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I In 1978, Rivest, Shamir, and Adleman described an algorithm
(RSA) for secure communications.

I The RSA algorithm implemented ideas known as Trap Door
encryption and Public Key encryption, which were earlier
published by Diffie and Hellman. RSA uses some basic results
on number theory.

I This talk will provide the number theory background for RSA,
and then describe RSA itself. The number theory is important
and interesting all on its own.

I Some supplemental PDF files listed in the bibliography on the
last slide will be found in Larry Susanka’s master page.
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Greatest Common Divisor

I Given two positive integers, a and b, we denote the Greatest
Common Divisor (gcd) of them by (a,b)

I As the name says, the gcd is the largest number that evenly
divides them both.

I For example, (12,16)=4. As another example, (4,9)=1

I When (a,b)=1 we say that a and b are relatively prime, or
co-prime. Note that neither needs to be prime on its own, but
they share no common divisors.

I We note in passing that the gcd is closely related to the Least
Common Multiple of a and b, because
gcd(a, b) ∗ lcm(a, b) = a ∗ b.
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Euclidean Algorithm

I Over 2000 years ago, Euclid’s Elements described an efficient
method for finding the gcd of two positive integers.

I Suppose a > b are the two numbers. If a is a multiple of b,
i.e. b evenly divides into a, (written b | a), then (a,b)=b.

I If b - a then write a = q ∗ b + r , where q is the quotient and
r < b is the remainder when a is divided by b.

I Now the key: whatever divides a and b must also divide r.
Therefore (a, b) = (b, r), and the problem can be carried on
with smaller numbers. Eventually we will find (a,b).
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Euclidean Algorithm

I As an example, to find (679,161) we calculate:

679 = 4× 161 + 35

161 = 4× 35 + 21

35 = 21 + 14

21 = 14 + 7

14 = 2× 7

In short, (679,161)=7.

I But we can now run the equations backwards:

7 = 21− 14 = 21− (35− 21) = 2× 21− 35

= 2× (161− 4× 35)− 35 = 2× 161− 9× 35

= 2× 161− 9× (679− 4× 161) = 38× 161− 9× 679

I Corollary: For any a and b, there exist integers x and y for
which (a, b) = xa + yb
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Divisibility

I Theorem: If a | bc and (a,b)=1, then a | c

I Note that a and b being relatively prime is needed. For
example, 6 | (8× 9), but it divides neither of them individually.

I Proof: Using the corollary to the Euclidean Algorithm, there
are are integers x and y for which 1 = xa + yb. Multiplying by
c, we find that c = axc + ybc. But because a | bc there must
be some k for which bc = ka. Substituting,
c = axc + yka = a× (xc + yk). QED

I As a side note, this theorem can be used to give an easy proof
of the Fundamental Theorem of Arithmetic, which states that
there is only one way to factor an integer into a product of
primes. See the bibliography.
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Modular Equivalence

I A special notation, originated by Gauss, is used to denote a
certain type of equivalence relation. We write a ≡ b (mod m)
when m | (a− b).

I A familiar case occurs with clocks. Every time the hour hand
goes around once, the time is the same, except for a multiple
of 12. So when counting hours we can say:

3 ≡ 15 ≡ 27 (mod 12)

I With one important exception, equivalent numbers can be
treated like ordinary equality. For example, if a ≡ b (mod m)
and x ≡ y (mod m), then a + x ≡ b + y (mod m) and
ax ≡ by (mod m), etc.

I The exception is division. 4× 5 ≡ 4× 2 (mod 6), but we
cannot divide both sides by 4, because 5 and 2 are not
equivalent.
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Fermat’s Observation

I Let us begin with an arbitrary prime number: 7. List all the
positive numbers less than 7: {1,2,3,4,5,6}.

