All I Need

a high entropy presentation
about brains, computation, and more

by Karina Belokapov / 2024-04-30

 2

Itinerary

● State of the relevant fields from most to least depressing
● Historical mathematical models in comp neuro
● Increasingly less bio inspired models
● TRANSFORMERS!
● Some side rants
● QUESTIONS!
● Idk how long this is gonna take so I have extra content on neuro

 3

Some Background Info
● Brain emulation/computational neuroscience

● We’ve been trying to emulate the same worm since the 1960s. And failing!

● Normal Neuroscience

● Basically just biology and crappy fMRI studies

● Cellular automata

● Held up by Wolfram but honestly quite promising

● Exotic computing (reversible, optic, quantum)

● Good research, lotsa grifty companies, no real world usecase in sight

● Consciousness

● The buddha figured it all out and now we’re trying to math these insights

● AI

● Lotsa money lotsa talent lotsa progress (!!!)

 4

Computational Neuro!

● Trying to fit models to data we’ve recorded – spatial electrical
recordings, proteins, behavior

● C elegans
● Small-n neuron sims
● Basically every AI model

 5

Hebbian Learning → Hopfield network

● Neurons that fire together, wire together
● Also used in optimization problems

 6

Some code

 7

Hodgkin–Huxley model

● 4 dimensional differential equation, fits
EM theory to observed neuron data

●

 8

Leaky Integrate and Fire

 9

 10

Some fun ML facts

● Feedforward NNs with traditional activation functions are
Universal Function Approximators!

● Geometric deep learning is a thing
● We’ve known how to do NNs for ages, we just didn’t have

compute (Moore’s law!)
● Groq!
● OpenAI vs Anthropic vs [Gemini, conjecture, etc]

 11

MLP / feedforward NNs

 12

Forward prop

● Data gets fed to hidden layer
● Hidden layer multiplies it by weights (of shape INPUT_SIZE,

LAYER_SIZE) and adds a bias sometimes (like y=mx+b)
● Example: input= [1, .1]
● Weights in hidden layer=[[.1, .2], [.5, .8]]
● final=[.1, .2]=.3, [.05,.08]=.11
● Each neuron’s weights are summed, and then an “activation

function” is applied to get out a new number
● LET’s TALK ABOUT ACTIVATION

●

 13

Activation functions

● The sigmoid

● Differentiable!

● Non-linear!

● Maps values → (0,1)

● Vanishing gradients :(

● ReLU

● Non-linear!

● Sparsity (cuz it turns off neurons)

● Kinda like a neuron

● No vanishing gradients

● Sometimes unstable gradients cuz
unbounded

max(0, value)

The weight initialization random dist you use depends on
which activation function you choose!

 14

Backprop

● The last layer is our prediction!
● We calculate the error between the expected output and our

prediction
● Mean squared error for each layer
● Error is multiplied by sigmoid_derivative(predicted_output)
● This derivative is multiplied with the weights in each layer, which

updates them appropriately up or down. This is scaled by a
“learning rate”

 15

SGD, Adam

● GD moves all of the input data through the hidden layers, then calculates gradients for all of them
and backprops error through (once per epoch)

● SGD moves batches of input data through the hidden layers, and calculates gradients after each
batch (multiple calculations per epoch)

● Stochastic meaning random

● RMSProp updates learning rate (that thing you multiply gradients by) summing (with decay) root
mean squared past gradients, which allows for faster convergence

● AdamW is the better version of this, used in modern models, maintains exponential moving
average of the gradient and the squared gradient and uses that

 16

Softmax

● Turns a real vector into a probability dist from 0-1, exactly how
you’d expect

● Very important normalization step
● Also dropout layers are a thing I don’t wanna make a new slide

 17

Traaaanssssformeeeerssss

● Attention is all you need
● GPTs!
● Current best model for

comp neuro
● Next token prediction

 18

Tokens/Byte-pair encoding

● Turns a corpus of sequential words into a most-frequent-symbols
vocabulary, which is good because it separates things like
common prefixes and stems (-ing, pre-, etc) while compressing
the corpus into its unique chunks

● Literally just a compresson alg from 1994
● Recursively replace recurring strings with “tokens” by frequency
● Differs from huffman coding because it deals in character pairs

instead of one-passing byte strings
● Reversible and lossless by nature

19

 20

Embedding!

