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What are we measuring?

We will adopt a simple notion of set: a collection of things

A set might be a collection of numbers, or fingers, or people

We will be interested in sets of numbers, or sets of sets

Our most important sets of numbers are N, Q, and R,

N = {1, 2, 3, . . . } is the set of natural numbers, Q is the set
of rational numbers (fractions), and R denotes the real
numbers (i.e. the points on the line)

We identify a real number with its decimal representation

Note that N is a subset of Q, which is a subset of R. And the
last two are different because not all reals are rational (

√
2)
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How are we measuring size?

Just what size means is not clear

To start, consider small/finite sets. Let A = {1, 2, 3} and
B = {algebra, banana, covid}.
We say that A and B have the same size because they each
have 3 things in them

The set of all of the subsets of a set is called the Power Set of
that set. For the set A above, its power set has 8 members:

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Note that
8 = 23. Because of this, the notation for the power set of A is
2A, even when A is infinite.

Simple counting works well with finite sets, but won’t work for
infinite sets. We need something more general.
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The meaning of size

A way of comparing size that works equally well for both finite
and infinite sets was introduced by Georg Cantor in 1873.

Cantor proposed that two sets have the same size when their
elements can be paired in a direct way. Explicitly we say that
sets A and B have the same cardinality when there exists a
function f, from A to B, which is one-to-one and onto.

The function f is one-to-one when distinct inputs from A give
distinct values in B. That is, f(x)=f(y) only when x=y.

The function f is onto when every member of B is the value
of f(x) for some x in A.

Such a function is said to establish a one-to-one
correspondence between the elements of A and B.
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The meaning of size

As an example, let A = [0,1] and B = [0,2]. The function
f(x)=2x from A to B shows that card(A)=card(B).
Nevertheless, A and B have different lengths as subsets of the
line. This shows that cardinality is measuring something
different from length.

Even more extreme: if A = (π/2, π/2) and B = R, and
f (x) = tan(x) then f : A→ B takes a finite interval to the
entire line. So we should not jump too quickly to judge
cardinality.

Centuries before Cantor, Galileo noted that there are the same
number of positive whole numbers as the set of perfect
squares. Cantor’s idea wasn’t entirely original, but he pursued
it further.

The function f(n)=n+1 establishes a 1-1 correspondence
between {0, 1, 2, 3, . . . } and N. This is a shift function,
pairing each number with the number to its right.
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Challenge Problems

Challenge Problem 1: The set of all integers,
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } has the same cardinality
as N. Find an explicit 1-1 correspondence function (a formula
for f).

Challenge Problem 2: The closed interval A=[0,1] and the
half open interval B=[0,1) have the same cardinality. Find an
explicit 1-1 correspondence function (a formula f : A→ B).
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N versus Q

Theorem: card(N) = card(Q)

We will prove the slightly simpler statement using the positive
rationals. The method of Challenge Problem 1 will extend the
result to all of Q.

Proof: What is required is a way to systematically list all the
positive rationals. Note that we can first order these rationals
via the sum of their numerators and denominators. Thus
there are none whose sum is 1, one whose sum is 2, 2 whose
sum is 3, and generally n whose sum is n+1.

Within each sum, order from 1/n to n/1, with the numerator
increasing and the denominator decreasing. Thus, the
sequence begins: 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2,
4/1, 1/5, etc.
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N versus Q
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N versus Q

Our listing of fractions contains duplicates: 1/1 = 2/2 = 3/3
etc.

It is straightforward (though tedious) to remove duplicates.
They are the ones that can be reduced. Once this is done, the
list begins: 1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5,
5/1, etc. Now we have our desired 1-1 matching of the
members of N with the positive members of Q. The idea of
challenge problem 1 be extends this to all of Q. QED

Challenge Problem 3: Write a computer program to list the
first 50 members of Q described by our algorithm. (Include
negatives and zero.)

We say that the set Q is countable or denumerable.

The idea behind this array shows that: A countable union of
countable/finite sets is countable.
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N versus R

Theorem: card(N) 6= card(R)

To prove this, Cantor showed that any supposed listing of the
reals must necessarily be incomplete. The remarkable method
is called Cantor’s Diagonal Argument.

