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INTRODUCTION

A real algebra is a real vector space V whose scalars are the real
numbers R together with an additional operation on pairs of
vectors, usually indicated as multiplication, with a few
properties.

First, the product vw of the vectors v and w from V must
produce a vector in V. This property is called closure, and the
vocabulary applies to subsets too. If S ⊂ V we say the product
is closed in S if vw is in S whenever both v and w are in S.

To avoid a few unimportant special cases we assume the
dimension of V to be at least one and that the multiplication
operation is nontrivial: that is, vw ̸= 0 for at least one pair v,w
of vectors in V.

—————

3

GM and DA TOC Intro to Algebras Quaternions, Pauli Spin Matrices Gamma Matrices, Dirac Algebra Clifford Algebras

Unless the vector space is a one dimensional space, essentially
R itself, dot product on Rn produces a number, not a vector, so
the familiar dot product is not an example of what we mean
here except in that case.

The usual cross product on vectors in R3 is an example. The
usual matrix multiplication on the vector space of n-by-n
matrices is another.

The two distributive laws must hold for this operation:

(v + w)z = vz + wz and z(v + w) = zv + zw

for any vectors v,w and z.

The distributive law implies that if 0 denotes the zero vector
and v is any vector then 0v = (0 + 0)v = 0v + 0v so 0v = 0.

—————

4



GM and DA TOC Intro to Algebras Quaternions, Pauli Spin Matrices Gamma Matrices, Dirac Algebra Clifford Algebras

We adopt the usual practice of giving multiplication priority
over addition, so zv + zw = (zv) + (zw) and is not any of the
other possible combinations, such as (z(v + z))w.

Both cross product and matrix multiplication satisfy these
distributive laws.

Finally, if r and s are scalars (i.e. real numbers) and v and w are
vectors then we have the scalar laws

(rs)(vw) = ((rs)v)w = (rv)(sw) = v((rs)w).

Cross product and matrix multiplication satisfy this one too.

Taking a look at the equation above we see three different
multiplications, all indicated by “juxtaposition,” i.e. putting the
symbols to be multiplied next to each other. rs is the product of
two real numbers. vw is the product of two vectors. rv is scalar
multiplication of number r by vector v. Believe it or not, in
applications this rarely causes confusion.

—————
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The combination of the distributive and scalar laws is
equivalent to saying that this is a bilinear multiplication.

(rv + w)z = rvz + wz and z(rv + w) = rzv + zw.

If B = { b1, . . . , bn } is a finite basis for the algebra V then the
product vw is determined by the products bibj of basis vectors.

Specifically,

vw =

(
n∑

i=1

vibi

) n∑
j=1

wjbj

 =
n∑

i=1

n∑
j=1

viwjbibj

when v and w are given in terms of basis B as indicated.

—————
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For a vector space of dimension n there are n2 different possible
algebra products of basis vectors and each product of is
specified by n constants so n3 numbers determine the algebra.

Additional regularity properties may reduce the number of
algebras possessing them to just a few, or even one or . . . none.

Requiring (or determining) commutativity (vw = wv) or
anticommutativity (vw = −wv) or associativity
((vw)z = v(wz)) or the existence of a unit element e (an
element for which ew = we = w) and the existence of
multiplicative inverses are examples of such regularity
properties. (Algebras with a unit element are called unitary)

We will be concerned entirely with matrix algebras: that is
algebras that are, or can be construed as, algebras of n× n
matrices for some integer n. The multiplication will often, but
not always, be matrix multiplication.

—————
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Mn×n, the vector space of n× n matrices, is an algebra with
matrix multiplication.

Skewn, the vector space of skew symmetric n× n matrices, is
not an algebra with matrix multiplication but it is an algebra
with Lie bracket multiplication, given by

A L⃝B = AB− BA.

(Lie bracket is, more often than not, denoted by the
commutator symbol [A,B] rather than A L⃝B but this can be
awkward in more complex products.)

Lie bracket is not associative, and it is anticommutative, not
commutative. That means it cannot have a multiplicative
identity. However it does satisfy the Jacobi identity which we
choose to write as

(A L⃝B) L⃝C− A L⃝(B L⃝C) = B L⃝(C L⃝A).

————— 8
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Symn, the vector space of symmetric n× n matrices, is not an
algebra with matrix multiplication. For instance(

1 0
0 0

)(
1 1
1 1

)
=

(
1 1
0 0

)
.

It is an algebra with Jordan product, given by

A • B =
1
2
(AB + BA).

Jordan product is not associative but it is commutative. It too
satisfies an identity, called the Jordan identity,

A • (B • (A • A)) = (A • B) • (A • A).

—————
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Expanding to consider complex matrices, we have real vector
spaces Hermn and SkewHermn, the Hermitian and skew
Hermitian complex n× n matrices, respectively.

