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Complex Analysis
The Way It Ought To Be*

*Complex analysis is often described as more elegant and perfect than real analysis, 
which is often viewed as messy and chaotic.  More on this later, when we discuss 
analytic functions
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C denotes the set of all complex numbers, or geometrically the complex plane.  
Unless specified otherwise, functions                        have domains and ranges 
contained in C.

i2 = − 1

( f, g, h, etc.)

congugate : z = x − iy

modulus : |z | = x2 + y2

argument : θ = tan−1(y/x)

imaginary : i = −1

complex : z = x + iy

polar : z = r(cosθ + isinθ)
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Complex Arithmetic

z = 3 + 4i
z = 3 − 4i

w = 1 − 3i
w = 1 + 3i

∙ z + w = (3 + 1) + (4 − 3)i = 4 + i

∙ z ⋅ w = (3 + 4i)(1 − 3i) = 3 − 9i + 4i − 12i2 = 15 − 5i

∙
z
w

=
(3 + 4i) ⋅ (1 + 3i)
(1 − 3i) ⋅ (1 + 3i)

=
−9 + 13i

10
= − 0.9 + 1.3i

∙ |z ⋅ w | = 152 + 52 = 5 ⋅ 10 = |z | ⋅ |w |

∙ |zz | = |z |2
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Very Little History 
(a lesson in name-dropping) 

• Complex analysis, the theory of functions of a complex variable, is one  
of the classical branches of mathematics;  it uses algebra, geometry, limits,  
derivatives, integrals, topology, and more. 
    

• Square roots of negative numbers have been around (though neither understood  
nor trusted) since the pre-algebra days of the Greeks and even the Babylonians.  
  

• In the late 1500s Nicholas Tartaglia, Hieronymus Cardano and others ran smack  
dab into square roots of negatives in their attempts to solve cubic equations. 

• In the 1600s such notables as Rene Descartes, Leonard Euler and Carl Gauss  
established vocabulary, notation, and properties of imaginary and complex numbers,  
and began the investigation of complex functions. 

• Around 1800 Caspar Wesell and Ami Argand “invented” the complex plane.   
A little later William Rowan Hamilton formalized the algebra of complex  
numbers (and generalized to quaternions). 

• During the 19th century Augustin-Louis Cauchy, Karl Weierstrass, and  
Georg Friedrich Bernard Riemann developed the heart of what is considered  
today to be complex analysis:  analytic functions, complex integrals, power  
series, complex manifolds. 

• Cauchy is called “the father of of complex function theory.” 
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A Gallery of Players
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• This could never happen in complex analysis.  As we’ll show a little bit later, all analytic 
functions have infinitely many continuous derivatives.

7.
Complex Derivatives

This definition is much more restrictive than the identical-looking one from (real) calculus.  
In calculus, for a limit to exist there are only two directions to consider:  from the left and 
from the right.  In complex analysis, for a limit to exist, limits from all directions around the 
compass must agree.  This makes an incredible difference in the subjects.  Here’s a 
preliminary example.

.

f

f (1)

f (2)Consider the function . f(x) = |x3 |
  is both continuous and differentiable everywhere.f
So is its first derivative, .f (1)

 , the second derivative, is still continuous, 
but not differentiable at the origin.
f (2)(x) = |x |

Of course, the third derivative,  , is either +1 or -1, depending on 
which side of 0 you’re on –– not even continuous, let alone differentiable, 
at the origin.

f (3)(x)

(holomorphic)



What is the meaning of the complex versions of these familiar functions? 

• polynomials – clear, because they involve complex arithmetic 

• exponentials & trig – similarly clear via power series

ez = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+ . . .

sinz = z −
z3

3!
+

z5

5!
− . . .

cosz = 1 −
z2

2!
+

z4

4!
− . . .

