

PandMM 0	TOC	Intro 0	Probability 000000	Markov Matrices 000000000	Markov Chains 00000	Examples 0000000000

Introduction

When reasoning about various events in the world, we see that some are precisely predictable or certain while others are not.
For instance if I flip a coin it is safe to assume that it will rise and then fall. Yes, the laws of gravity may be repealed mid-flight or the coin may evaporate in front of my eyes, but there is no need for me to think about those things. I will not waste my time contemplating such imaginary but impossible situations.

The subject of probability is the study of patterns in the degree of belief a logical person must hold, given all the information he or she possesses, about such events.
This is a huge subject and we will consider only one tiny corner of it here.

For more on the more general subject of Probability I recommend E. T. Jaynes insightful and entertaining Probability Theory The Logic of Science.
In the first 50 pages Jaynes makes a very convincing case, using elementary reasoning, that any attempt to measure "plausibility" using real numbers, that has qualitative correspondence with "common sense," and which is consistent must correspond to the standard rules of probability.

For more on the subject of Markov Chains in particular I recommend J. R. Norris' Markov Chains.
$\left.\begin{array}{|lllllll|}\hline \text { PandMM } & \text { TOC } \\ 0\end{array} \quad \begin{array}{lll}\text { Intro } \\ 0\end{array}\right)$

Probability

We specify a collection of elementary outcomes, also called sample points or states, related in some way to a physical situation about whose uncertain aspects we wish to reason. The set of these outcomes is called the sample space or state space and a sample space is frequently designated by the symbol Ω.
Subsets of the sample space are called events.
For instance in the first example our list of elementary outcomes might be H and T , with $\Omega=\{H, T\}$. There are just four events for this sample space, the empty set \varnothing and $\{H\}$ and $\{T\}$ and $\Omega=\{H, T\}$.
In the second example the sample space could be $\Omega=\{1,2,3,4,5,6\}$. This sample space yields many more events-64, actually.

The words exhaustive and mutually exclusive describe these two conditions, required of the members of our sample space.

Many different sample spaces could describe the same physical situation, though one might be more detailed, enabling us to answer questions with more specificity about the situation, or easier to use than another.
In the die-rolling situation, for instance, my degree of belief that any elementary outcome in $\{1,2,3,4,5,6\}$ will occur is the same. Using sample space $\{$ even, $1,3,5\}$ this is not true, and that might make some calculations harder or impossible.
Using sample space $\{$ even, odd $\}$ restores this symmetry, and if all I care about is whether an even number of dots appears or an odd number this last sample space could be the best.

PandMM 0	TOC 0	Intro 0000	Probability 0000	Markov Matrices 0000000000	Markov Chains 00000	Examples 0000000000

For any two events E and F we have

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F) .
$$

To see this, think about the elementary outcomes that are "counted twice" in $P(E)+P(F)$.

So for disjoint events-that is if the two events cannot happen at the same time-probabilities are additive.

A sample space together with an assignment of probabilities to elementary outcomes is called a probability model.

We decide to assign numerical values between 0 and 1 to describe our degrees of belief that an elementary outcome will occur, with 0 representing our assessment that an elementary outcome is impossible, while 1 corresponds to certainty that the elementary outcome will occur. We will call this number the probability of the elementary outcome.
The probability of an event is the sum of the probabilities of the elementary outcomes it contains.
If E is an event we use the notation $P(E)$ to designate the probability of event E. Thus $P(\varnothing)=0$ (something must happen) while $P(\Omega)=1$ (again, something must happen).
P is called a probability function, defined on the collective of all subsets of Ω.
\qquad

| PandMM
 0 | TOC
 0 | Intro
 0000 | Probability
 00000 | Markov Matrices
 $\bullet 000000000$ | Markov Chains
 00000 | Examples
 0000000000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Markov Matrices

We are going to expand on our ruminations about probabilities by assigning a probability model to each point in a finite set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, where the probability model for each ω_{j} has Ω as its sample space and probability function P_{j}.
We will interpret the number $P_{j}\left(\omega_{i}\right)$ as the probability that a
"hopper" at state ω_{j} will hop to state ω_{i}. Thus each $P_{j}\left(\omega_{i}\right)$ is non-negative and

$$
P_{j}\left(\omega_{1}\right)+\cdots+P_{j}\left(\omega_{n}\right)=1 .
$$

Any vector v whose entries are non-negative and sum to 1 is called a probability distribution vector.