Proof: Suppose that a list of the reals between 0 and 1 could
be made: {x1, x2, x3, . . . }
Each x can be expressed as an infinite decimal:
x1 = 0.x11x12x13x14 . . .
x2 = 0.x21x22x23x24 . . .
x3 = 0.x31x32x33x34 . . .
. . .

Choose a sequence of digits: a1 6= x11, a2 6= x22, a3 6= x33 . . .
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x3 = 0.x31x32x33x34 . . .
. . .

Choose a sequence of digits: a1 6= x11, a2 6= x22, a3 6= x33 . . .
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N versus R

Define the number a = 0.a1a2a3 . . .

The number a differs from x1 in the first decimal place, it
differs from x2 in the second decimal place, etc. It differs from
each of them, so it isn’t on the original list

This means that the list cannot have been complete, and no
list can be complete. QED

Because Q and R have different cardinalities, they cannot be
the same set. This proves the existence of irrational numbers.

Of course, we already knew this because of
√

2. But neither
our method nor the Greek result says how common irrationals
are relative to rationals.
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A set larger than R?

Let A = [0,1] and B = {(x , y)|x ∈ A, y ∈ A}

Because A is one-dimensional and B is two-dimensional it
seems clear that card(A) < card(B). In fact
card(A)=card(B).

Proof: Every point in A has a decimal expansion
a = 0.a1a2a3a4 . . . . Let x = 0.a1a3a5 . . . and y = 0.a2a4a6 . . .
This sends every point on the edge to a point in the interior.
And every interior point arises from an edge point like this:
given x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . . , the interior point
(x,y) arises from the edge point 0.x1y1x2y2x3y3 . . . . QED

Morals: First, increasing the dimension does not change
cardinality. Second, don’t trust your intuition.

Steve Ziskind Comparing The Size Of (Large) Sets



A set larger than R?

Let A = [0,1] and B = {(x , y)|x ∈ A, y ∈ A}
Because A is one-dimensional and B is two-dimensional it
seems clear that card(A) < card(B). In fact
card(A)=card(B).

Proof: Every point in A has a decimal expansion
a = 0.a1a2a3a4 . . . . Let x = 0.a1a3a5 . . . and y = 0.a2a4a6 . . .
This sends every point on the edge to a point in the interior.
And every interior point arises from an edge point like this:
given x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . . , the interior point
(x,y) arises from the edge point 0.x1y1x2y2x3y3 . . . . QED

Morals: First, increasing the dimension does not change
cardinality. Second, don’t trust your intuition.

Steve Ziskind Comparing The Size Of (Large) Sets



A set larger than R?

Let A = [0,1] and B = {(x , y)|x ∈ A, y ∈ A}
Because A is one-dimensional and B is two-dimensional it
seems clear that card(A) < card(B). In fact
card(A)=card(B).

Proof: Every point in A has a decimal expansion
a = 0.a1a2a3a4 . . . . Let x = 0.a1a3a5 . . . and y = 0.a2a4a6 . . .
This sends every point on the edge to a point in the interior.
And every interior point arises from an edge point like this:
given x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . . , the interior point
(x,y) arises from the edge point 0.x1y1x2y2x3y3 . . . . QED

Morals: First, increasing the dimension does not change
cardinality. Second, don’t trust your intuition.

Steve Ziskind Comparing The Size Of (Large) Sets



A set larger than R?

Let A = [0,1] and B = {(x , y)|x ∈ A, y ∈ A}
Because A is one-dimensional and B is two-dimensional it
seems clear that card(A) < card(B). In fact
card(A)=card(B).

Proof: Every point in A has a decimal expansion
a = 0.a1a2a3a4 . . . . Let x = 0.a1a3a5 . . . and y = 0.a2a4a6 . . .
This sends every point on the edge to a point in the interior.
And every interior point arises from an edge point like this:
given x = 0.x1x2x3 . . . and y = 0.y1y2y3 . . . , the interior point
(x,y) arises from the edge point 0.x1y1x2y2x3y3 . . . . QED

Morals: First, increasing the dimension does not change
cardinality. Second, don’t trust your intuition.