Matrix A ∈ Hermn if and only if A∗ = A where A∗ is the
conjugate transpose of A.

Matrix A ∈ SkewHermn if and only if A∗ = −A.

Jordan product makes Hermn into an algebra while the Lie
bracket operation makes SkewHermn into an algebra.

The Jordan and Jacobi identities hold here too.

—————
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In 1933 Pascual Jordan together with collaborators Johnny von
Neumann and Eugene Wigner investigated the properties of
algebras with Lie bracket in connection with creation and
annihilation operators for particles with an even number of
spin units such as mesons or photons. These particles are called
bosons.

Algebras with Jordan product are associated with these
operators for particles with an odd number of spin units, such
as neutrons, protons and electrons, called fermions.

Interestingly, at the very time when he was closely
collaborating with these partners in writing the foundational
papers on the subject Jordan was also writing vigorous
pro-nazi polemical tracts under a nom de plume. Wigner and
von Neuman are Jewish.

—————
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QUATERNIONS AND THE PAULI SPIN MATRICES
Last year we discussed a real 4-dimensional algebra H called
the quaternions. Members of this vector space can be written
in the form

w + x⃗i + y⃗j + z⃗k for w, x, y, z ∈ R.

The symbols i⃗, j⃗ and k⃗ are characterized by

i⃗
2
= j⃗

2
= k⃗

2
= −1. i⃗⃗j = k⃗, j⃗⃗k = i⃗, k⃗⃗i = j⃗.

Points in ordinary three dimensional space are identified with
the pure quaternions x⃗i + y⃗j + z⃗k and rotations are handled in
space using Hamilton product (the product implied by the
multiplication table above) in a way that is similar to how
complex numbers are used implement rotations in the plane.
—————
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We saw that the quaternions can be realized as a matrix vector
space with

1↔ I =

(
1 0
0 1

)
and i⃗↔ A =

(
0 −1
1 0

)
and j⃗↔ B =

(
i 0
0 −i

)
and k⃗↔ C =

(
0 i
i 0

)
.

Thus any quaternion can be represented as

w + x⃗i + y⃗j + z⃗k ←→
(

w + yi −x + zi
x + zi w− yi

)
.

—————
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The three Pauli spin matrices σ1, σ2 and σ3 (and “auxiliary”
matrix σ0) can be defined in terms of this representation of the
quaternions (and conversely) and are given by

σ0 = I =

(
1 0
0 1

)
and σ1 = −iC =

(
0 1
1 0

)
and σ2 = iA =

(
0 −i
i 0

)
and σ3 = −iB =

(
1 0
0 −1

)

so that σ1σ2 = iσ3 and σ2σ3 = iσ1 and σ1σ3 = −iσ2

and σ1σ2σ3 = iI and σ2
1 = σ2

2 = σ2
3 = σ0 = I

with σkσm = −σmσk for nonzero unequal m and k.

—————
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The three Pauli spin matrices (and σ0 too) are Hermitian, which
means they are their own conjugate transpose, and so
correspond to “observables” in quantum mechanics. They
represent spin with respect to the coordinate axes in quantum
mechanical descriptions of certain particles.

Any 2 by 2 Hermitian matrix can be found (in one way) as the
real span of these four matrices:

wσ0 + xσ1 + yσ2 + zσ3 =

(
w + z x− iy
x + iy w− z

)
with real w, x, y and z.

So the real span of the Pauli spin matrices is Herm2. This
4-dimensional real vector space is not an algebra with matrix
multiplication or Lie product.
—————
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It is, however, a Jordan algebra with Jordan product

A • B =
1
2
(AB + BA).

The eight matrices

σ0 σ1 σ2 σ3 σ1σ2 σ1σ3 σ2σ3 σ1σ2σ3

are real-linearly independent and so form a basis of M2×2(C),
the complex 2× 2 matrices, as a real vector space.

And it follows that the smallest real algebra containing σ1, σ2
and σ3 using matrix (rather than Jordan) product is the
8-dimensional real algebra of all 2× 2 matrices with complex
entries.
—————
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The 16 matrices of the form

±σk or ± iσk for k = 0, 1, 2 or 3

form a multiplicative subgroup (with ordinary matrix
multiplication, not Jordan product) of this algebra, the Pauli
spin group.

The quaternion group is a subgroup of the Pauli spin group,
and consists of the 8 elements ±σ0,±iσ1,±iσ2 and ±iσ3.

σ0 = I, iσ1 = C, iσ2 = −A, iσ3 = B.

The 4-dimensional quaternion sub-algebra corresponds to
rotations in space; other members of the 8-dimensional algebra
generated by the Pauli matrices rotate and reflect.
—————
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THE GAMMA MATRICES AND THE DIRAC ALGEBRA

When considering spin and other features of particle
interactions in relativistic space-time, a 4-dimensional affine
space with Lorentz inner product, larger matrices must be used.