Form vector \boldsymbol{p}_{j} whose entries are $p_{j}^{i}=P_{j}\left(\omega_{i}\right)$ for $i, j=1, \ldots, n$.
Each \boldsymbol{p}_{j} is the column whose i th entry is the probability of jumping from state ω_{j} to ω_{i}.
p_{j} is said to be the probability distribution vector for probability function P_{j}.

Create matrix $P=\left(\boldsymbol{p}_{1} \boldsymbol{p}_{2} \cdots \boldsymbol{p}_{n}\right)$.
A matrix of this kind is called a Markov matrix.
Markov matrices are, generally, those with non-negative entries whose columns add to 1 .
(Other treatments may switch this, defining Markov matrices as having non-negative entries and whose rows add to 1 instead.)

PandMM 0	TOC 0	Intro 0000	Probability 00000	Markov Matrices $000 \bullet 000000$	Markov Chains 00000	Examples 0000000000

Pe $\boldsymbol{e}_{j}=\boldsymbol{p}_{j}$, so left-multiplying \boldsymbol{e}_{j} by P is a vector that represents the probabilities of a hopper finding itself at the various states having started, certainly, at state ω_{j}.
These hoppers need not be indivisible for this interpretation to make sense. \boldsymbol{e}_{j} could represent 1 kilogram of microscopic hoppers at state ω_{j}. In that case $P \boldsymbol{e}_{j}$ would represent the distribution of hoppers after one jump, starting from state ω_{j}. The i th row of $P \boldsymbol{e}_{j}$ is the fraction (of the kilogram) of hoppers that end up in state ω_{i} if they all start at ω_{j}.
It could also represent, for instance, a gram of protein whose molecules, individually, jump from one geometrical configuration to another, or "reactant" molecules transforming to "products." The key feature here is that the probability of transforming to a different state should depend only on where you are, and not on where you've been.

Markov matrices have a number of interesting properties, and we assemble a few of these now.

For any Markov matrix P a nonzero vector v for which $P v=v$ is called a stable or, synonymously, a stationary vector. If stable v is a probability distribution vector it is called a stationary or stable distribution. These are eigenvectors for eigenvalue 1.

It is a standard fact from linear algebra that P and P^{T} have the same eigenvalues.

Let w be the column vector $(1,1, \ldots, 1)$.
P is an $n \times n$ Markov matrix if and only if $P^{T} \boldsymbol{w}=\boldsymbol{w}$. So 1 is an eigenvalue for P^{T} and hence, also, P. Thus, every Markov matrix has a stable vector.
If P and Q are Markov matrices of the same size then $P Q$ is a Markov matrix. And if P is invertible and Markov so is P^{-1}.
Therefore the set of invertible Markov matrices is a group with matrix multiplication.
(It follows easily that the Markov matrices of a certain size form a Lie group.)

PandMM 0	TOC 0	Intro 0000	Probability 00000	Markov Matrices 0000000000	Markov Chains 00000	Examples 0000000000

Suppose v is a stable vector for Markov matrix $M . v$ has at least one non-zero entry and we assume (replace v by $-v$, if necessary) that it has at least one positive entry.