Steve Ziskind Comparing The Size Of (Large) Sets



Almost all reals are irrational

We say that a set of real numbers has measure zero if it can
be contained within a set of open intervals, the sum of whose
lengths is arbitrarily small.

Theorem: Any countable set of reals has measure zero. In
particular, Q has measure zero.

Proof: Given the list of reals {x1, x2, x3, . . . } and given your
favorite small number ε > 0, define a corresponding set of
intervals like this:
I1 = (x1 − ε/4, x1 + ε/4)
I2 = (x2 − ε/8, x2 + ε/8)
I3 = (x3 − ε/16, x3 + ε/16)
. . .

The set of x values is contained within the union of the
intervals, and the sum of the lengths of those intervals is ε,
which can be as small as we wish. QED
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Almost all reals are irrational

Theorem: If the interval [0,1] is contained within a set of open
intervals, then the sum of their lengths must be at least 1.
(i.e. [0,1] does not have measure zero.)

Proof: Sorry. This relies on a technical property of [0,1]
known as compactness. You need to take my word. QED

The standard language for this is: almost all real numbers are
irrational.

One way to make this seem obvious is to recall that rational
numbers are those whose decimal expansions are repeating. If
you randomly select digits to choose a real number, the
chance of it repeating at some point is zero (not the same as
impossible).

Challenge Problem 4: What rational number equals
1.376262626262...?
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The Cantor Set

A remarkable set, known as the Cantor Set (K), is built by
starting with the unit interval, [0,1], removing the middle
open third, and then repeatedly removing the middle open
third from each of the remaining components.

After the first removal the set is [0, 1/3] ∪ [2/3, 1].

After the next removal the set is
[0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

The next removal eliminates the middle third of each of the 4
intervals. Continuing indefinitely, each set has only 2/3 of the
length of the set at the prior stage, so the final set has
measure zero.

It seems that K consists of the endpoints of the intervals that
remain after each stage of removal, which is a countable set,
and this explains why it has measure zero. WRONG
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The Cantor Set

If we express each number in [0,1] in base-3 instead of the
usual base-10, then the members of K are those whose
expansions never use the digit 1.

A typical member of K, expressed in base-3, will look like
0.020022022020022202....

This can be put into a 1-1 correspondence with
0.010011011010011101.... by replacing each occurrence of 2
with 1. Such numbers, when interpreted as base-2 expressions
correspond to every member of [0,1].

In other words, card(K)=card(R). So the Cantor Set is an
example of an uncountable set with measure zero.
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The Size of the Power Set

Theorem: No set can be put into a 1-1 correspondence with
its power set. Thus card(A) < card(2A) for any set A.

Proof: This subtle argument, due to Cantor, supposes that
such a function f, from A to 2A does exist, and then shows
that a logical inconsistency results.

Let B denote the set of all elements of A which are not
members of their images under f: B={a ∈ A|a /∈ f (a)}.
Because B is a subset of A, it is a member of 2A. Because f is
onto, B=f(b) for some b ∈ A.

Question: Is b ∈ B? If yes, then it is a member of its image
and cannot be in B. If no, the it is not in its image and must
be in B. No matter our answer, we are contradicting
ourselves. Conclusion: no such f really existed. QED
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Algebraic Numbers

Saying that a number x is rational, say x = 2/3, is the same
as saying that it solves the equation 3x − 2 = 0. So the
rationals are the numbers that solve first degree equations
with integer coefficients. They are called algebraic of degree 1.

The number
√

2 is irrational, but it does solve the equation
x2 − 2 = 0. A number that solves a 2nd degree polynomial
with integer coefficients (but of no lower degree) is called
algebraic of degree 2.

Claim: There are countably many algebraic numbers of degree
2.

Proof: If the polynomial is ax2 + bx + c , then we may assume
that a > 0. For all those with a=1, the rest of bx + c
correspond to the countable first degree polynomials. For all
those with a=2, the rest also correspond to the first degree
polynomials. etc.
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Algebraic Numbers

We can now see that the set of 2nd degree polynomials is a
countable union of countable sets, hence is countable. QED

This same argument readily extends to show that there are
countably many integer polynomials of any given degree, and
each such polynomial can have only finitely many zeros.

