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INTRODUCTION

When reasoning about various events in the world, we see that
some are precisely predictable or certain while others are not.

For instance if I flip a coin it is safe to assume that it will rise
and then fall. Yes, the laws of gravity may be repealed
mid-flight or the coin may evaporate in front of my eyes, but
there is no need for me to think about those things. I will not
waste my time contemplating such imaginary but impossible
situations.

—————
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On the other hand, if the question is whether the coin will land
“heads up” or “tails up” I am not certain at all. Taking into
account all I know about coins and coin tossing, my “degree of
belief” that it will land heads up is equal to my “degree of
belief” that it will show tails. I am uncertain, but the nature of
my uncertainty has a pattern.

This degree of belief represents my state of knowledge, not the
true nature of the coin. It would be illogical for me to assess my
degrees of belief differently without specific knowledge that
the coin was rigged in some way to affect how it lands.

In fact, even if I know it has been rigged, but don’t know which
side is thereby favored, I still would have to assess heads and
tails as equally likely to occur.

—————
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And it makes no difference if the “flipping” has already
occurred. If I reach through a window into a closed room and
flip the coin and slowly walk around to the entrance to inspect
the coin, I still must assess the two possibilities as equally
likely, even though it is certainly in one state or the other, up to
the moment I see that coin on the floor.

Similarly, if I have an ordinary six-sided die and roll it, my
degree of belief that one dot will show on top after it comes to a
stop is equal to my degree of belief that five dots will show on
top.

—————
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The subject of probability is the study of patterns in the degree
of belief a logical person must hold, given all the information
he or she possesses, about such events.

This is a huge subject and we will consider only one tiny corner
of it here.

For more on the more general subject of Probability I
recommend E. T. Jaynes insightful and entertaining Probability
Theory The Logic of Science.

In the first 50 pages Jaynes makes a very convincing case, using
elementary reasoning, that any attempt to measure
“plausibility” using real numbers, that has qualitative
correspondence with “common sense,” and which is consistent
must correspond to the standard rules of probability.

For more on the subject of Markov Chains in particular I
recommend J. R. Norris’ Markov Chains.

—————
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PROBABILITY
We specify a collection of elementary outcomes, also called
sample points or states, related in some way to a physical
situation about whose uncertain aspects we wish to reason. The
set of these outcomes is called the sample space or state space
and a sample space is frequently designated by the symbol Ω.

Subsets of the sample space are called events.

For instance in the first example our list of elementary
outcomes might be H and T, with Ω = {H, T }. There are just
four events for this sample space, the empty set ∅ and {H} and
{T} and Ω = {H, T }.

In the second example the sample space could be
Ω = { 1, 2, 3, 4, 5, 6 }. This sample space yields many more
events—64, actually.

—————
7

PandMM TOC Intro Probability Markov Matrices Markov Chains Examples

We insist (in this talk) that the list of elementary outcomes
should be finite. The list must include a description of
everything that might occur. And we insist that the elementary
outcomes be identified in such a way that no two of them could
describe the same physical aspect whose plausibility we wish
to discuss.

For instance for the die situation the list 1, 2, 3, 4, 5 is not good
because it neglects the possible 6 which might show up. Also,
the list

1, 2, 3, 4, 5, even number shows up

is bad because if two dots were to show up two different
outcomes would describe it. However Ω = { even, 1, 3, 5 }
doesn’t have this problem.
—————

8



PandMM TOC Intro Probability Markov Matrices Markov Chains Examples

The words exhaustive and mutually exclusive describe these
two conditions, required of the members of our sample space.

Many different sample spaces could describe the same physical
situation, though one might be more detailed, enabling us to
answer questions with more specificity about the situation, or
easier to use than another.

In the die-rolling situation, for instance, my degree of belief
that any elementary outcome in { 1, 2, 3, 4, 5, 6 } will occur is the
same. Using sample space { even, 1, 3, 5 } this is not true, and
that might make some calculations harder or impossible.

Using sample space { even, odd } restores this symmetry, and if
all I care about is whether an even number of dots appears or
an odd number this last sample space could be the best.

—————
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We decide to assign numerical values between 0 and 1 to
describe our degrees of belief that an elementary outcome will
occur, with 0 representing our assessment that an elementary
outcome is impossible, while 1 corresponds to certainty that the
elementary outcome will occur. We will call this number the
probability of the elementary outcome.

The probability of an event is the sum of the probabilities of the
elementary outcomes it contains.