● GPTs decoder-only
● One-hot encoding, just indexing
● Bag of words – frequency of each word in vocab
● Sliding window/skipgram (word2vec) – basically MLP architecture

where inputs are a word, outputs are surrounding word
probabilities (both positive, as in the ones that *were* around, and
negative, a sample of words that were not), and loss is SGD

● Queen-woman+man = king

 21

Positional encoding

 22

ENCODER LAYER

● encodes

 23

LayerNorm

● Takes “residual”, which basically means those embeddings from
earlier, not the attention vectors (this is done so original input
keeps getting reintroduced and it doesn’t smooth out into
nothingness (vanishing gradients))

● Take the means and standard deviations of each layer
● Calculate a scaling factor Y as on right
● Train learnable parameters gamma*y +b
● Learnable parameters get SGDed

 24

Self attention

● We have Key, Query, and Value matrices, which are randomly
initialized and then multiplied with the input vector

● Attention scores = Input 1’s query multiplied with all other inputs’
keys

● Scaling – divided by square root of key dimension
● Attention scores softmaxxed
● Weighted values = scores * values of each input (THIS IS

WHERE GRADIENT DESCENT IS DONE)
● Sum(weighted values) = input one’s attention scores

 25

MULTIPLE HEADS

● Do this like 7 more times
● Concatenate all of the attention vectors
● Ultimately this attention matrix is thrown into a residual in the next

feedforward layer

 26

 27

 28

DECODING TIME

● Final linear layer that acts as a
classifier (literally just a weight matrix
that gets multiplied, with some
biases, no nonlinear activation
necessary)

● Softmax to get logits – these are now
interpretable as token probabilities

 29

Attention masking

● PAD tokens
● Autoregressive tasks

 30

Error?

● Self supervised, so just checking if the logits for the next word are
as predicted then backpropping with MSE (I think? Hard to find
info here for sm reason)

● These are done in batches much like

 31

Tada! That’s how transformers work

● GPT is decoder only. This means it
doesn’t have any enc blocks and just
does the masking I mentioned on the last
slide

 32

S’more random stuff

● Because why not
●

●

● Ring attention! ->

 33

Neural coding- basically mechinterp

● VAEs
● Autoencoder that enforces sparsity in its

loss with KL divergence

● Linear probes
● Literally just throw a bunch of data at your

model and do classification on the inputs
and outputs

● Find “features”
● Try to interpret them

 34

RNNs

● These are like a cross between transformers and MLPs- they can
update their own weights during non-backprop parts of training,
using the input *and* the state of the previous layer, and this
makes them good at handling sequential data

 35

Questions!!

 36

Basically everything cool in neuroscience so far

● Place cells
● Sleep spindles
● Spatial vortexes
● The glymphatic system
● The role of glia
● hormonal signalling
● types of neurotransmitters
● neuromodulators
●

Grid cells

Mirror neurons

Synesthesia:

