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What songs the Sirens sang, or what name Achilles used
when he hid himself among women, though puzzling
questions, are not beyond all conjecture.

Sir Thomas Browne, 1658
—————
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OVERVIEW

We have mentioned many times in this series of talks issues
related to mathematical foundations and the present talk aims
to expand, a little, on these topics.

Nota Bene: This one-hour talk is descriptive. If you want
detailed proofs of hard results you must seek them elsewhere.

We will touch on some historical efforts and the reason for them
and changes in the way scholars have thought of foundations.

Then we will present the nine Zermelo-Fraenkel axioms and
these axioms with the additional Axiom of Choice. These
systems are usually denoted ZF and ZFC, respectively.

—————
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A FEW WORDS ABOUT THE GREEKS
The ancient Greeks, apparently, invented axiomatic geometry.
They stated the simple rules of logic we usually use today,
assumed properties of lines and points and drew conclusions
therefrom. Euclidean geometry is a powerful and elegant
theory, and was the “gold standard” for logical reasoning for
2500 years. But the Greeks were not only, or even primarily,
interested in mathematics per se. They were trying to
understand how to apply logical methods to derive truths
about the important things in all areas of life.

Plato (about 400 BCE) for instance thought of our sensible
world as a pale and corrupted shadow of the ideal world.

Our senses provide us with impressions of the perfect ideal
things in this ideal world. The ideal world was populated with
objects like “the good” and “beauty” and “integrity” and “red”
and also lines, points and circles.

————— 5
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Things like “the good” are messy and hard to define but we
feel we have a good understanding of points, lines and circles,
even if there are only corrupt inexact examples in the sensible
world.

Mathematics is the test case. Methods of learning facts about
the ideal objects of mathematics, the Greeks hoped, would lead
to methods of use in discerning the true nature of other
denizens of the ideal world such as “love”.

The collection of ideal objects corresponding to a subject area
was, and is still, referred to as the ontology of that area. The
means by which we learn of the properties of these objects—our
senses combined with features of our minds such as our
reasoning ability—is called the epistemology of the subject.

—————
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More modern subject areas have there own ontology and
epistemology. The subject of electrodynamics posits
coordinates, charged particles and electric fields. The scientific
method provides means of testing, and possibly refuting, ideas
about these objects.

One can imagine charged particles as tiny objects ridden by
angels who beat their little wings and steer their steeds
according to a glorious song from the deity. Electrodynamics is
the study of angels and songs. This point of view would have
seemed normal and understandable to both Christian and
Islamic scholars of 1000 CE.

We, on the other hand, see no need for angels in this theory.
The electrons and the song remain.
—————
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IBN AL-HAYTHAM AND NEWTON

Arguably the first recognizably modern scientist was Ibn
al-Haytham (around 1000 CE) who was heavily influenced by
Aristotle but who was far more interested in practical
applications than Aristotle. He wrote at least 77 books, of which
over 50 survive, on a vast range of topics from optics to
practical engineering to mathematics. His example was
imitated and developed further in the Islamic world and, after
1250 CE, in the Christian world too.

Isaac Newton (late 1600s) was at a pinnacle of accumulated
knowledge from these sources, and contributed his own
incredible intellect to invent Calculus, with which he
proceeded to solve problem-after-problem in mathematics and
the sciences.

—————
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During all this time EVERY scholar in the Islamic and Christian
world studied Euclidean geometry to learn how to carry out
deductive reasoning in all subject areas.

Any scholarly work, including works in theology and other
areas, used the axiomatic methods enshrined in Euclidean
geometry. This WAS how one did logical reasoning.

But Newton’s work was different, and horrified many
philosophers of the day, such as George Berkeley. Newton did
not clearly define what he was doing. In particular he
multiplied infinitesimal numbers by infinite numbers, or
divided infinitesimals by each other to create the formulae he
then used to solve other problems.

What, exactly, is the ontological status of an “infinite number?”
—————

9

ZFC and Foundations TOC Historical Background Set Theories in General The Zermelo-Fraenkel Axioms

He never bothered to explain, nor could he, why and exactly
when these calculations worked. They just did. He justified the
mathematics by the results. His claim was, basically, “If my
reasoning is incorrect why do my predictions, which you can
see by looking out the window, always work?”

