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Three Approaches in Quantum Theory.
Matrix Mechanics (1925) 

M.Born, W. Heisenberg, and P. Jordan

Gőttingen, Germany (The “Drei-Männer Arbeit”)        
In 1928 all three authors were nominated for Nobel Prize 

by A. Einstein. Only Heisenberg won it in 1932

The Path Integral Formulation (1948)    
R. Feynman

Princeton, NJ, USA. 

Wave Mechanics (1926) 

E. Schrődinger, 

Zűrich, Switzerland

(followed the steps of L. de Broglie) 

W. Heisenberg
E. Schrődinger

R. Feynman

Max Born P. Jordan
Louis de Broglie



Sources of Schrödinger’s Inspiration
“In de Broglie’s dissertation one finds a very remarkable geometrical 
interpretation of the Bohr-Sommerfeld quantum rule”

(A. Einstein, February 9, 1925)

P. Langevin sends De 
Broglie’s Thesis for 

reference to Einstein

“A few days ago, I read with the greatest 
interest the ingenious thesis of de Broglie” 
(Letter to Einstein of November 3, 1925)

In 1925, in Zürich, in Swiss Federal Institute of Technology every fortnight 
Peter Debye (1884 – 1966) ran joint colloquium on theoretical physics. 

Louis de Broglie
(1892 – 1987)

Doctoral Student of
P. Langeven

Albert Einstein
1879 - 1955

E. Schrödinger
(1987-1961) 

full professor of 
theoretical physics of the 

University of Zürich 

November 23, 1925. Debye 
asked Schrödinger to give a 
talk on de Broglie’s work. 

1923
De Broglie’s Thesis

Paul Langeven
1872 - 1946

Peter Debye
1884 - 1966

Sources of Schrödinger’s Inspiration



Non-Relativistic Quantum Mechanics: 
Schrödinger’s Equation
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In special relativity, Dpx ≤ 2mc. Therefore,

The wave function as solution of the Schrődinger’s equation does not make sense.
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First Difficulty: Zeeman Splitting 
of Energy Levels. Pauli Matrices

Emission spectrum of alkali metals

Wolfgang Pauli
1900 - 1958
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Pauli’s phenomenological 
theory of spin:

“two-valuedness 

not describable classically”
(1924)
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Pauli Matrices



1926: Klein-Gordon Equation for 
a Zero-Spin Free Particle

Oscar Klein
1894 - 1977

?

Walter Gordon
1893 - 1939

In special relativity, for a free particle, 
𝐸2

𝑐2
= Ԧ𝑝2 +𝑚2𝑐2.  

Replacing  𝐸 = 𝑖ℏ
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Vladimir Fock
1898 - 1974

Introducing the 4-vector 𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡 , the Klein-Gordon 
equation can be presented in the covariant form:
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Solving the K-G Equation
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General solution is: Ψ = 𝐶+Ψ+ + 𝐶−Ψ−
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In matrix form it is:
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Every type of particle is associated with 

an antiparticle with the same mass but 

with opposite physical charges such 
as electric charge. (Dirac, 1928)



Dirac Equation for a Spin-1/2 Free Particle

P.A.M. Dirac
1902-1984
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Starting from the same 
point, but with spin ½ 
included:

On multiplying out the right side it is apparent that, in order to get all the cross-terms such as 𝜕

𝜕𝑥

𝜕

𝜕𝑦
to 

vanish, one must assume AB + BA = 0 with A2 = B2 = C2 = D2 = 1. Dirac, who had just then been 
intensely involved with working out the foundations of matrix quantum mechanics, immediately 
understood that these conditions could be met if A, B, C and D are matrices, with the implication that the 
wave function has multiple components.  However, one needs at least 4 × 4 matrices to set up a system with 
the properties required — so the wave function had four components, not two, as in the Pauli theory, or 
one, as in the bare Schrödinger theory.



1928: Dirac Matrices. Positron. 
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This immediately explained the appearance of two-component wave functions in Pauli's 

phenomenological theory of spin, something that up until then had been regarded as 

mysterious, even to Pauli himself.
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Here  is a 4-spinor or bi-spinor. Its components have the physical meaning of the 
four options: particle-spin up, particle-spin down, antiparticle-spin up, and 
antiparticle-spin down.

In the limit of a low speed, v << c, Dirac’s system of four coupled equations decouples 
into two Pauli’s equations, one pair for the particle, spin and spin down, and another 
one for the antiparticle, spin and spin down.



Dirac’s Legacy

Dirac’s equation also implied the existence of a new form of matter, antimatter, previously 

unsuspected and unobserved and which was experimentally confirmed several years later. It also 

provided a theoretical justification for the introduction of several component wave functions 

in Pauli's phenomenological theory of spin. The wave functions in the Dirac theory are vectors of 

four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the 

non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only 

one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl 

equation.

Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation 

of spin as a consequence of the union of quantum mechanics and relativity—and the eventual 

discovery of the positron—represents one of the great triumphs of theoretical physics. This 

accomplishment has been described as fully on a par with the works of Newton, Maxwell, 
and Einstein before him.
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