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History

I In 1852, Francis Guthrie asked his brother Frederick: Can any
map be colored with 4 or fewer colors if countries that share a
border need to be different colors?

I Frederick passed the question to his professor Augustus De
Morgan, who passed it to William Hamilton (quaternions,
etc.). None could solve it.

I A number of people (e.g. Cayley) worked without success on
the problem, until in 1879 a proof that 4 colors suffice was
published by Alfred Kempe.

I In 1890 Percy Heawood pointed out a fundamental error in
Kempe’s paper, but used Kempe’s ideas to show that 5 colors
suffice to color any map.
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History

I From that time, the Big Three Open Questions in
Mathematics were: Fermat’s Last Theorem, The Riemann
Hypothesis, and the Four Color Problem.

I Fermat’s Last Theorem was solved in 1994. The Four Color
Theorem was solved in 1976. The Riemann Hypothesis
remains unsolved.

I We will present the background and proof of the Five Color
Theorem.

I We will give some vague indications about methods behind
the proof of the Four Color Theorem.
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A few simple observations

I When we say that two countries share a boundary we mean
along some arc, and not just at a single point. Otherwise a pie
shaped map would need as many colors as there are countries.

I Any map having a vertex connecting 2 edges can simply have
the vertex removed.

I Call a map cubic if every vertex of the map is the meeting
point of exactly 3 edges/countries. Then (Cayley) all maps
can be 4-colored if all cubic maps can be 4-colored. Proof:
cover any more complex intersection with a small new
country, which creates a cubic map, 4-color it, and remove the
small country. The original map will be 4-colored.

I So we can restrict our interest to cubic maps.
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Euler’s Polyhedral Formula

I A simply connected surface is one without holes in it. For
example, the surface of a cube is simply connected, but an
inner tube surface is not.

I Euler observed (and Legendre proved) that for a simply
connected polyhedron, there is a relationship between the
number of vertices, edges and faces: V − E + F = 2. For
example, a cube has 8 vertices, 12 edges, and 6 faces:
8− 12 + 6 = 2.

I Proof: puncture one of the faces, stretch it out like rubber,
and make the resulting surface a flat map. (This is what
requires it to be simply connected.). Then systematically
remove pairs of (E,F) or (E,V). Each operation will leave the
value of V − E + F unchanged, and will simplify the map into
a single polygon. For a polygon, V = E and F = 2 (inside
and outside).
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The Counting Formula for Cubic Maps

I For any cubic map, let C2 the number of 2 sided countries, C3

the number of 3 sided countries, ... Cn the number of n sided
countries. Then F = C2 + C3 + C4 + . . . .

I Each n sided country has n edges, each used twice. This
means that 2E = 2C2 + 3C3 + 4C4 + . . . .

I Each n sided country has n vertices, each used exactly 3
times, This means that 3V = 2C2 + 3C3 + 4C4 + . . . .

I Combined with Euler’s Formula, we find
12 = 6(V − E + F ) = 2(3V )− 3(2E ) + 6F
= 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . .



The Counting Formula for Cubic Maps

I For any cubic map, let C2 the number of 2 sided countries, C3

the number of 3 sided countries, ... Cn the number of n sided
countries. Then F = C2 + C3 + C4 + . . . .

I Each n sided country has n edges, each used twice. This
means that 2E = 2C2 + 3C3 + 4C4 + . . . .

I Each n sided country has n vertices, each used exactly 3
times, This means that 3V = 2C2 + 3C3 + 4C4 + . . . .

I Combined with Euler’s Formula, we find
12 = 6(V − E + F ) = 2(3V )− 3(2E ) + 6F
= 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . .



The Counting Formula for Cubic Maps

I For any cubic map, let C2 the number of 2 sided countries, C3

the number of 3 sided countries, ... Cn the number of n sided
countries. Then F = C2 + C3 + C4 + . . . .

I Each n sided country has n edges, each used twice. This
means that 2E = 2C2 + 3C3 + 4C4 + . . . .

I Each n sided country has n vertices, each used exactly 3
times, This means that 3V = 2C2 + 3C3 + 4C4 + . . . .