Most unsettling.

It wasn’t until the 1800s that Richard Dedekind and
Augustin-Louis Cauchy repaired most of this logical
conundrum and re-established a measure of the rigor, lost to
inventors of the new mathematics for 150 years, of Euclidean
geometry.

But was the job complete? The structure (the definition of
numbers and the technology of limit-taking) that had been
built on top of Calculus was complicated. People believed that
the assumptions, the “axioms,” involved were legitimate.

But people were . . . not sure.
—————
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GOTLOB FREGE AND BERTRAND RUSSELL AND

DAVID HILBERT

Attempts to become sure were made by numerous
mathematicians and included Gotlob Frege’s The Foundations of
Arithmetic. This major work made good progress but. . .

. . . in 1901 Bertrand Russel discovered a flaw, an internal
contradiction in Frege’s initial collection of axioms.

Many mathematicians were at work on this, attempting to
construct such systems not subject, provably, to this problem.

David Hilbert’s famous list of 23 problems for the century
included, second on the list,

Prove that the axioms of arithmetic are consistent.

—————
11
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OVERVIEW
People knew that the idea of “set” could provide an answer.
(More about this soon.)

The Axioms of any set theory are statements about sets,
assumed truths. Just as there is no definition of line and point
in Euclidean geometry, there is no definition of set or the
“element of” relation in Zermelo-Fraenkel set theory. But the
entire theory is built from these two things.

The ontology of a set theory is the collective of all sets, which
we may denote Set.

You know what a set is . . . right? This knowledge comes from
the “meta” world of mathematics. This meta-mathematics is
what set theory is to model.

We acquire sure knowledge of sets—epistemology—by using
the rules of our chosen logic in conjunction with the axioms of
the theory.

————— 12
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Set theory is meaningless to humans without some very clear
ideas, in advance, of the structures set theory is to model. On
the most simplistic level, I think of sets as bags of distinct
objects, and elements as the objects in the bags. Set theory does
not tell me this. I just use this mental image to help me
organize my thinking about sets.

On its own, set theory is nothing more (or less) than a
juxtaposition of symbols satisfying rules. There is no reason for
a language without something to communicate. That is why
the study of subject areas—groups, rings, real numbers,
measures, topological spaces, bags and so on—must,
practically, come first. We will then find that set theory helps us
feel more confident that inconsistency has not maneuvered its
way into our forest, at least in an obvious way, while our
attention was devoted to trees.
—————
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The point must be made that set theory does not “construct”
anything, even if that vocabulary is ubiquitous. We presume, at
the outset, that there is a collection of “objects-of-the-mind,” a
universe of discourse we will call Set.

The axioms authorize us to reel in our net, from the ocean of
Set, and conclude we have caught something.

Each individual object is called “a” set. We will assign names to
some of these sets in the course of a mathematical argument,
usually letters or a combination of letters.

After much debate, mathematicians have largely agreed on the
axioms this “object-of-their-collective-mind,” Set, must
possess. Axioms are expressed by reference to the names of
sets. They represent assumed-truths about how Set works, and
though they cannot be proven, these properties could
potentially be contradictory.

—————
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Contradictions don’t present much of a problem for us in most
aspects of our lives but for the intended purpose of Set they
would be deadly, and the ease with which they can be formed
in ordinary human language worrisome.

Whatever axioms we adopt, we insist that it is possible to name
any set without contradiction. We do not intend to imply that
we can unambiguously describe each set—only that the act of
assigning a name to a “certified” set must not produce, alone,
contradiction.

If we find such a contradiction we have decisions to make.

First, if the axioms we use guarantee the existence of this set we
must abandon or change one or more axioms. The choice here
is only about which we modify.

—————
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Second, (and this is the usual situation) if the axioms do not
guarantee the existence of the set we could simply accept that
the set we thought to name was an illusion. The “name” we
gave it actually names nothing. There are no sets with the
given property.

If we cannot bear to give up this set we are back to the first
case. We must give up or change one or more of the axioms.
Perhaps we were mistaken in our perception of one or more of
these elemental features of Set.

As a variation on the theme we might find not a contradiction
but instead strange and horrifying sets, thrust forward perhaps
by the left hand of AC, stumbling and blinking into the bright
lights of mathematical center stage. We might be willing to
abandon cherished axioms to expunge these stains.