Taking them all together, we have shown that only countably
many numbers can be the zeros of a polynomial with integer
coefficients. Such numbers are called algebraic numbers.

Arguing as before, most real numbers are not algebraic. They
are called transcendental.

What is an example of a transcendental number?
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Liouville’s Number

Liouville (1844) gave the first explicit example of a number
known to be transcendental. Decades later, both e (Hermite,
1873) and π (Lindemann, 1882) were also shown to be
transcendental, but with more difficult arguments. Even later
(Gelfond-Schneider, 1934), 2

√
2 was shown to be

transcendental, a deep result that answered a famous question
of Hilbert.

The construction of Liouville is based on this result:

Liouville’s Theorem: If α is algebraic of degree n > 1, and if
s
t ∈ Q satisfies | st − α| < 1, then | st − α| >

C
tn for some

constant C, independent of s and t.
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Liouville’s Number

Proof:Let α be the root of the minimal degree polynomial
p(x) = anx

n + an−1x
n−1 . . . a0. Then

p( st ) = an( st )n + an−1( st )n−1 . . . a0 = integer
tn .

Because p has minimal degree for α this cannot equal zero,
which means that 1

tn < |p( st )− p(α)| = | st − α||
dp
dx (β)|, where

β is in [α− 1, α + 1] because of the Mean Value Theorem.

Let C to be 1 over Max[ |dpdx | ] on [α− 1, α + 1]. QED

Define L =
∑∞

1 10−j!, which is Liouville’s Number. Writing
out the first digits, L = 0.110001000000000 . . . , where the
unit digits occur in places 1, 2, 6, 24, 120, etc.
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Liouville’s Number

Rewrite L =
∑k

1 10−j! +
∑∞

k+1 10−j!. The first sum can be

put over the common denominator of 10k!, so it is a rational
approximation to L.

If α were algebraic of degree n, then Liouville’s Theorem
would bound the second sum from below by |C/(10k!)n|, for
all values of k.

But the second sum is < 2/10(k+1)!, so that 2
10(k+1)! >

C
(10k!)n

.

Rewriting this we find 2
C > 10(k+1)!

(10k!)n
= (10k!)k+1−n.

But as k increases, this last number →∞, a contradiction.
Hence L is transcendental.
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The Continuum Hypothesis

In 1900, David Hilbert gave a celebrated lecture at a
mathematics congress. He proposed 23 deep problems for
mathematicians to address in the coming century. The first
was to settle the Continuum Hypothesis (CH).

This can be stated in several equivalent ways. The simplest is:
Is R (the continuum) the smallest uncountable set?

Answering this question required a starting point of axioms for
set theory. The standard set is called the Zermello-Frankel
System (ZF).

In 1940, Kurt Godel proved that CH is fully consistent with
ZF. In 1963, Paul Cohen proved that the negation of CH is
consistent with ZF. This means that CH is independent of the
other axioms of set theory, much like the Parallel Postulate is
independent of the other axioms of classical Euclidean
geometry.
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The Schroeder-Bernstein Theorem

Theorem: Given A and B, let f : A→ B and g : B → A both
be one-to-one. Then there is a function h : A→ B which is
one-to-one and onto. In particular, card(A)=card(B).

Proof: (Birkoff and MacLaine) The problem is that neither f
nor g is known to be onto. The very clever proof considers
ancestors of elements. We say that y ∈ B is a parent of x ∈ A
if x = g(y). If that y = f (z) for some z ∈ A then x has a
grandparent. Similar for members of B.

Partition A into 3 parts, according to whether a member has
an even number of ancestors, and odd number, or an infinite
number: AE ,AO ,A∞. LIkewise for B. The function f sends AE

onto BO , and sends A∞ onto B∞. g−1 sends AO onto BE .

Define h to be f on AE ∪ A∞, and g−1 on AO . QED.

Challenge Problem 5: Let A=[0,1], B=[0,1), f(x)=x/2, and
g(x)=x. Using the above construction, solve Challenge
Problem 2.
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