I Combined with Euler’s Formula, we find
12 = 6(V − E + F ) = 2(3V )− 3(2E ) + 6F
= 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . .



The Counting Formula for Cubic Maps

I For any cubic map, let C2 the number of 2 sided countries, C3

the number of 3 sided countries, ... Cn the number of n sided
countries. Then F = C2 + C3 + C4 + . . . .

I Each n sided country has n edges, each used twice. This
means that 2E = 2C2 + 3C3 + 4C4 + . . . .

I Each n sided country has n vertices, each used exactly 3
times, This means that 3V = 2C2 + 3C3 + 4C4 + . . . .

I Combined with Euler’s Formula, we find
12 = 6(V − E + F ) = 2(3V )− 3(2E ) + 6F
= 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . .



Criminals

I The general approach to solving the 4-color problem is to
consider a map which cannot be 4-colored, but that has the
smallest possible number of countries.

I A country that cannot be 4-colored is called a criminal. We
are looking for minimal criminals.

I In particular, we want to consider whether any potential
criminal can be reduced to a smaller criminal. If it can be
reduced then it is not minimal.

I A reducible configuration is an arrangement of countries that
cannot occur in a minimal configuration. If a map contains a
reducible configuration then any 4-coloring of the rest of the
map can be extended, perhaps with some recoloring, to a
4-coloring of the entire map.
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Criminals

I The overall goal is to show that minimal criminals cannot
exist.

I We want to show that there are unavoidable configurations of
maps (a set of configurations), one of which must appear in
any map, and prove that each configuration can be reduced.

I The 4 color problem will be solved by producing an
unavoidable set of reducible configurations.
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An example of an unavoidable set of configurations

I Given that 12 = 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . . , we
immediately know that every cubic map has within it either a
digon, triangle, square or pentagon.

I The set of configurations consisting of a digon, triangle,
square, and pentagon is thus unavoidable.

I If we could show that any map containing one of these could
be reduced, i.e. if we could reduce the problem of coloring it
to the problem of coloring a map with fewer countries, then
the 4 color problem would be solved.

I Reducing a map with a digon or triangle is easy. Reducing a
map with a square was done by Kempe. Kempe thought he
showed how to reduce a map with a pentagon, but he didn’t.

I If Kempe had properly reduced the case of the pentagon, he
would have proved the Four Color Theorem.
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Reducing the Digon

I We will show how to reduce any map containing a digon.
Explicitly, we will show that any map containing a digon that
cannot be 4 colored, cannot be so colored because a smaller
map (i.e. fewer countries) also cannot be colored. This
precludes the criminal map from being minimal.

I Reforming the above statement, we show that if a map
containing a digon needs to be 4-colored, and if any smaller
map can be colored, then the map with the digon can be
colored.

I A digon is a country with exactly 2 neighbors. For example,
Portugal is a digon sandwiched between Spain and the
Atlantic. (Or, if you prefer, Andorra is squeezed between
Spain and France.)
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Reducing the Digon

I Working with Portugal, suppose it be a country in a minimal
criminal map. Erase the boundary with the Atlantic, keeping
the boundary with Spain and merging Portugal into the
Atlantic.

I This new map is smaller and thus is not a criminal. Proceed
to 4-color it, making the Atlantic blue and Spain red. Restore
the erased boundary, recreating Portugal, squeezed between
red and blue countries. With 4 colors to use and only 2 taken,
Portugal can be safely colored yellow. The original map is no
longer criminal.
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Reducing the Triangle

I The reduction of a map with a triangle (e.g. South Carolina)
follows the same method used for the digon.

I Erase one edge of the triangle, merging it with the
neighboring country, and reducing the size of the map. By
assumption, the original map was a minimal criminal, so the
new map can be 4 colored.

I Restore the erased edge, and the triangle has only 3
neighbors. This means that it has a spare color available and
can be assigned a color. Now the map has been 4-colored and
was not a criminal.
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The Square

I Unlike the prior cases of digon and triangle, showing that a
map containing a square country (e.g. Kansas) can be
reduced is not at all simple.