The latter paths would not be taken lightly. They would
represent a bifurcation in the collective vision of Set. Heresy is
a serious matter for any primate, with consequences.

—————
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One should ponder the following items about the axioms.

• Is our list of axioms consistent, or do they conflict with
each other? If they conflict, we would interpret that to
mean that we had misunderstood some properties of Set,
through wishful thinking or some other human propensity.

• Properties of Set are intended to mirror properties of
interest to mathematicians. We want to deduce from
obvious properties of Set those that are much less obvious.
Is our list of axioms rich enough to allow us to make
logical inferences about mathematically interesting topics?
About any mathematical topic? Decide any interesting
mathematical question?

—————
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• Does our exploration of the consequences of the axioms
suggest previously unconsidered qualities which Set could
have? These are properties that might have been placed
among the axioms, but their relevance was unknown at the
outset so no one thought to include them. Might there be
consequences of these properties so compelling as to
change our perception of Set?

Setting aside most of the ontological and epistemological issues
as beyond me, let us proceed to outline set theory itself. If you
are troubled by the lack of referents for some of the words, or
want more precise or detailed formulations of these statements,
your option is to study logic and set theory until the feeling
passes.

Though the mathematics follows the standard path, our
philosophical ruminations take one tack among many. Such
matters can be the source of spirited debate.
—————
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THE ZERMELO-FRAENKEL AXIOMS
At this point we will list the axioms of ZFC and briefly discuss
each one.

Not all of the ten axioms below are independent of each other.
Some combinations imply others. We will not worry here about
assembling the minimal list of axioms, just a useful one, free of
obvious inconsistencies and able to generate structures rich
enough to model most of mathematics.

These axioms make reference to the names of sets and the
binary “element of” relation between sets, usually denoted ∈.
All other relations between sets, such as ⊂ or = or ̸= or /∈ are
defined in terms of this relation.

Set theory does not presume to tell us what a set is, or what this
relation means. We provide the meaning ourselves, part of our
vision of Set.
—————
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We need to point out that our description of Set as the
collective of all sets is more a manner of speaking than the
definition of an explicit object inside the theory. We will see
that Set is not itself, cannot be, a set.

To say A is a member of Set is simply shorthand for saying that
A satisfies an unambiguous condition: A is a set.

Collectives such as Set, given by an explicit, unambiguous
condition such as this, are called classes, and classes that are
not sets are called proper classes.

Set is simply too large, and the antinomies of pre-ZF set theory,
such as Russell’s paradox, occur when the axioms of set theory
are applied to proper classes.

Set theory has nothing to say about proper classes.

Let’s get on to the axioms!
—————
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(I) AXIOM OF THE EMPTY SET

There exists a set, denoted ∅, which has no elements.

This axiom gets us started. At least, we’re talking about
something, even if it is nothing.

A set without members is called an individual. Our vision of
Set calls for one.

x ∈ ∅ is always false, no matter what set x represents.
—————

21

ZFC and Foundations TOC Historical Background Set Theories in General The Zermelo-Fraenkel Axioms

(II) THE AXIOM OF EXTENSIONALITY

Sets are equal exactly when they have the same elements.

This axiom constitutes the definition of the equality relation in
ordinary set theory. An implication of this axiom is that sets
have properties of any kind solely by virtue of the elements
(also called members) they contain.

To show a set A equals a set B you need only show that A ⊂ B
and B ⊂ A. Sets with the same elements cannot be
distinguished: they are the same set.

There is, for instance, but a single individual in our set theory.

(note: A ⊂ B is shorthand for “x ∈ A implies x ∈ B.”)
—————
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(III) THE AXIOM OF PAIRING

If A and B are sets there is a set whose elements
are, exactly, A and B.

It follows immediately that ordered pairs with specified first
and second elements can be created, as (a, b) = {a, {a, b}}
Also, letting A = B we can create the nested sets {A}, {{A}},
{{{A}}} and so on.