The correct notion of “distance” in this space is given by the
symmetric nondegenerate bilinear form

g(v,w) = v0w0 − v1w1 − v2w2 − v3w3.

Like the situation in Euclidean space the Lorentz inner product
can be used to define projection onto subspaces of dimension
three and reflections, and the composition of two reflections is
(defined to be) a rotation with respect to this inner product.
—————
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And according to the Cartan-Dieudonné Theorem any isometry
(a map from space-time to itself that preserves the Lorentz
inner product) taking origin to origin is the composition of no
more than 4 reflections, and if the isometry preserves
orientation it must be the composition of 1 or 2 rotations.

To understand these we need efficient ways of handling
reflections and rotations and this is what gamma matrices are
good for.

There are gamma matrices of various types (for instance Dirac,
chiral or Majorana) and whatever their type there are always
four of them denoted γ0, γ1, γ2, γ3. There is a fifth “auxiliary”
gamma matrix γ5 = iγ0γ1γ2γ3 used in various calculations for
each collection of gamma matrices. The four gamma matrices
are linearly independent and may be associated with the
standard basis vectors of R4.
—————
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The contravariant Dirac gamma matrices are given by

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


fifth auxiliary γ5 =

(
0 I2
I2 0

)
.

Note that the γ0 and γ5 are symmetric while the others are
skew symmetric.
—————
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Note also that

γ0 =

(
σ0 0
0 −σ0

)
γ1 =

(
0 σ1
−σ1 0

)
γ2 =

(
0 σ2
−σ2 0

)
γ3 =

(
0 σ3
−σ3 0

)
fifth auxiliary γ5 =

(
0 σ0
σ0 0

)
where the zeros in these matrices are 2× 2 zero blocks.

The smallest unitary algebra (with matrix multiplication)
containing the Dirac gamma matrices is called the Dirac
algebra. The 4-dimensional subspace spanned by the gamma
matrices themselves, identified with space-time, is acted upon
by the other members of this algebra via matrix product. In this
setting real multiples of I4 are associated with real numbers.
—————
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M4×4(C) has real dimension 32, so the Dirac algebra cannot
have dimension higher than that. We will see it actually has
real dimension 16, a fact that is not entirely obvious.

We are going to be doing calculations with products and sums
of 4× 4 matrices. There is no virtue—none whatsoever—in
doing these multiplications by hand. MATLAB code to make
this easy will be posted on the website, and we will see that
code in action here in a moment. We will show that

(γ0)2 = I4, (γ1)2 = −I4, (γ2)2 = −I4, (γ3)2 = −I4

and γiγj = −γjγi whenever i ̸= j.

Assuming this it is easy to calculate that if
Y = aγ0 + bγ1 + cγ2 + dγ3 for real coefficients then

Y2 =
(
a2 − b2 − c2 − d2) I4.

This matches the Lorentz inner product g(Y,Y).
—————
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The algebra generated by the Dirac matrices is spanned by the
set of all possible products γi1γi2 · · · γik .

This can be modified to an equivalent expression obtained by
permuting neighboring factors and introducing a minus sign
after each “switch.”

By a sequence of such switches we can obtain a new product of
the form ±γj1γj2 · · · γjk where the jm are in non-decreasing order.

By replacing pairs of equal neighbors by ±1 we can reduce any
such product to a product of no more than four factors listed in
order of strictly increasing index with a possible sign
adjustment.

There are 15 of these products and, together with I4, put the
dimension of the Dirac algebra at no more than 16.
—————
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For convenience in representing the sum we label

a0 = γ0 a1 = γ1 a2 = γ2 a3 = γ3

a4 = γ0γ1 a5 = γ0γ2 a6 = γ0γ3 a7 = γ1γ2

a8 = γ1γ3 a9 = γ2γ3

a10 = γ0γ1γ2 a11 = γ0γ1γ3 a12 = γ0γ2γ3

a13 = γ1γ2γ3 a14 = γ0γ1γ2γ3

a15 = I4

Consider the sum xiai for real xi. Expressed as a single matrix
this linear combination is
—————
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
x0−ix10+x15−ix7 x11−ix12+x8−ix9 −ix13−ix14+x3+x6 x1−ix2+x4−ix5

−x11−ix12−x8−ix9 x0+ix10+x15+ix7 x1+ix2+x4+ix5 −ix13−ix14−x3−x6

ix13−ix14−x3+x6 −x1+ix2+x4−ix5 −x0+ix10+x15−ix7 −x11+ix12+x8−ix9

−x1−ix2+x4+ix5 ix13−ix14+x3−x6 x11+ix12−x8−ix9 −x0−ix10+x15+ix7


Notice that the real constants come in pairs in each entry. For
instance x0 and x15 are always paired. There are 8 such pairs
and each occurs four times. x0 and x15 are in entries
(1, 1), (2, 2), (3, 3) and (4, 4). Note that the real part of these
entries are x0 + x15 and −x0 + x15, each repeated twice.