I Multiply each of the numbers by 3, and find the equivalent
smallest number (mod 7):

3× 1 = 3

3× 2 = 6

3× 3 = 9 ≡ 2

3× 4 = 12 ≡ 5

3× 5 = 15 ≡ 1

3× 6 = 18 ≡ 4

I We have the exact same 6 numbers, just in a different order.
This was not an accident!
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Fermat’s Little Theorem

I Fermat’s Little Theorem: Let p be a prime number, and let
(a,p)=1. Then

ap−1 ≡ 1 (mod p)

I Proof: There are p − 1 positive numbers,
{1, 2, . . . , p − 1} = {xk} each relatively prime to p. Multiply
each by a and reduce to something less than p. If axi ≡ axj
then p | a× (xi − xj). But p - a, so our previous theorem says
that p | (xi − xj), which is clearly impossible. Therefore the
set of numbers {axi} ≡ {xi} (mod p)

I Now we know that∏
xi ≡

∏
axi = ap−1

∏
xi (mod p)

I So p | (ap−1 − 1)
∏

xi . But p -
∏

xi , so our previous theorem
ends the proof. QED
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Euler’s Extension

I Roughly 100 years after Fermat, Euler noticed that the key to
the proof of Fermat’s Little Theorem was that the numbers
less than p were all relative prime to it. The p − 1 in the
exponent was just the number of such relative prime numbers.

I Euler defined a function, φ(n) as the number of numbers less
than n that are relatively prime to n. For example, if n = 15,
then the numbers less than 15 relatively prime to it are
{1, 2, 4, 7, 8, 11, 13, 14}, so φ(15) = 8. This function is
sometimes called the totient.

I Euler’s Theorem: Let any two numbers satisfy (a,n)=1. Then

aφ(n) ≡ 1 (mod n)

I The proof is almost word for word identical to that for
Fermat’s Theorem.
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Using Euler

I Theorem: If (a,m)=1 then ax ≡ b (mod m) has a solution.

I Proof: Let x = aφ(m)−1b and apply Euler. QED

I Chinese Remainder Theorem: Let m1,m2, . . . ,mn be pairwise
relatively prime, and let b1, . . . , bn be arbitrary. Then there is
a number x that simultaneously solves x ≡ bi (mod mi )

I Proof (n=3): Similar in spirit to Lagrange Interpolation, use
the above result to solve the three equations:

m2m3x1 ≡ b1 (mod m1)

m1m3x2 ≡ b2 (mod m2)

m1m2x3 ≡ b3 (mod m3)

Now let x = m2m3x1 + m1m3x2 + m1m2x3. QED
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The Product Formula for φ

I Theorem: If (X,Y)=1 then φ(XY ) = φ(X )φ(Y )

I Proof: Let A = {a1, . . . , am} be the distinct coprime residues
of X, likewise = {b1, . . . , bn} for Y and C = {c1, . . . } for XY.
Define a mapping on C by T (c) =< a, b >, where c ≡ a
(mod X ) and c ≡ b (mod Y ). We need to show that T is a
1-to-1 mapping of C onto A× B.

I Claim 1: (a,X)=1 and (b,Y)=1. For if not then there is some
λ > 1 for which λ | a and λ | X . But c = a + µX which
would mean that λ | c . Now we have both λ | c and λ | XY ,
violating (c,XY)=1. Similarly for (b,Y).

I Claim 2: Distinct choices of c yield distinct < a, b > pairs.
For if T (c1) = T (c2) =< a, b >, then c1 ≡ a ≡ c2 (mod X )
and c1 ≡ a ≡ c2 (mod Y ). Denoting d = c1 − c2 we have, for
some λ and µ, d = λX = µY . But for some p and q,
1 = pX + pqY , so d = pdX + qdY = pµYX + qλXY . Thus
d is a multiple of XY, and so c1 ≡ c2 (mod XY ). So the c
choices were really the same.



The Product Formula for φ

I Theorem: If (X,Y)=1 then φ(XY ) = φ(X )φ(Y )

I Proof: Let A = {a1, . . . , am} be the distinct coprime residues
of X, likewise = {b1, . . . , bn} for Y and C = {c1, . . . } for XY.
Define a mapping on C by T (c) =< a, b >, where c ≡ a
(mod X ) and c ≡ b (mod Y ). We need to show that T is a
1-to-1 mapping of C onto A× B.

I Claim 1: (a,X)=1 and (b,Y)=1. For if not then there is some
λ > 1 for which λ | a and λ | X . But c = a + µX which
would mean that λ | c . Now we have both λ | c and λ | XY ,
violating (c,XY)=1. Similarly for (b,Y).