If E is an event we use the notation P(E) to designate the
probability of event E. Thus P(∅) = 0 (something must happen)
while P(Ω) = 1 (again, something must happen).

P is called a probability function, defined on the collective of
all subsets of Ω.

—————

10

PandMM TOC Intro Probability Markov Matrices Markov Chains Examples

For any two events E and F we have

P(E ∪ F) = P(E) + P(F)− P(E ∩ F).

To see this, think about the elementary outcomes that are
“counted twice” in P(E) + P(F).

So for disjoint events—that is if the two events cannot happen
at the same time—probabilities are additive.

A sample space together with an assignment of probabilities to
elementary outcomes is called a probability model.

—————
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MARKOV MATRICES

We are going to expand on our ruminations about probabilities
by assigning a probability model to each point in a finite set
Ω = {ω1, . . . , ωn }, where the probability model for each ωj has
Ω as its sample space and probability function Pj.

We will interpret the number Pj(ωi) as the probability that a
“hopper” at state ωj will hop to state ωi. Thus each Pj(ωi) is
non-negative and

Pj(ω1) + · · ·+ Pj(ωn) = 1.

—————
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Any vector v whose entries are non-negative and sum to 1 is
called a probability distribution vector.

Form vector pj whose entries are pi
j = Pj(ωi) for i, j = 1, . . . ,n.

Each pj is the column whose ith entry is the probability of
jumping from state ωj to ωi.

pj is said to be the probability distribution vector for
probability function Pj.

—————
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Create matrix P = (p1 p2 · · · pn).

A matrix of this kind is called a Markov matrix.

Markov matrices are, generally, those with non-negative entries
whose columns add to 1.

(Other treatments may switch this, defining Markov matrices as
having non-negative entries and whose rows add to 1 instead.)

—————
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Pej = pj, so left-multiplying ej by P is a vector that represents
the probabilities of a hopper finding itself at the various states
having started, certainly, at state ωj.

These hoppers need not be indivisible for this interpretation to
make sense. ej could represent 1 kilogram of microscopic
hoppers at state ωj. In that case Pej would represent the
distribution of hoppers after one jump, starting from state ωj.
The ith row of Pej is the fraction (of the kilogram) of hoppers
that end up in state ωi if they all start at ωj.

It could also represent, for instance, a gram of protein whose
molecules , individually, jump from one geometrical
configuration to another, or “reactant” molecules transforming
to “products.” The key feature here is that the probability of
transforming to a different state should depend only on where
you are, and not on where you’ve been.

—————
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Markov matrices have a number of interesting properties, and
we assemble a few of these now.

For any Markov matrix P a nonzero vector v for which Pv = v
is called a stable or, synonymously, a stationary vector. If stable
v is a probability distribution vector it is called a stationary or
stable distribution. These are eigenvectors for eigenvalue 1.

—————
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It is a standard fact from linear algebra that P and PT have the
same eigenvalues.

Let w be the column vector (1, 1, . . . , 1).

P is an n × n Markov matrix if and only if PTw = w. So 1 is an
eigenvalue for PT and hence, also, P. Thus, every Markov
matrix has a stable vector.

If P and Q are Markov matrices of the same size then PQ is a
Markov matrix. And if P is invertible and Markov so is P−1.
Therefore the set of invertible Markov matrices is a group with
matrix multiplication.

(It follows easily that the Markov matrices of a certain size form
a Lie group.)

—————
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If R1, . . . ,Rn are the rows of a Markov matrix M then
R1 + · · ·+Rn is a row whose entries are all 1. And if v ∈ Rn then

Mv =

R1v
...

Rnv

 .

If the entries of any vector v add to c so too will the entries of
Mv.
As a consequence, the entries of any eigenvector for
eigenvalues other than 1 must add to 0: that is, these
eigenvectors are orthogonal to (1, . . . , 1).

And if v is a probability distribution vector so is Mv.

—————
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Suppose v is a stable vector for Markov matrix M. v has at least
one non-zero entry and we assume (replace v by −v, if
necessary) that it has at least one positive entry.

Let a be the nonzero vector whose nonzero entries are the
positive entries of v and define b = v − a. Thus
v = a − b = Ma − Mb and for each i at most one of ai or bi is
nonzero and all entries of the four vectors on the right are
non-negative.

Define
c = Ma and d = Mb.

The sum of the entries of c is the same as the sum of the entries
of a, and the same is true for the pair b and d.