At this point we can represent most of the common
mathematical objects as sets. A function is a set of ordered
pairs, with (a, b) corresponding to f (a) = b. An ordering on set
A is a set of ordered pairs where (a, b) corresponds to a ≤ b. An
addition on a set A is a set of ordered pairs of the form
((a, b), c), which corresponds to a + b = c.

etc, etc, etc. But we still don’t know how many of these
interesting objects live in our embodiment of Set.
—————
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(IV) THE AXIOM OF INFINITY

There exists a set A with ∅ ∈ A and such that whenever
X is a set and X ∈ A then X ∪ {X} ∈ A.

This axiom makes the structure we are creating much richer by
capturing one view of an infinite set.

—————
24
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(V) THE AXIOM OF UNION

If S is a set of sets there is a set whose elements are exactly
the elements of the members of S.

Rephrasing, this axiom allows us to infer that the union of any
family of sets is itself a set so long as this family can be indexed
by a set.

This condition is a “size” restriction, and in conjunction with
other size restrictions in the two axiom schema (below) seems to
have struck a balance between the desire to infer the existence
of—or “select” or “create”—sets based on any clear criterion
and the need to avoid contradictory axioms.
—————
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(VI) THE AXIOM OF THE POWER SET

For any set A there is a set P(A) consisting of all, and only,
the subsets of A.

The Axiom of the Power Set is not constructive. It has nothing
to say about which sets these are, or how many there are. It
only tells you how a set can be identified as a member of the
class P(A), and that this class is a set, eligible to participate as a
first-class citizen in building other sets.

The effect of including this axiom is to guarantee that if, by any
means, we ever find ourselves in possession of a member of Set
all of whose members are in a set A then that set is an element
of the set P(A).
—————
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In combination with other axioms several of which provide
methods of identifying subsets one can show that P(A) can be
huge in comparison to A. Exactly how huge is an interesting
question.

The size of a set can be defined by its cardinality, as in the
discussion of Dr. Ziskind last week.

One has the feeling that “cardinal(A) < cardinal(B) should
imply cardinal(P(A) ) < cardinal(P(B) )”, yet it is known that
this statement is independent of ZFC.

By this we mean that it can neither be proven nor refuted using
the axioms of ZFC.

This is just the kind of unsettling situation that the circa-1900
Logicians and Set Theorists were working to banish.
Interesting but independent statements of this kind are all too
common, and many Set Theorists claim that this is an invitation
to change our notion of set by adding more axioms.
—————
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(VII) THE AXIOM SCHEMA OF SUBSET SELECTION

Suppose P is an explicit property of sets. If A is any set then
the class of all y ∈ A for which P(y) is true is a set.

Thoralf Skolem, in 1922, proposed that the “explicit properties”
mentioned in the Axiom Schema (here and in the Axiom
Schema of Replacement below) be drawn from carefully
formed statements called predicate formulae. These must be
unambiguous and refer in their statements to sets, not classes.
(Clarifying further the form of such statements is important,
but we will not go further here.)

This is a “restricted” selection axiom. It puts a restriction on P
and requires the elements it is gathering to be inside a set.

—————
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The Axiom Schema of Subset Selection asserts that the class
determined by an explicit property of sets is, when restricted to
a set, itself a set. It is called a “schema” to indicate it is not
really a single axiom. Rather it is a different axiom for each
property P.

This axiom can be used, for instance, to deduce directly that if
C is a proper class then no set can contain all the elements of C.
So classes, if they are not sets, are “larger” than any set.

—————
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As another example of the usage of this axiom, suppose it is a
known that a member of nonempty class of sets, C, defined by
property P is a subset of a known set A. Then the intersection
of all the sets in class C is a set. To see this define predicate
formula Q by

∀y ( (P(y) is true) ⇒ (x ∈ y) ).

The Axiom Schema of Subset Selection using Q and requiring
x ∈ A yields the desired intersection. It is easy to show that this
definition does not depend on which known set A is used, only
that there is one such set in hand.

It might not be common to encounter a proper class without
being able to deduce that some member of the class is a subset
of a known set. But if this were to occur, ZFC provides no
means to deduce that the elements shared by all members of
the class comprise a set.
—————
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We can use this last axiom to define the integers, N.

If you recall, the Axiom of Infinity asserts that there is a set A
with ∅ ∈ A and such that whenever X is a set and X ∈ A then
X ∪ {X} ∈ A.

Given one such A let C be the class of all sets with this same
property. We see that the intersection of all members of the
class, which must be a subset of A, is a set.