8.



ez = ex+iy = ex ⋅ eiy = r(cos θ + i sin θ)

u = e−iθ v = cos θ + i sin θ

(u ⋅ v)′￼= u ⋅ v′￼+ u′￼⋅ v

= e−iθ(−sin θ + i cos θ) − ie−iθ(cos θ + i sin θ)

= e−iθ(−sin θ + i cos θ − i cos θ − i2 sin θ) = 0

∴ e−iθ(cos θ + i sin θ) = constant

substitute θ = 0 ⟹ constant = 1

What the heck is θ in terms of y?

unit

Euler’s Formula
(one of them)

⟹ eiθ = cos θ + isinθ circle
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ez = ex+iy = ex ⋅ eiy = ex(cosy) + i(ex sin y)

z2 = (x + iy)2 = (x2 − y2) + i(2xy)

1
z

= ( 1
x + iy ) ⋅ ( x − iy

x − iy ) = ( x
x2 + y2 ) + i ( −y

x2 + y2 )

z = x + iy =
x + x2 + y2

2
+ i

y
|y |

−x + x2 + y2

2

f(z) = f(x + iy) = U(x, y) + iV(x, y)

Log(z) = Log(x + iy) = Log(reiθ) = log(r) + log(eiθ) = ln(r) + iθ = (ln x2 + y2) + i (tan−1 y
x )

Real and Imaginary Parts

10.
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f(z) = f(x + iy) = u(x, y) + iv(x, y) → f′￼(z) =
∂u
∂x

+ i
∂v
∂x

and f′￼(z) =
∂v
∂y

− i
∂u
∂y

• If  is analytic and purely real or purely imaginary (i.e.  or ), 
then  must be a constant function.

f u ≡ 0 v ≡ 0
f

Proof.  Suppose .  Then the C-R equations imply    and  .  

So  involves neither  nor .  Therefore,  must be constant.  Similarly, if 
,    Then  must be constant.  In either case,    is constant.          

v ≡ 0
∂u
∂x

= 0
∂u
∂y

= 0

u x y u
u ≡ 0 v f

•   is continuous, but does not have an antiderivative.    f(z) = |z |2 = x2 + y2

Proof by contradiction.  Suppose  does have an antiderivative:  say  and 
.  Now, according to the C-R Equations: 

f = u + iv F = U + iV
F′￼= f = x2 + y2

    and   . 
∂U
∂x

=
∂V
∂y

= x2 + y2 ∂U
∂y

=
∂V
∂x

= 0

But  implies that    (  has no ’s involved). 

This is a contradiction of  . 

∂U
∂y

= 0 U(x, y) = w(x) U y

x2 + y2 =
∂U
∂x

= w′￼(x)

Therefore,    has no antiderivative. f(z) = |z |2
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Maximum Modulus Theorem/Principle*

If  is analytic on domain D, then  attains its maximum on the boundary of D.f(z) | f(z) |

For the next two examples, let D = , the unit disk, with boundary  = .{ z : |z | ≤ 1 } ∂ { z : |z | = 1 }

• f(z) = 1 − z2

By the triangle inequality*,   D, and .  
Note that  is on the boundary of D.

| f (z) | ≤ 1 + |z |2 ≤ 2 ∀ z ϵ | f (i) | = 2
i

• g(z) = z2 + 3z − 1
Again by the triangle inequality*, , but it’s not clear that this upper bound is actually 
attained.  In fact, the quadratic formula implies that if , then , 
both , and thus outside D.   According to the MMT/P, to determine  , we need only calculate 

.  To do this parameterize    by  ,  and thus,  

 :

|g(z) | ≤ |z |2 + 3 |z | + 1 ≤ 5
|g(z) | = 5 (i . e . , g(z) = ± 5) |z | = 11 or 10.5

> 1 max
D

( |g(z) | ) |

max
∂

( |g(z) | ) | ∂(θ) : [0,2π] → ℂ z = ∂(θ) = eiθ = cosθ + i ⋅ sinθ

z−1 = cosθ − i ⋅ sinθ
|g(z) | = |z2 + 3z − 1 | = |z | |z + 3 − z−1 | = |3 + 2i ⋅ sinθ | = 9 + 4 ⋅ sin2θ

which attains a maximum of  at  and   (i.e. ).13 θ =
π
2

3π
2

z = ± i

13.

** See slide #42 for a proof.

* This is not true for real functions.  For example, consider   defined on the interval .     p(x) = 1 − x2 [−1,1]
The maximum value , and  is in the interior of , not on the boundary (endpoints).|p(0 | = 1 0 (−1,1)



Complex Fundamental Theorem of Calculus

• Let    be a differentiable path with 
endpoints  and .  If   is continuous 
with a primitive*   ( ) , then

γ : [a, b] → ℂ
γ(a) = α γ(b) = β f(z)

F i . e . F′￼= f

∫γ
f(z)dz = F(β) − F(α)

*In the calculus you’re used to, every continuous function has a primitive (or antiderivative).  
Continuous complex functions may not have primitives.  For example, as we saw on slide #12, 

 does not have a primitive.g(z) = |z |2 = x2 + y2

14.