Let \boldsymbol{a} be the nonzero vector whose nonzero entries are the positive entries of v and define $\boldsymbol{b}=\boldsymbol{v}-\boldsymbol{a}$. Thus $\boldsymbol{v}=\boldsymbol{a}-\boldsymbol{b}=M \boldsymbol{a}-M \boldsymbol{b}$ and for each i at most one of a^{i} or b^{i} is nonzero and all entries of the four vectors on the right are non-negative.

Define

$$
\boldsymbol{c}=M \boldsymbol{a} \quad \text { and } \quad \boldsymbol{d}=M \boldsymbol{b} .
$$

The sum of the entries of c is the same as the sum of the entries of \boldsymbol{a}, and the same is true for the pair \boldsymbol{b} and \boldsymbol{d}.

If R_{1}, \ldots, R_{n} are the rows of a Markov matrix M then
$R_{1}+\cdots+R_{n}$ is a row whose entries are all 1 . And if $v \in \mathbb{R}^{n}$ then

$$
M v=\left(\begin{array}{c}
R_{1} v \\
\vdots \\
R_{n} v
\end{array}\right)
$$

If the entries of any vector v add to c so too will the entries of Mv .
As a consequence, the entries of any eigenvector for eigenvalues other than 1 must add to 0 : that is, these eigenvectors are orthogonal to $(1, \ldots, 1)$.

And if v is a probability distribution vector so is $M v$.

$\begin{aligned} & \text { Pand } \\ & 0 \\ & \hline \end{aligned}$	0	Intro 0000	Probability 00000	Markov Matrices 000000000	Markov Chains 00000	0000000

\qquad

PandMM 0	TOC 0	Intro 0000	Probability 00000	Markov Matrices 0000000000	Markov Chains 00000	Examples 0000000000

For convenience, permute the rows of these four vectors so that the k nonzero entries of a are first. Thus v is

$$
\left(\begin{array}{c}
a^{1} \\
\vdots \\
a^{k} \\
0 \\
\vdots \\
0
\end{array}\right)-\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
b^{k+1} \\
\vdots \\
b^{n}
\end{array}\right)=\left(\begin{array}{c}
c^{1} \\
\vdots \\
c^{k} \\
c^{k+1} \\
\vdots \\
c^{n}
\end{array}\right)-\left(\begin{array}{c}
d^{1} \\
\vdots \\
d^{k} \\
d^{k+1} \\
\vdots \\
d^{n}
\end{array}\right)=\left(\begin{array}{c}
c^{1} \\
\vdots \\
c^{k} \\
c^{k+1} \\
\vdots \\
c^{n}
\end{array}\right)-\left(\begin{array}{c}
c^{1}-a^{1} \\
\vdots \\
c^{k}-a^{k} \\
b^{k+1}+c^{k+1} \\
\vdots \\
b^{n}+c^{n}
\end{array}\right)
$$

The entries of the vector on the far right are all non-negative and sum to $b^{k+1}+\cdots+b^{n}$. It follows that $c^{j}=0$ for $j=k+1, \ldots, n$ and $c^{j}=a^{j}$ for $j=1, \ldots, k$.
So $\boldsymbol{c}=P \boldsymbol{a}=\boldsymbol{a}$. Dividing \boldsymbol{a} by the sum of its entries we conclude that every Markov matrix has a stable probability distribution.

If M is Markov so too is M^{k} for any positive integer k, so none of the entries of M^{k}, which are non-negative, can exceed 1 . If v is an eigenvector for eigenvalue λ then $M^{k} v=\lambda^{k} v$.
From this, we conclude that $|\lambda| \leq 1$.

We are now finished accumulating general facts about Markov matrices.

PandMM	$\underset{\circ}{\text { TOC }}$	Intro 0000	Probability 00000	Markov Matrices 0000000000	Markov Chains	Exan 000

It would violate "common sense" to completely ignore strong evidence of this kind. Mathematicians should not be obliged to be idiots or fools, though in some cases it could help.