And this “minimal” set satisfies the same property that A does.
We define this minimal set to be N.
—————
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What does N look like, and what does this set have to do with
numbers?

We define 0 = ∅ ∈ N. We define 1 = 0 ∪ {0} = {0}. The integer
2 is defined to be 1 ∪ {1} = {0, 1} and more generally
n + 1 = n ∪ {n} = {0, 1, . . . ,n}.

All these sets must be in every one of the sets whose
intersection is N, and so they must be in N too. And the union
of all sets of this form satisfies the property of the Axiom of
Infinity so this union is N.

The order relation on the integers is defined by containment
and integer arithmetic is defined after using N to create the
“proof by induction” technique.
—————
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Once we define the natural numbers N we define non-negative
rational p/q for nonzero q as
{(m,n) | mq = np where m,n ∈ N and m ̸= 0}.

Once we define non-negative rationals we define the
non-negative real numbers to be the set of Dedekind cuts.
These are bounded intervals of non-negative rationals which
start at 0 and have no largest member.
—————
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(VIII) THE AXIOM SCHEMA OF REPLACEMENT

Suppose P is an explicit property of ordered pairs of sets
for which P(x, y) is true for at most one set y for each set x.

If A is any set then the class of all y for which P(x, y)
is true for some x ∈ A is a set.

The word “replacement” in the name of this axiom schema
comes from one of its applications. Suppose P provides a way
of associating a single set f (x) to set x for certain sets x. There is
no need to insist that f is defined for all x ∈ Set. The property P
we have in mind is given by:

P(x, y) is true if y = f (x) and P(x, y) is false otherwise.

—————
34
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For a set A let B be the class formed by “replacing” those x ∈ A
upon which f (x) is defined by f (x). A set z is in the class B
precisely if z satisfies the property

( z ∈ A and f (z) is not defined ) or ( z = f (x) for some x ∈ A ).

We can conclude that B is a set by invoking the Axiom Schema
of Replacement.

Classes identified as sets by the Axiom Schema of Replacement
are not, necessarily, subsets of any previously known set.
However the elements of the new set are associated with
elements of another set so in this sense the newly formed class
is not “larger” than some previously defined set. This loose
size restriction should be enough for this class to be a set. This
axiom declares that it is.

It was the inclusion of this axiom in 1922 by Adolf Fraenkel
(along with independent contributions of Thoralf Skolem) that
finished the job begun in 1908 by Ernst Zermelo, leading to the
modern formulation of set theory shortly thereafter.
—————
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(IX) THE AXIOM OF FOUNDATION

Every nonempty set A has an element
which contains no element of A.

To set the stage for an example of this axiom in action, we first
discuss the reason for the careful distinction between classes
and sets.

Consider the following argument, associated with “Russell’s
Paradox” from a critique by Bertrand Russell of Frege’s pre-ZF
attempts to reform set theory on a more rigorous basis.

The property of sets “x /∈ x” is either true or not for each set x,
and is quite explicit. Let C denote the class defined by this
property.
—————
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Russell noted that C cannot be a set. For if C were a set then it
would either contain itself or not, and both cases lead to a
contradiction. The act of assigning a set name to the class leads
to this contradiction. If ∀x(x ∈ C ⇔ x /∈ x) is true then
C ∈ C ⇔ C /∈ C must be true, which it obviously is not.

To see how the Axiom of Foundation dispatches Russell’s class
C from the ranks of Set, consider {C}. If C is a set the Axiom of
Foundation tells us that C /∈ C which implies C ∈ C, a
contradiction.

As a side effect, if x is a set and x ∈ x we could form the set {x}
which is not well founded. So no set can be an element of itself.
For instance, Set cannot be a set.
—————
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We should point out that classes of this kind, formed by an
“impredicative” property of this type1 can be shown (by
contradiction) to be proper classes using the Axiom of Subset
Selection. Though efficient at dealing with these classes,
banishing contradiction is not the function of the Axiom of
Foundation in set theory.

The earlier axioms asserted that we may speak, in our
mathematical arguments, of reasonable or necessary objects
from our vision of Set. This last axiom seems unnatural in that
it restricts our purview directly.