So if this linear combination is the zero matrix then
x0 = x15 = 0.

The same is true (set the real and complex parts of the entries
equal to zero separately) for the other 7 pairs of coefficients. All
the xi must be 0. So these 16 matrices are linearly independent
and therefore form a basis of the Dirac algebra.
—————
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As an exercise (slightly modify the MATLAB code provided)
consider the algebra generated by

β0 = γ0 β1 = iγ1 β2 = γ2 β3 = γ3.

Show that the pairs βi and βj for i ̸= j anti-commute and
(βi)2 = 1 for i = 0, 1 and (βi)2 = −1 for i = 2, 3. Therefore the 16
matrices, denoted ai above formed from these βi as we did for
the Dirac algebra, span this new algebra. And, by similar
reasoning to the earlier case, they are real linearly independent.
So the real dimension of this algebra is 16. Verify also that if
Y = aβ0 + bβ1 + cβ2 + dβ3 for real coefficients then

Y2 =
(
a2 + b2 − c2 − d2) I4.

—————
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Now try this one: Consider the algebra generated by

ζ0 = γ0 ζ1 = iγ1 ζ2 = iγ2 ζ3 = iγ3.

Show that with this new definition the pairs ζ i and ζ j for i ̸= j
still all anti-commute and (ζ i)2 = 1 for all i. This means that the
16 matrices ai span this algebra. Show, as above, that they are
real linearly independent. The real dimension of this algebra is
therefore 16. If Y = aζ0 + bζ1 + cζ2 + dζ3 for real coefficients
then

Y2 =
(
a2 + b2 + c2 + d2) I4.

—————
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CLIFFORD ALGEBRAS

Any finite-dimensional unitary algebra generated by elements
γi for i = 1, . . . ,n, matrices or not, and for which these
generators anti-commute and for which (γi)

2 = ±e for each i
where e is the identity is called a Clifford algebra.

If the dimension of this algebra is 2n it is called a universal
Clifford algebra. Any two such with the same number of
“plus” and ”minus” choices are algebra-isomorphic, hence the
word “universal.”

Showing existence, and how to represent such algebras in
terms of matrices, is slightly involved and (possibly) the subject
of another talk. Uniqueness is quite easy but we will not show
that here.

—————
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Any element of any Clifford algebra C can be written as a sum
of elements of the form γi1γi2 · · · γik , just as we did with the
gamma matrices, where these are products of no more than n
distinct gammas and the subscripts are in increasing order.
Thus any α ∈ C has a unique representation as

α = α+ + α−

where α+ consists of the sum involving basis elements with an
even number of gammas and α− is a linear combination
involving basis elements with an odd number of gammas,
called the even and odd parts of α.

If α = α+ or α = α− we say α is “homogeneous” or “pure” and
otherwise α is “mixed” or “inhomogeneous.”
—————
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So C is the direct sum of subspaces

C = V+ ⊕ V−

where V+ consists of the even members of the algebra and V−

is the odd members (together with zero.)

For instance the quaternions are the subspace V+ in the
Clifford algebra generated by the Pauli matrices.

If C is any algebra with any direct sum decomposition
C = V+ ⊕ V− and if the four containments involving the sets
formed from all suggested products

V+V+ ⊂ V+ V−V− ⊂ V+ V−V+ ⊂ V− V+V− ⊂ V−

hold C is called a superalgebra with reference to this specific
decomposition. So all Clifford algebras are superalgebras with
this even and odd decomposition.
—————
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In particle physics calculations involving parity—i.e. for
instance when considering bosons or fermions—superalgebras
provide a way of dealing with both in a single setting.

The prefix “super” comes from the association of these algebras
with physical theories featuring supersymmetry, or “SUSY,” in
which they appear. There are many such theories, which
attempt to reconcile the requirements of relativistic mechanics
with quantum mechanics.

Since I don’t actually understand these theories I will stop
talking about them here . . .
—————
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CONCLUSION

The Pauli matrices and the Dirac matrices provide examples of
matrices that generate universal Clifford algebras. These may
be used to study reflections and rotations in various
dimensions and are associated with nondegenerate symmetric
bilinear (or sesquilinear) forms. These algebras have dimension
2n where n is the dimension of the space upon which they act.
The real numbers and the complex numbers are also Clifford
algebras, generated by 1 and 1, i respectively.

Come back next week to see Victor Polinger talk about how
physicists think of, and use, the Dirac algebra.
—————
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