Further, if you flip a coin a million times it is no longer the coin you started with. The edges will become worn and other physical changes will likely occur.
In a class on statistics or probability you will learn how to use Bayes' Theorem to incorporate new information into a probability model "on the fly." This is an important topic.
We will, here, assume that the physical scenario is such that the probability model may be assumed to be fixed for the number of repetitions we care about.

$\underset{0}{\text { PandMM }}$	$\begin{gathered} \text { TOC } \\ 0 \end{gathered}$	$\begin{aligned} & \text { Intro } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { Probability } \\ & \text { 00000 } \end{aligned}$	Markov Matrices 0000000000	Markov Chains - 0000	Examples 0000000000

MARKOV CHAINS

For some probability models, such as the act of coin-tossing or die-rolling or hopping from one state to another, it makes sense to imagine performing the procedure more than once and creating thereby more interesting compound events. In the case of coin-tossing or die-rolling the outcome of an earlier toss or roll has no effect on our thoughts about what will happen in later results.

Well, actually, maybe it does.
We interpret probabilities here as "degrees of belief" of a rational believer.
In fact, if I flip a coin assumed to be "fair" 10 times and it comes up heads each time my degree of belief that this is a "fair" coin would begin to erode and a fair-coin model would no longer match my degree of belief.

To justify and clarify these statements, consider the (k, j) entry of the matrix P^{2}. It consists of the sum

$$
p_{j}^{1} p_{1}^{k}+p_{j}^{2} p_{2}^{k}+\cdots p_{j}^{n} p_{n}^{k}
$$

The first term in the sum is the fraction of 1 kilogram of hoppers that start in state ω_{j} and travel to state ω_{1} multiplied by the fraction of those that subsequently go to state ω_{k}. This product is the mass of the original kilogram of hoppers that make it to ω_{k} via ω_{1}.

Any hopper that makes it to ω_{k} does so by passing through one of the n possible intermediary states, so the sum provides the total mass of hoppers that arrive at ω_{k} from their original location at ω_{j} by any intermediary.

We can use the previous calculation and an induction argument on the exponent to conclude that the (k, j) entry of the matrix P^{L} is the probability of starting at state ω_{j} and ending at state ω_{k} after L steps.
The behavior of the sequences of probability distributions $P^{L} \boldsymbol{v}$ for initial probability distribution v is of interest.
The sequence of matrices P^{L} and their implied effect on movement among the members of the state space is called a Markov chain.

PandMM 0	TOC 0	Intro 0000	Probability 000000	Markov Matrices 0000000000	Markov Chains 00000	Examples $\bullet 000000000$

EXAMPLES

Let's consider an example.

$$
P=\left(\begin{array}{cccccc}
0.5 & 0.25 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 0.25 & 0 & 0 & 0 \\
0 & 0.25 & 0.5 & 0.25 & 0 & 0 \\
0 & 0 & 0.25 & 0.5 & 0.25 & 0 \\
0 & 0 & 0 & 0.25 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.25 & 0.5
\end{array}\right) .
$$

Starting from any state there is a 50% chance of staying in that state. In the middle states there is a 25% chance of moving "left or right" but in the first and last states there is a 50% chance of moving to the single neighbor state.

So after two steps our kilogram of hoppers is spreading away, as expected, from their starting place but after 90 they have settled down with equal numbers of hoppers entering and leaving each state, with interior states having equal numbers and favored over end states.

If we modify our Markov matrix to

$$
Q=\left(\begin{array}{cccccc}
1 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 1
\end{array}\right)
$$

we have different behavior. A narrative for this Markov matrix might be that hoppers at interior states have an equal chance of moving to either neighbor, but if they land on an end state bug spray kills them and their carcasses pile up there.

$$
Q^{90}=\left(\begin{array}{cccccc}
1 & 0.8 & 0.6 & 0.4 & 0.2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.2 & 0.4 & 0.6 & 0.8 & 1
\end{array}\right)
$$

So if a kilogram of hoppers starts out at state ω_{3} we would expect to find about 600 grams of dead bugs at state ω_{1} and 400 grams at ω_{6} after 90 hops.
And if the vector $v=(1,2,3,4,5,6)$ represents a distribution of 21 kilograms of bugs among the 6 states,

$$
Q^{90} v=(7,0,0,0,0,14)
$$

We will end up with 7 kilograms at state ω_{1} and 14 kilograms at state ω_{6}.