I Claim 2: Distinct choices of c yield distinct < a, b > pairs.
For if T (c1) = T (c2) =< a, b >, then c1 ≡ a ≡ c2 (mod X )
and c1 ≡ a ≡ c2 (mod Y ). Denoting d = c1 − c2 we have, for
some λ and µ, d = λX = µY . But for some p and q,
1 = pX + pqY , so d = pdX + qdY = pµYX + qλXY . Thus
d is a multiple of XY, and so c1 ≡ c2 (mod XY ). So the c
choices were really the same.
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The Product Formula for φ

I Claim 3: Every pair < ai , bj > arises as T (ck). By the Chinese
Remainder Theorem, there is some c for which
T (c) =< ai , bj >. We need to show that (c,XY)=1. Note
first that (c,X)=1 because any divisor of c and X would also
divide a. Likewise, (c,Y)=1. But if something divided both c
and XY, and it cannot divide X, it would force it to divide Y.
This is impossible.

I The 3 above claims show that T establishes a 1-1
correspondence between members of C and the product set
A× B. QED

I Corollary: If p and q are distinct primes then
φ(pq) = (p − 1)(q − 1)

I More generally, if n =
∏

peii then φ(n) = n
∏

(1− 1
pi

)
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Encryption Goals

I As we all know, when messages are transmitted via computers
they are turned into streams of bits, essentially long strings of
zeros and ones.

I A very long string can be broken into blocks/packets, that are
sent separately and reassembled. Each block of bits is
effectively a number in base 2.

I The central goal of encryption is to prevent someone from
reading what they should not, but because messages can be
intercepted we want them to be unintelligible to any
unintended recipient.

I Each transmitted block, which is a number, can be considered
a message (M). RSA aims to turn M into another number so
that the intended receiver, and only that receiver, can recover
M.

I The method has other nice properties.
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RSA Mechanization

I RSA is a Public Key method. Every user has a personal pair
of keys, one for encrypting and the other for decrypting. Each
key is a pair of numbers: (e,n) and (d,n).

I The encryption key, (e,n), is published widely for all to see
and use. The decryption key, (d,n), is tightly and privately
held. The user also knows, and tightly protects, the Euler Phi
function of n, φ(n).

I The number n is chosen as the product of two distinct, very
large primes, p and q. They should be hundreds of digits long.
This makes φ(n) = (p − 1)(q − 1)

I Next, each user finds another large number e that is relatively
prime to φ(n). Another large (prime) number will probably
work well, because φ(n) is nearly equal to n.

I Finally, each user determines d by solving de ≡ 1 (mod φ(n)).
This needs to be secret.
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RSA Mechanization

I To send a secure message (M) to someone, the sender first
looks up the receivers encryption key, (e,n), and calculates
E (M) ≡ Me (mod n).

I The whole world can safely see E(M) without knowing M.

I When E(M) is received, the recipient calculates
D(E (M)) ≡ (EM)d (mod n).

I Because de ≡ 1 (mod φ(n)), de = kφ(n) + 1 for some k.

I This means that
D(E (M)) = Mde = Mkφ(n)+1 = (Mφ(n))k ×M
≡ 1k ×M = M.

I The original message has been recovered!
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Signatures

I There is an important and slightly subtle problem. Anyone
with access to a person’s public encryption key can use it to
send a secure message, but how will the receiver know who
sent it?

I A neat trick solves this problem. The sender appends to his
message a signature message that he has encrypted with his
decryption key. The recipient uses his decryption key to
unscramble the body of the message, which tells him who the
sender is. At the end of the message is a scrambled number
that can be unlocked with the sender’s public encryption key.
Anyone trying to impersonate a sender would not be able to
build something that would be unlocked by the purported
sender’s encryption key. Spoofing and impersonation are
prevented.
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A few caveats

I When Me is reduced mod n, the result will be a number
smaller than n. This means that n should be large, otherwise
M will be forced to be small. Typically, p and q are chosen to
be several hundred digits long.

I Finding a random 200 digit prime number is not entirely
trivial, but the Prime Number Theorem assures us that a
random 200 digit number has probability of 0.72% of being
prime. So generating several hundred random such numbers is
very likely to have a prime in the list. We just need to find it
in the list. Most can be instantly eliminated (e.g. they are
even or end in 5), and there are both simple and sophisticated
tests that will (probably) eliminate any composites.

I For Euler’s theorem to hold, M must be relatively prime to n.
φ(n) is very close to n, so the chance of a common factor is
exceedingly small. You can just take the chance or, if you are
the jittery type, run them through the Euclidean Algorithm at
a slight cost of processing time.
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