I Reducing a map with a square uses a method introduced by
Kempe in his 1879 paper, and was correctly done.

I To see where the difficulty lies, notice that if one edge of the
square is erased, making a smaller colored map, then
redrawing the erased edge may well use all 4 colors for the
countries that border the square. No color is available to color
the square.

I We need to recolor some of the countries so as to free up a
color that the square can use.
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The Square

I

I As before we erase the square’s boundary with the country
colored D, 4-color the resulting smaller map, and restore the
border. There is no free color for the square.

I We will recolor the map so that only 3 colors are used on the
borders of the square.

I There are 2 cases to consider.
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The Square: Case 1

I

I Select 2 colors on opposite sides of the square, e.g. A and C.

I Highlight all the countries that are either A or C. It may or
may not be possible to connect a path of them from the
original A to the original C.
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The Square: Case 1
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I In case 1 it is not possible. We simply take all the countries
that connect to the original A and switch the colors of A and
C.

I This removes A as a boundary color of the square, and A can
become the color of the square.
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The Square: Case 2

I

I Highlight all the countries that are either A or C. This time it
is possible to connect a path from original A to original C.
Such a path is called a Kempe Chain.

I Switching A and C in this case is useless: the square will still
have 4 different colors on its borders.
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The Square: Case 2

I

I Notice now that the countries colored B and D within the
path are isolated from those outside the path.

I Switch the colors B and D for those countries inside the path.
B is no longer a color adjoining the square, and the square
can utilize it.
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The Pentagon and the Five Color Theorem

I Kempe’s clever technique does not extend to 4-coloring the
pentagon, though Kempe thought that it did. And so did
others for 11 years.

I When Heawood noticed the problem, however, he also noticed
that a Kempe chain argument will successfully work for the
pentagon is 5 colors are available. In fact the proof for the
pentagon with 5 colors is nearly identical to the proof for the
square when 4 colors are available.
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The Pentagon and the Five Color Theorem

I

I As before, choose 2 non-adjacent colors bordering the
pentagon, e.g. those colored with B and D, and focus on all
the countries using those two colors.

I In one case (not shown), there is no chain of countries that
link the initial B to the initial D. We can simply flip colors on
the countries that directly connect to the initial B, freeing up
B for use by the pentagon.
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The Pentagon and the Five Color Theorem

I

I In the other case, shown here, there is a Kempe chain
connecting initial countries B and D. This means that one of
the other 3 neighbors of the pentagon, here the one colored
C, is isolated from the initial A and E neighbors. Choosing
either A or E, (use E here), focus on all the C and E countries
within the B/D chain. They can have their colors flipped,
making C available for the pentagon.
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Whither the Pentagon

I Returning to the 4 color problem, we have produced a set of
unavoidable configurations {digon, triangle, square,
pentagon}, but no one knows how to reduce a map that
simply contains a pentagon. This would appear to make the
problem unsolvable.

I Not so. Considering the cubic map counting formula again,
we find that a map not containing either a digon, triangle or
square must actually contain at least 12 pentagons. So there
is more information to utilize.

I It would be unlikely to help if we could only suppose the 12
pentagons were widely separated. (... here a pentagon, there
a pentagon, everywhere a pentagon, pentagon ... )
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A New, Improved Set of Unavoidable Configurations

I Using a technique invented by Heinrich Heesch in 1969 known
as discharching, we will show that a different set of
unavoidable configurations is: {digon, triangle, square, pair of
adjacent pentagons, a pentagon adjacent to a hexagon}.
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Discharching

I Once more recall the cubic counting formula
12 = 4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − . . .

I Assign electrical charge to each country, with the amount to
match its coefficient in the above formula. Thus, each digon
has a charge of 4, each triangle a charge of 3, the squares have
charges of 2, ..., each country with k sides has a charge of 6-k.

I The total electrical charge of the map must be 12. We can
move charge between countries, using conservation of charge,
and the total charge will remain at 12.

I Suppose that none of the supposed configurations occur. We
will produce a contradiction.
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Discharching

I We know that pentagons must appear in the map, and now
are supposing that all of their neighbors have 7 or more sides.