$\underset{\sim}{\text { PandMM }}$	$\underset{\circ}{\text { TOC }}$	Intro 0000	Probability 00000	Markov Matrices 0000000000	Markov Chains 00000	Examples 000000000

EXERCISE

(i) Starting with hoppers in state ω_{3}, movement governed by Markov matrix R, what fraction will be in state ω_{5} after many hops?
(ii) Does the answer to (i) depend on where the hoppers started?
(iii) If a single person were to start in state ω_{2} and make random movements governed by these probabilities, what is the probability that you will find that person in state ω_{1} after 70 movements? After 71 hops? After 1,000?

In the example P above we see that $v=(1,2,2,2,2,1)$ is a stable distribution, and each of the columns to which Q^{L} converges is stable. This is generally true. If P is any Markov matrix and if a column of P^{L} converges then the limit column is a stable distribution.
(Proof: Suppose for some i that $\boldsymbol{v}_{k}=P^{k} \boldsymbol{e}_{i} \rightarrow \boldsymbol{v}$. Then $P \boldsymbol{v}_{k} \rightarrow P v$. But we also have $P \boldsymbol{v}_{k}=P^{k+1} \boldsymbol{e}_{i} \rightarrow \boldsymbol{v}$.)

EXERCISE

Suppose $A=\left(\begin{array}{cc}1-p & q \\ p & 1-q\end{array}\right)$ for $0 \leq p \leq 1$ and $0 \leq q \leq 1$.
(i) Consider the cases $p=q=1$ and $p=q=0$. Invent narratives to describe the behavior of particles changing their state governed by this matrix in each case.
(ii) Suppose $p \neq q$. Find eigenvalues and eigenvectors for matrix A. (hint: 1 is an eigenvalue and $(-1,1)$ is an eigenvector for the other eigenvalue.)
(iii) Suppose we start out with one kilogram of "hoppers" distributed in the two states who hop according to Markov matrix A as in (ii). After many hops, how will the hoppers be distributed on the two states?

However sometimes the columns of Q^{L} for a Markov matrix Q fail to converge, so stable distributions cannot always be found this way. For instance if

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { then } Q^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { so } \quad Q^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and the powers oscillate between the two forms-so a hopper known to be at one state will (certainly) hop to the other.
This kind of cyclic behavior can be interesting.
\qquad

PandMM 0	TOC 0	Intro 0000	Probability 00000	Markov Matrices 0000000000	Markov Chains 00000	Examples 00000000

| PandMM
 0 | TOC
 0 | Intro
 0000 | Probability
 00000 | Markov Matrices
 000000000 | Markov Chains
 00000 | Examples
 000000000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

EXERCISE

Consider Markov matrix $S=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0.5 & 1 \\ 0 & 0 & 0 & 0.1 & 0.5 & 0 \\ 0 & 0 & 0 & 0.4 & 0 & 0 \\ 0 & 0.1 & 1 & 0.5 & 0 & 0 \\ 0 & 0.4 & 0 & 0 & 0 & 0 \\ 1 & 0.5 & 0 & 0 & 0 & 0\end{array}\right)$.
(i) Concoct a narrative describing what is happening on a ring with six beads.
(ii) Does S^{L} converge?
(iii) We know 1 is an eigenvalue of S. Find a stationary distribution.
(iv) Given various starting places, are there useful descriptions of the distributions of bugs among these six states after L hops for large L ? What about the probability that a single hopper, starting at a specific state, will end up at one of the six?