Neurogenesis

Optogenetics

Default mode network

Engrams

Neuroplasticity

Epigenetic modifications

Microglia

Neuronal oscillations

Neuronal avalanches

Synaptic pruning

 37

Works cited aka my search history

https://stackoverflow.com/questions/6392739/what-does-the-at-symbol-do-in-python
https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950
https://stackoverflow.blog/2023/11/09/an-intuitive-introduction-to-text-embeddings/
https://jalammar.github.io/illustrated-transformer/
https://leimao.github.io/blog/Layer-Normalization/
https://en.wikipedia.org/wiki/Hebbian_theory
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://arxiv.org/abs/1409.3215
https://www.youtube.com/watch?v=o0FppeD_xXQ&list=PL7m7hLIqA0hqsReJ0NYhyN3xiFQW9ko1h&index=2
https://www.pnas.org/action/oidcCallback?idpCode=connect&error=login_required&error_description=Login+required&state=anacHyh1K_51XzU1Qg1F9hyXpG2LLdSrCLeFWu-tPho
https://en.wikipedia.org/wiki/Feedforward_neural_network#Multilayer_perceptron
https://www.analyticsvidhya.com/blog/2021/03/forward-propagation-and-errors-in-a-neural-netwrok/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://en.wikipedia.org/wiki/Self-organized_criticality
https://towardsdatascience.com/transformers-explained-visually-not-just-how-but-why-they-work-so-well-d840bd61a9d3
https://www.youtube.com/watch?v=G45TuC6zRf4
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Spiking_neural_network
https://en.wikipedia.org/wiki/Multilayer_perceptron#:~:text=A%20multilayer%20perceptron%20(MLP)%20is,that%20is%20not%20linearly%20separable.
http://www.pmaweb.caltech.edu/Courses/ph136/yr2012/1203.1.K.pdf
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fillustrated-self-attention-2d627e33b20a&source=post_page---two_column_layout_nav-----------------------global_nav-----------
https://paperswithcode.com/method/layer-normalization
https://pubs.acs.org/doi/abs/10.1021/acsami.0c14325#:~:text=The%20Bienenstock%E2%80%93Cooper%E2%80%93Munro%20(,spike%2Dtiming%2Ddependent%20plasticity.
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://en.wikipedia.org/wiki/Wolfe_conditions
https://en.wikipedia.org/wiki/Feedforward_neural_network#Perceptron
https://en.wikipedia.org/wiki/BCM_theory
https://pubmed.ncbi.nlm.nih.gov/23049852/
https://realpython.com/gradient-descent-algorithm-python/#basic-gradient-descent-algorithm
https://machinelearningmastery.com/transformer-models-with-attention/
https://github.com/ttngu207/najafi-2018-nwb/tree/master?tab=readme-ov-file
https://deepai.org/machine-learning-glossary-and-terms/rmsprop#:~:text=RMSProp%2C%20which%20stands%20for%20Root,in%20training%20deep%20neural%20networks.
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31
https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://www.reddit.com/r/singularity/comments/13vr70t/someone_managed_to_decode_a_tiny_transformer_the/
https://arxiv.org/pdf/2301.05217.pdf
https://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html
https://iopscience.iop.org/article/10.1088/0954-898X/8/4/002
https://www.neelnanda.io/modular-addition-walkthrough-2

https://en.wikipedia.org/wiki/Multilayer_perceptron#:~:text=A%20multilayer%20perceptron%20(MLP)%20is,that%20is%20not%20linearly%20separable

 38

https://mirror.explodie.org/universality_in_elementary_cellular_automata_by_matthew_cook.pdf
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Hopfield_network
https://en.wikipedia.org/wiki/Distribution_function_(physics)
https://www.youtube.com/watch?v=XHMa-Ba-2Mo
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
http://www.scholarpedia.org/article/Attractor_network
http://jalammar.github.io/illustrated-transformer/
https://datascience.stackexchange.com/questions/57996/is-gradient-descent-also-used-during-feed-forward-propagation-in-neural-network
https://www.science.org/doi/10.1126/science.aal4835
https://en.wikipedia.org/wiki/Seq2seq
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------
https://stats.stackexchange.com/questions/474440/why-do-transformers-use-layer-norm-instead-of-batch-norm
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a?source=-----2d627e33b20a---------------------post_regwall-----------&skipOnboarding=1
https://stats.stackexchange.com/questions/31930/difference-between-som-and-hopfield
https://en.wikipedia.org/w/index.php?title=Attractor_network&action=edit§ion=6
https://en.wikipedia.org/wiki/Phase_space
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://medium.com/mlearning-ai/how-do-self-attention-masks-work-72ed9382510f
https://realpython.com/gradient-descent-algorithm-python/
https://stackoverflow.com/questions/72806582/do-layer-normalization-in-pytorch-without-learnable-parameters
https://ai.stackexchange.com/questions/25053/what-is-the-cost-function-of-a-transformer
https://en.wikipedia.org/wiki/Neural_coding#Correlation_coding
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://en.wikipedia.org/wiki/Bifurcation_diagram
https://stackoverflow.com/questions/6392739/what-does-the-at-symbol-do-in-python/28997112#28997112
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5318375/
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Bifurcation_memory
https://neelnanda.io/grokking
https://linuxize.com/post/how-to-set-or-change-timezone-in-linux/
https://en.wikipedia.org/wiki/Neural_coding
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34