I Discharge the single charge on each pentagon to each of its
neighbors, split 5 ways. Each neighbor has a charge of 1

5
added to it. Each pentagon is now electrically neutral.

I A heptagon starts with a charge of -1, and needs 6 transfers
to become positively charged. But that would require at least
6 neighboring pentagons. Two would be adjacent, which we
are disallowing. The heptagons cannot become positive.

I An octagon, with initial charge of -2, would need 11
neighboring pentagons, which is absurd.

I Overall, discharging would leave the map with a total negative
charge. Our assumption was wrong, and the set of
configurations is unavoidable.
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Looking for configurations

I Now we can complete the proof of the 4 color problem by
showing that these two new configurations are reducible.
Unfortunately, no one knows how to do that. We need a
“better” set of unavoidable configurations.

I In 1913 George Birkhoff established a method of
systematically categorizing and examining configurations for
their reducibility. Configurations were grouped by the number
of countries that form a bordering ring around them. For
example, the adjoining pentagons is surrounded by a ring of 6
countries, while the bordering pentagon/hexagon is within a
ring of size 7.

I The combination of these two ideas, ring size and discharging,
are the key methods behind the ultimate solution to the 4
color problem.
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Birkhoff Diamond

I The Diamond is a configuration of 4 pentagons within a ring
of size 6.

I Using an extension of Kempe’s original argument, remove the
block of pentagons, color the resulting smaller map, and
reinstate the block. The block needs to be colored.

I As it happens, there are exactly 31 distinct color patterns of
the ring countries. For 16 of them the pentagons can be
directly colored. The other 15 can be converted into one of
the good 16 via Kempe chain constructions.

I The argument is somewhat complicated. See reference 1.

I There is another method for handling situations like this
(which I found obscure). See reference 1.
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Looking for configurations

I Birkhoff developed a number of techniques for determining
the reducibility of configurations.

I Different discharge schemes will produce different unavoidable
configurations. For example, positive charges can be moved
with 1/3 of a charge instead of 1/5. Ultimately a large
number of schemes were used.

I For a given ring size a large number of configurations can be
formed, using those that are unavoidable but not known to be
reducible.

I For each such set, a given discharge scheme will produce only
a finite number that have an overall charge of 12 (or even
positive).

I Doing this will enlarge the set of unavoidable configurations,
in the hope of replacing irreducible ones with a sets that are
reducible.
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Computers

I Beginning 1970, Wolfgang Haken picked up the extensive
work of Heesch with an eye towards automation. He enlisted
the help of Kenneth Appel because of his computer skills.

I Several other people were involved. Check out the references.

I Initial experiments by Heesch and Haken suggested that
improved discharging procedures “might” yield a set of about
8900 configurations within rings up to size 18, that “could”
be shown to be reducible.

I In the 1970s the amount of computer time that would be
needed to produce and reduce that many configurations would
be over 11 years of CPU time on the world’s fastest machines.

I Working out of the University of Illinois, they had free access
to the fastest machine: ILLIAC. And others.
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Finale

I Using ideas that arose from their computer experiments,
Haken and Appel expanded their set of discharging schemes
to a set of 487.

I With the new discharging schemes, the eventual size of the
set of unavoidable configurations was reduced to 1482 (later
reduced a bit by others). It turned out that only rings up to
size 14 were needed.

I Overall, the discharging and reduction calculations used
∼ 1200 hours of CPU time on state of the art computers.

I In 1976 the announcement was made: Four Colors Suffice.

I There is much unpleasant about the proof. It is ugly. It is
incomprehensible. It could be wrong because of programming
errors, though Kempe’s original paper was also wrong and not
detected for 11 years.
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Later

I In 1994, several people decided that the logic that generated
the set of unavoidable configurations hadn’t been properly
checked.

I When they looked at the discharge schemes of Appel and
Haken they found them unreadable, so they decided to cook
up their own set from scratch.

I They were able to generate a set of only 633 configurations
with just 32 discharging rules, and were able to reduce them
all.

I Now all the computer related calculations can be done on a
mac/PC in just a few CPU hours
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