Proof.  ∫γ
f(z)dz = ∫

b

a
f(γ(t))γ′￼(t)dt

= F(γ(a)) − F(γ(b))

= ∫
b

a
F′￼(γ(t))γ′￼(t)dt

= ∫
b

a
(F ∘ γ)′￼(t))dt

= F(β) − F(α) ,   by the FT of C.

(We’ll formalize this on slide #17.)



Length of a Contour in the Complex Plane

γ(t)

γ(a)

γ(b)

L = ∫γ
|γ′￼(t) |dt

= ∫
b

a
|γ′￼(t) |dt

Why? ∙ γ(t) = x(t) + iy(t) → γ′￼= x′￼+ iy′￼ → |γ′￼(t) | = x′￼(t)2 + y′￼(t)2

→ L = ∫
b

a
x′￼(t)2 + y′￼(t)2dt (recall arc length from Calc II )

∙ ΔL = |γ(t + Δt) − γ(t) | =
γ(t + Δt) − γ(t)

Δ
⋅ Δt ≈ γ′￼(t)Δt

Adding these up and taking the limit as Δt → 0 and n → ∞, results in∫
b

a
.

15.
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Complex Integration
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Winding Numbers

For all smooth, closed paths w(γ, a) =
1

2πi ∫γ

1
z − a

dz = an integer .Theorem.                                                            

This integer,  is called the winding number  of about  .w(γ, a) γ a
It counts the number of times  winds around or “encircles” .  
Counterclockwise counts positive, and clockwise counts negative.

γ a

Example:   describes a circular path, traced around the origin 5 times:  .  γ(θ) = e5θi w(γ,0) = 5

20.

(See slide #43 for a proof.)



Green’s Theorem

If  is a piecewise smooth, simple curve that bounds a region ,   and 
 are real-valued, continuous, and have continuous partial derivatives 

along  and throughout , then

γ Ω r(x, y)
c(x, y)

γ Ω

∮
γ

r dx + c dy = ∬Ω [ ∂c
∂x

−
∂r
∂y ] dA .

x

y

γ

Proof when  is a rectangle.Ω

and

∫
b

a

∂c
∂x

dx = c(x, y)
x=b

x=a
= c(b, y) − c(a, y) ∫

n

m

∂r
∂y

dy = r(x, y)
y=n

y=m
= r(x, n) − r(x, m)F T of C → and

vertical     and    horizontal    → dx = 0 → dy = 0

∮
γ

r dx + c dy = ∫
n

m
[c(b, y) − c(a, y)]dy − ∫

b

a
[r(x, n) − r(x, n)]dx

∫
n

m ∫
b

a

∂c
∂x

dxdy ∫
b

a ∫
n

m

∂r
∂y

dydx= −

= ∬Ω [ ∂c
∂x

−
∂r
∂y ] dA

◼︎  or  QED

21.
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Proof.
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∫ ∫
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slide #19
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What is complex analysis used for in the real world? 

• propagation of acoustic waves

• fluid dynamics

• signal processing

• telecommunications

• heat transfer

• quantum mechanics

• computational biology

• other mathematics
(integral calculus,  differential equations,  number theory, 
algebraic geometry,  probability & statistics,  etc.)
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Examples Of Chaos/Weirdness Associated With REAL Analysis

• Size of the Rationals


• Cantor Set 

• Koch Snowflake 

• Peano Space-filling Curve 

• No Valid Maclaurin Series 

• Lots of Corners 

• Banach-Tarski Paradox 
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The collection of all rational numbers is pretty big.

2 ≈ 1.4, 1.41, 1.414, 1.4142, 1.41421; 1.414213, . . . → 1.4142135623730950488016887242 . . . .

• You can get arbitrarily close to every real number with rational numbers.  That is, they’re packed 
real tightly onto the real line.  That’s called being “dense.”  Think about decimal expansions.                                

  e.g.  

Well, maybe the collection of all rational numbers is not so big.