 39

http://papers.neurips.cc/paper/8689-understanding-and-improving-layer-normalization.pdf
https://en.wikipedia.org/wiki/Gradient_descent
http://arxiv.org/pdf/2301.05217
https://medium.com/get-started/plans
https://paperswithcode.com/method/sparse-autoencoder#:~:text=A%20Sparse%20Autoencoder%20is%20a,are%20penalized%20within%20a%20layer.
https://gmongaras.medium.com/how-do-self-attention-masks-work-72ed9382510f
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://www.databricks.com/glossary/adagrad#:~:text=Adaptive%20Gradient%20Algorithm%20(Adagrad)%20is,incorporating%20knowledge%20of%20past%20observations.
https://www.pnas.org/action/oidcStart?redirectUri=%2Fdoi%2Ffull%2F10.1073%2Fpnas.132651299
https://discuss.huggingface.co/t/encoder-decoder-loss/4335
https://w11.death-note-manga.com/manga/death-note-chapter-63/
https://stackoverflow.com/questions/71581197/what-is-the-loss-function-used-in-trainer-from-the-transformers-library-of-huggi
https://qri.org/blog/symmetry-theory-of-valence-2020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895988/
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://en.wikipedia.org/wiki/Feigenbaum_constants
https://en.wikipedia.org/wiki/Reinforcement_learning#Model-based_algorithms
https://www.youtube.com/watch?v=o0FppeD_xXQ&list=PL7m7hLIqA0hqsReJ0NYhyN3xiFQW9ko1h&index=3
https://www.neelnanda.io/mechanistic-interpretability/modular-addition-walkthrough
https://machinelearningmastery.com/the-transformer-model/
https://github.com/ttngu207/najafi-2018-nwb/blob/master/notebooks/Najafi-2018_example.ipynb
https://roman.computer/projects
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016278/#:~:text=Long%2Dterm%20potentiation%20of%20synaptic,proteins%20%5B5%E2%80%937%5D.
https://medium.com/@seshu8hachi/stochastic-gradient-descent-vs-gradient-descent-exploring-the-differences-9c29698b3a9b#:~:text=Stochastic%20Gradient%20Descent%3A%20Faster%20convergence,entire%20dataset%20for%20each
%20iteration.
https://medium.com/@tanuj22july/breaking-the-boundaries-understanding-context-window-limitations-and-the-idea-of-ring-attention-170e522d44b2
https://towardsdatascience.com/build-your-own-transformer-from-scratch-using-pytorch-84c850470dcb
https://guava.physics.uiuc.edu/~nigel/courses/563/Essays_2012/PDF/banerjee.pdf
https://arxiv.org/pdf/1706.03762
https://www.reddit.com/r/MachineLearning/comments/bnejs3/d_what_does_the_feedforward_neural_network_in/
https://ai.stackexchange.com/questions/40179/how-does-the-decoder-only-transformer-architecture-work
https://en.wikipedia.org/wiki/Residual_neural_network
https://builtin.com/machine-learning/common-loss-functions
https://datascience.stackexchange.com/questions/68220/how-are-q-k-and-v-vectors-trained-in-a-transformer-self-attention
https://builtin.com/artificial-intelligence/transformer-neural-network
https://en.wikipedia.org/wiki/Line_search
https://stackoverflow.com/questions/66633813/sequence-to-sequence-loss
https://ai.stackexchange.com/questions/38905/please-help-me-understand-the-role-of-loss-function-in-neural-networks
https://arxiv.org/abs/2310.01889
https://towardsdatascience.com/a-complete-guide-to-write-your-own-transformers-29e23f371ddd
https://en.wikipedia.org/wiki/Kuramoto_model
https://pytorch.org/docs/stable/generated/torch.tril.html
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html
https://ethz.ch/content/dam/ethz/special-interest/mtec/chair-of-entrepreneurial-risks-dam/documents/Essay/0SX3463.pdf
https://arxiv.org/abs/1706.03762
https://www.quora.com/Whats-the-difference-between-a-single-output-RNN-and-an-MLP-whose-input-data-contains-all-of-the-features-of-the-given-time-steps
https://www.neelnanda.io/grokking
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://en.wikipedia.org/wiki/Attractor_network
https://en.wikipedia.org/wiki/Softmax_function
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313413/