The main purpose of this axiom, to my way of thinking, is
related to the Zermelo hierarchy of sets which we will not
discuss here.
—————

1Impredicative properties are statements where a set is described with
reference to another set of which it is a member.
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(X) THE AXIOM OF CHOICE

If J and X are sets and A : J → P(X) is an indexed collection of
nonempty sets then there is a function f : J → X such that
f (β) ∈ Aβ for all β ∈ J. f is called a choice function for A.

Our vision of Set allows us to reach around in a known
nonempty set B, without peeking, and grab one member. AC
provides for this through a choice function f on {B}.
Membership in B is the only known property of f (B), which is
quite different from the identification of a single element by
some property of that element, possessed by it alone. But this
“choice” axiom goes far beyond this (very) finite case. It calls
for simultaneous selection of elements from any set of nonempty
sets. The function values of a choice function can then be
gathered to form a set whose elements have no linking
property except through this mysterious function.
————— 39
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AC cannot be proven or refuted in ZF. It is something “extra”
and in the past its acceptance in the formation of mathematical
arguments was quite controversial, particularly when its use
was not concealed by less-controversial but equivalent
reformulations. To this day many mathematicians regard it as a
victory if a proof can be concocted which avoids the use of this
axiom on infinite sets of sets.

However AC cannot be dispensed with, without sacrificing lots
of very compelling mathematics. Without going into the
interesting details (and using words some of which are defined
elsewhere) we list here just a few theorems of ZFC that cannot
be proven in ZF.
—————
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FACTS DEPENDENT ON OR EQUIVALENT TO AC

(i) An infinite set has a countable subset.
(ii) A vector space always has a basis.
(iii) The union of countably many countable sets is countable.
(iv) Any pair of sets have comparable cardinality.
(v) Any set has the same cardinality as an ordinal.
(vi) Every set can be well-ordered.
(vii . . . ) Many more interesting facts.

(A set is well-ordered if it is linearly ordered and every subset
contains a least member. Try to create a well-ordering of the
real numbers.)
—————
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All of these—and many more—simply must go without the
Axiom of Choice or some other powerful axiom to replace it.

Even when AC is not necessary in a proof, it often provides a
means of deducing important facts using very short arguments.

But AC also implies that certain monstrous objects must exist
such as non-measurable sets or bizarre decompositions of a
three-dimensional sphere2 whose (finite number of) pieces can
be rotated and translated (with a finite number of steps) to
create two complete spheres, each of the same volume as the
original sphere. This kind of infestation disturbs people. You
can’t escape results like this in ZFC.
—————

2The Banach-Tarski paradox, 1924
42

ZFC and Foundations TOC Historical Background Set Theories in General The Zermelo-Fraenkel Axioms

Some objections to AC were essentially esthetic in nature,
boiling down to folks asking themselves “Do I want to spend
my professional life debating the properties of objects whose
existence can only be inferred by appeal to this axiom?”

Good question, though no one is forcing these folks to engage
in that debate. Others focussed on the practical, expecting that
AC would prove inconsistent with ZF, or conflict with other
aspects of our vision of Set so central that they simply could
not be abandoned.

A portion of this controversy subsided when Gödel proved that
if ZFC contained an internal contradiction then an
inconsistency could be found in ZF alone. If you use ZFC to
prove some fact about a practical object you may “safely”
assume it to be true. No doubter, who resolutely forgoes AC,
will be able to provide any contradictory evidence unless ZF
itself is inconsistent.
—————
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But there is, in fact, the potential for a presentation of a direct
internal contradiction in ZF. It is at least conceivable (though
regarded as unlikely) that one day using these axioms someone
will prove a statement to be both true and false. That would be
an exciting day to be a mathematician.

Gödel’s proof that there are sensible statements in any system
(not just ours) which could model integer arithmetic and which
cannot be proven to be true or false from within that system
implies that either the statement or its negation could be added
as a new axiom without introducing new internal
contradiction.

This put a definitive end to Hilbert’s original goal for set theory
which was, in part, to invent a provably consistent
axiomatization of mathematics within which every meaningful
mathematical statement could be decided.
—————
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FROM A STUDENT OF SET THEORY

Might not a mouse
in iron grip of owl, review
his forest world
in wonder ’midst his fear?

And see his meadow home below,
and tree and stream as new,
and think
“how beautiful from here?”

—————
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