—————
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For convenience, permute the rows of these four vectors so that
the k nonzero entries of a are first. Thus v is

a1

...
ak

0
...
0


−



0
...
0

bk+1

...
bn


=



c1

...
ck

ck+1

...
cn


−



d1

...
dk

dk+1

...
dn


=



c1

...
ck

ck+1

...
cn


−



c1 − a1

...
ck − ak

bk+1 + ck+1

...
bn + cn


.

The entries of the vector on the far right are all non-negative
and sum to bk+1 + · · ·+ bn. It follows that cj = 0 for
j = k + 1, . . . ,n and cj = aj for j = 1, . . . , k.

So c = Pa = a. Dividing a by the sum of its entries we conclude
that every Markov matrix has a stable probability distribution.

—————
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If M is Markov so too is Mk for any positive integer k, so none
of the entries of Mk, which are non-negative, can exceed 1. If v
is an eigenvector for eigenvalue λ then Mkv = λkv.

From this, we conclude that |λ| ≤ 1.

We are now finished accumulating general facts about Markov
matrices.

—————
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MARKOV CHAINS
For some probability models, such as the act of coin-tossing or
die-rolling or hopping from one state to another, it makes sense
to imagine performing the procedure more than once and
creating thereby more interesting compound events. In the case
of coin-tossing or die-rolling the outcome of an earlier toss or
roll has no effect on our thoughts about what will happen in
later results.

Well, actually, maybe it does.

We interpret probabilities here as “degrees of belief” of a
rational believer.

In fact, if I flip a coin assumed to be “fair” 10 times and it
comes up heads each time my degree of belief that this is a
“fair” coin would begin to erode and a fair-coin model would
no longer match my degree of belief.

—————
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It would violate “common sense” to completely ignore strong
evidence of this kind. Mathematicians should not be obliged to
be idiots or fools, though in some cases it could help.

Further, if you flip a coin a million times it is no longer the coin
you started with. The edges will become worn and other
physical changes will likely occur.

In a class on statistics or probability you will learn how to use
Bayes’ Theorem to incorporate new information into a
probability model “on the fly.” This is an important topic.

We will, here, assume that the physical scenario is such that the
probability model may be assumed to be fixed for the number of
repetitions we care about.

—————
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So we have some accumulated ideas about plausible reasoning,
a finite state space and facts about a Markov matrix P
governing movement probabilities from any one of these states
to the other states.

There is nothing to stop us from iterating this process.

P2ej is the jth column of P2 and should be the distribution of
hopper-mass among the various states after two hops, starting
with 1 kilogram of microscopic hoppers in state ωj. It also
should represent the probability distribution vector for the
location of a single hopper, having started at state ωj, after two
hops.

—————
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To justify and clarify these statements, consider the (k, j) entry
of the matrix P2. It consists of the sum

p1
j pk

1 + p2
j pk

2 + · · · pn
j pk

n.

The first term in the sum is the fraction of 1 kilogram of
hoppers that start in state ωj and travel to state ω1 multiplied by
the fraction of those that subsequently go to state ωk. This
product is the mass of the original kilogram of hoppers that
make it to ωk via ω1.

Any hopper that makes it to ωk does so by passing through one
of the n possible intermediary states, so the sum provides the
total mass of hoppers that arrive at ωk from their original
location at ωj by any intermediary.

—————
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We can use the previous calculation and an induction argument
on the exponent to conclude that the (k, j) entry of the matrix PL

is the probability of starting at state ωj and ending at state ωk
after L steps.

The behavior of the sequences of probability distributions PLv
for initial probability distribution v is of interest.

The sequence of matrices PL and their implied effect on
movement among the members of the state space is called a
Markov chain.

—————
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EXAMPLES

Let’s consider an example.

P =



0.5 0.25 0 0 0 0
0.5 0.5 0.25 0 0 0
0 0.25 0.5 0.25 0 0
0 0 0.25 0.5 0.25 0
0 0 0 0.25 0.5 0.5
0 0 0 0 0.25 0.5

 .

Starting from any state there is a 50% chance of staying in that
state. In the middle states there is a 25% chance of moving “left
or right” but in the first and last states there is a 50% chance of
moving to the single neighbor state.