 40

https://en.wikipedia.org/wiki/Abelian_sandpile_model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315928/
https://medium.com/get-started/topics
https://www.pnas.org/doi/full/10.1073/pnas.132651299
https://scikit-learn.org/stable/modules/sgd.html
https://neelnanda.io/modular-addition-walkthrough-2
https://ai.stackexchange.com/questions/4320/why-are-the-initial-weights-of-neural-networks-randomly-initialised
https://math.stackexchange.com/questions/1973521/what-is-the-difference-between-line-search-and-gradient-descent
https://papers.neurips.cc/paper/8689-understanding-and-improving-layer-normalization.pdf
https://neuronaldynamics.epfl.ch/index.html
https://www.neelnanda.io/modular-addition-notebook
https://deepai.org/machine-learning-glossary-and-terms/bias-vector
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://medium.com/m/login-redirect?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Fillustrated-self-attention-2d627e33b20a
https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
https://medium.com/@kyeg/the-feedforward-demystified-a-core-operation-of-transformers-afcd3a136c4c
https://machinelearningmastery.com/why-initialize-a-neural-network-with-random-weights/
https://www.youtube.com/watch?v=HOxSKBxUVpg
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://arxiv.org/pdf/2301.05217
https://en.wikipedia.org/wiki/Neural_coding#Population_coding
https://stackoverflow.com/a/28997112/229792
https://medium.com/analytics-vidhya/understanding-q-k-v-in-transformer-self-attention-9a5eddaa5960
https://en.wikipedia.org/wiki/Reinforcement_learning#Deep_reinforcement_learning
https://neelnanda.io/modular-addition-notebook
https://www.reddit.com/r/learnmachinelearning/comments/1bn3eyh/scale_and_shift_learnable_parameters_in_layer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://neuronaldynamics.epfl.ch/online/index.html
https://optimization.cbe.cornell.edu/index.php?title=AdaGrad
https://www.analyticsvidhya.com/blog/2021/07/lets-understand-the-problems-with-recurrent-neural-networks/
https://www.nature.com/articles/s41467-020-15158-3
https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian)
https://en.wikipedia.org/wiki/Deep_reinforcement_learning
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a?gi=4a0fe648b1e4
https://pnas.scienceconnect.io/api/oauth/authorize?ui_locales=en&scope=affiliations+login_method+merged_users+openid+settings&response_type=code&redirect_uri=https%3A%2F%2Fwww.pnas.org%2Faction%2FoidcCallback
%3FidpCode%3Dconnect&state=anacHyh1K_51XzU1Qg1F9hyXpG2LLdSrCLeFWu-tPho&prompt=none&nonce=TevCJK6%2B9hGXHqLdVck%2BcicrePJj6kw3yvHi%2F29SVrE%3D&client_id=pnas
https://towardsdatascience.com/gpt-3-rnns-and-all-that-deep-dive-into-language-modelling-7f67658ba0d5#:~:text=Instead%20of%20learning%20a%20set,function%20of%20this%20state%20vector.
https://www.galexander.org/osamaletter.html
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://www.pmaweb.caltech.edu/Courses/ph136/yr2012/1203.1.K.pdf
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