• The reals are uncountable, while the rationals are only countable.  That is, the rationals 
can be listed, but the reals can’t:  . ℚ = {a1, a2, a3, a4, . . . }

• Let  be an arbitrarily small positive number. ϵ

Define .Bϵ =
∞

⋃
n=1

An

   . m(Bϵ) ≤
∞

∑
n=1

ϵ
2n

= ϵ

Since  was arbitrarily small, .ϵ m(ℚ) = 0

Define the open interval .An = (an −
1
2

⋅
ϵ
2n

, an +
1
2

⋅
ϵ
2n )

   ℚ ⊆ Bϵ → m(ℚ) ≤ ϵ

The measure of  is .  An m(An) =
ϵ
2n

( ≤ because the  may overlap )Ans
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The Cantor Set
• Start with the closed unit interval I = [0, 1] and remove the middle third of it;       
i.e. throw away (1/3 , 2 /3) and keep C1 = [0 , 1 /3] U [2/3 , 1].              

• Next remove the open middle thirds of the two parts of C1,                               
leaving  C2 = [0 , 1 /9] U [2/9 , 3 /9] U [6/9 , 7 /9] U [8/9 , 1 ].  

  

 • Continue this process indefinitely:  at each step Cn will consist of a union of            
2n closed subintervals each of length (1/3)n - 1 . 

The Cantor Set is  C = { what’s left after an infinite number of steps }. 

• So what is left?  At least the end points of the open intervals we removed –– 
a countable infinity of them.  Anything else? 

33.



https://wiki.math.ntnu.no/_media/tma4225/2015h/cantor_set_function.pdf

= (1/3)•[1/(1 - 2/3)] = 1

(no 1s in ternary representations)

0.
c1

2
c2

2
c3

2
. . .

cn

2
. . .(2)

• The length of the stuff removed is the sum of a geometric series with common ratio 2/3:

= (1/3)[1 + (2/3) + (2/3)2 + (2/3)3 + (2/3)4 + • • •]
(1/3) + 2•(1/3)2 + 22•(1/3)3 + 23•(1/3)4 + • • • 

Therefore, the “length” (size/measure) of the Cantor Set is 0.  That is, it can’t contain any 
intervals, it’s just a bunch of “dust,” and from this perspective is small. 

• Look at the members of the Cantor Set in base-3 :

C = { x ⍷ [0,1] : x = 0.c1c2c3c4 . . . cn . . . , where cn = 0 or 2 } 

Define a function f : C→I by f(0.c1c2c3 . . . cn . . . (3)) = 

f is onto all of I, so C is uncountable, and in this sense big.

The Norwegian University of Science and Technology has produced a really nice web page that 
explains these, and even more, properties of the Canton Set very clearly.  You can view it at

34.

– Cantor Set continued –

https://wiki.math.ntnu.no/_media/tma4225/2015h/cantor_set_function.pdf


Koch Snowflake Curve

Use geometric series to show that this fractal (self-similar) curve 
has infinite length but finite area.

click on the blue triangle
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Space-Filling Curves

• We usually think of a curve as the path of a continuously 
moving point, a squiggle or a piece of string tossed carelessly on 
a table.  More formally, if I  is the closed interval [a,b] and f is 
continuous real-valued function on I, then the graph of f  is a 
curve.  In any case a curve is a one dimensional object with no 
area. 

• In 1890 Giuseppe Peano produced a continuous function on the 
unit interval whose graph filled up a whole square.  HUH ? ! 

• A year or so later David Hilbert published another example of 
a space-filling curve.
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Lack of Power Series

In complex analysis every analytic function is infinitely differentiable and 
has a valid power series representation.  


In real analysis a function may not have a valid power series 
representation even if it is infinitely differentiable.  Here’s an example.

f(x) = {e− 1
x x > 0

0 x ≤ 0

f (k)(x) = {
pk(x)
x2k e− 1

x x > 0

0 x ≤ 0

pk(x) = a polynomial of degree k − 1

has continuous derivatives 
of all orders.

Maclaurin series for f(x) =
∞

∑
k=0

f k(0)
k!

xk ≡ 0 ∀ x,

But f(x) ≠ 0, when x > 0,
so the Maclaurin series is NOT
a valid representation of f(x) .
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Smoothness

Continuous ≈ “no breaks or gaps”

f (x) = {x3 x > 0
−x3 x < 0

f (3)(x) = {6 x > 0
−6 x < 0

Differentiable ≈ “no sharp corners”  

Differentiable functions are automatically continuous.