—————
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P2 =



0.3750 0.2500 0.0625 0 0 0
0.5000 0.4375 0.2500 0.0625 0 0
0.1250 0.2500 0.3750 0.2500 0.0625 0

0 0.0625 0.2500 0.3750 0.2500 0.1250
0 0 0.0625 0.2500 0.4375 0.5000
0 0 0 0.0625 0.2500 0.3750



P90 =



0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1 0.1 0.1


—————
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So after two steps our kilogram of hoppers is spreading away,
as expected, from their starting place but after 90 they have
settled down with equal numbers of hoppers entering and
leaving each state, with interior states having equal numbers
and favored over end states.

If we modify our Markov matrix to

Q =



1 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0
0 0 0 0 0.5 1


we have different behavior. A narrative for this Markov matrix
might be that hoppers at interior states have an equal chance of
moving to either neighbor, but if they land on an end state bug
spray kills them and their carcasses pile up there.

—————
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Q90 =



1 0.8 0.6 0.4 0.2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.2 0.4 0.6 0.8 1


So if a kilogram of hoppers starts out at state ω3 we would
expect to find about 600 grams of dead bugs at state ω1 and 400
grams at ω6 after 90 hops.

And if the vector v = (1, 2, 3, 4, 5, 6) represents a distribution of
21 kilograms of bugs among the 6 states,

Q90v = (7, 0, 0, 0, 0, 14).

We will end up with 7 kilograms at state ω1 and 14 kilograms at
state ω6.

—————
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Let’s think of five states organized as beads on a wire loop,
with possible movement to neighboring beads only. Consider
Markov matrix

R =


0.2 0.2 0 0 0.6
0.6 0.2 0.2 0 0
0 0.6 0.8 0.2 0
0 0 0 0.2 0.2

0.2 0 0 0.6 0.2


The “hopper” narrative for R would be the following. Except
for hoppers in state ω3, hoppers have a 60% chance of moving
one direction (say right) on the ring, 20% chance of “staying
put” and 20% chance of moving left. But hoppers who find
themselves in state ω3 have an 80% chance of not moving and a
20% chance of moving left.

—————
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EXERCISE

(i) Starting with hoppers in state ω3, movement governed by
Markov matrix R, what fraction will be in state ω5 after many
hops?

(ii) Does the answer to (i) depend on where the hoppers
started?

(iii) If a single person were to start in state ω2 and make
random movements governed by these probabilities, what is
the probability that you will find that person in state ω1 after 70
movements? After 71 hops? After 1, 000?

—————
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In the example P above we see that v = (1, 2, 2, 2, 2, 1) is a stable
distribution, and each of the columns to which QL converges is
stable. This is generally true. If P is any Markov matrix and if a
column of PL converges then the limit column is a stable
distribution.

(Proof: Suppose for some i that vk = Pkei → v. Then Pvk → Pv.
But we also have Pvk = Pk+1ei → v.)

—————
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However sometimes the columns of QL for a Markov matrix Q
fail to converge, so stable distributions cannot always be found
this way. For instance if

Q =

(
0 1
1 0

)
then Q2 =

(
1 0
0 1

)
so Q3 =

(
0 1
1 0

)
and the powers oscillate between the two forms—so a hopper
known to be at one state will (certainly) hop to the other.

This kind of cyclic behavior can be interesting.

—————
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EXERCISE

Suppose A =

(
1 − p q

p 1 − q

)
for 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

(i) Consider the cases p = q = 1 and p = q = 0. Invent
narratives to describe the behavior of particles changing their
state governed by this matrix in each case.

(ii) Suppose p ̸= q. Find eigenvalues and eigenvectors for
matrix A. (hint: 1 is an eigenvalue and (−1, 1) is an eigenvector
for the other eigenvalue.)

(iii) Suppose we start out with one kilogram of “hoppers”
distributed in the two states who hop according to Markov
matrix A as in (ii). After many hops, how will the hoppers be
distributed on the two states?

—————
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EXERCISE

Consider Markov matrix S =



0 0 0 0 0.5 1
0 0 0 0.1 0.5 0
0 0 0 0.4 0 0
0 0.1 1 0.5 0 0
0 0.4 0 0 0 0
1 0.5 0 0 0 0

 .

(i) Concoct a narrative describing what is happening on a ring
with six beads.

(ii) Does SL converge?

(iii) We know 1 is an eigenvalue of S. Find a stationary
distribution.

(iv) Given various starting places, are there useful descriptions
of the distributions of bugs among these six states after L hops
for large L? What about the probability that a single hopper,
starting at a specific state, will end up at one of the six?
————— 36
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