The level of “smoothness” of a function is measured by the number of 
continuous derivatives it has;  the more derivatives, the smoother. 

Here are a few examples for you to ponder.  How many points of discontinuity do they have?  At how 
many points are they not differentiable?  How many derivatives do they have?  How smooth are they?

s(x) = sin(x)

a(x) = |sin(x) |

p(x) = x2 − 4

v(x) = |x2 − 4 |

y = g(x)
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More Sharp Corners Than You Can Imagine

W(x) =
∞

∑
n=o

cos(3nx)
2n

In 1872 Weierstrass published an example of a function that is continuous at 
every point on the real line, but fails to have a derivative at every point of the real 
line, the so called “everywhere continuous but nowhere differentiable function.”  
How unsmooth can you get?  Every point on the “graph” is a sharp corner!!!

(Notice that  wiggles really rapidly for large values of .)cos(3nx) n

According to Paley and Wiener a Fourier series with random coefficients produces Brownian motion on [0,2𝞹].  

In the early 2000s, while fooling around in the coffee room, a group at Oxford used these random Fourier series 
to invent a function  that possesses Taylor series at every point of a closed interval, but not one of these 
Taylor series coverages to .  Since then, a whole class of such function have been produced.  With apologies 
to the fruit and beverage industry, they call them a .  Here are a couple of samples.

S(x)
S(x)

smoothies

S(x) =
∞

∑
k=o

e− 2kcos(2kx)

2500 terms

39.



Banach-Tarski Paradox*

A bowling ball can be “cut up” into a small finite number of 
pieces in such a way that the pieces can be carefully 
reassembled into two bowling balls identical to the original one!

Another version of the paradox asserts that “a marble can be 
chopped into chunks that can be put back together to form the 
Moon.”

*In these procedures, the Axiom of Choice is used to create the fragments of bowling ball and 
marble, and it takes an uncountable number of steps.  The fragments themselves are not 
ordinary solids, but scattered, “nonmeasurable” sets of points.  

40.



Exercises
41.

8.  Use geometric series to show that the Koch 
Snowflake has infinite length but finite area.

9.   Show that the winding number of  
about 0 is . 

γ(θ) = e5θi

w(γ,0) = 5
10. Finish the induction in the proof of the corollary 
to Cauchy’s Integral Formula on slide #26.



Triangle Inequality for Complex Numbers

|z + w | ≤ |z | + |w |

Proof. |z + w |2 = (z + w)(z + w)
= |z |2 + zw + zw + |w |2

= |z |2 + zw + zw + |w |2

= |z |2 + 2Re(zw) + |w |2

≤ |z |2 + 2 |z | |w | + |w |2

= ( |z | + |w | )2

Since  and  are both positive, 
taking square roots of both sides yields the result.

|z + w | |z | + |w |

42.



43.

For all smooth, closed paths w(γ, a) =
1

2πi ∫γ

1
z − a

dz = an integer .Proof of:                                                            

Just to keep notation as clean as possible, let’s assume that  and that .γ : [0,1] → ℂ a = 0

Define  ,  and note that  ,  ,  and   .G(t) = ∫
t

0

γ′￼(s)
γ(s)

ds G(0) = 0 G(1) = ∫γ

1
z

dz G′￼(t) =
γ′￼(t)
γ(t)

Thus,   
d
dt

(e−G ⋅ γ) = e−G ⋅ γ′￼− G′￼⋅ e−G ⋅ γ

= e−G ⋅ [γ′￼−
γ′￼

γ
⋅ γ]

= 0
This implies that    is a constant function.  So   .e−G ⋅ γ e−G(0) ⋅ γ(0) = e−G(1) ⋅ γ(1)

Since   ,    and hence,   . γ(0) = γ(1) e−G(1) = 1 eG(1) = 1

By Euler’s formula (  ),    must be an integer multiple of   .eiθ = cos(θ) + i ⋅ sin(θ) G(1) 2πi



44.

Sketch of completion of proof of Green’s Theorem

Thus, Green’s Theorem is true for 
“sums” of abutting rectangles.

The sum of line integrals around abutting 
rectangles is just the single line integral 
around the outer boundary, since common 
edges are traversed in opposite directions. 
and the line integrals along them cancel. 

But any region can be approximated by “sums” 
of abutting rectangles, Green’s Theorem holds 
for arbitrary regions.


