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INTRODUCTION

These notes accompany the first few of what will be a number
of related talks in this colloquium series (not all on consecutive
weeks of course!) on algebras and representation
theory—critical topics in mathematical physics.

They comprise an outline of (some of) the things that were/will
be said at the talks themselves.

Getting started, our main objects of concern are groups and
vector spaces, structures listed in order of increasing
complexity but, usually, introduced to students in the opposite
order. We follow that tradition, introducing the main ideas of
basic linear algebra here, and will follow with groups in the
next set of talks.

—————
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Each of the objects we will consider in these talks is associated
with functions that display or preserve defining features, and
this will be true in later talks involving bilinear forms and inner
products and algebras as well. Groups are associated with
group-homomorphisms, vector spaces with linear
transformations.

In addition, vector spaces often come equipped with a bilinear
form—such as dot product or a Lorentz inner product or a
symplectic form.

Certain linear transformations that preserve whatever it is that a
bilinear form measures about pairs of vectors are important. These
are called isometries and their presence is a recurring theme.

—————
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After our discussion of linear algebra we will develop a
vocabulary and a small library of examples of groups. In later
talks we will go further and discuss normed algebras, division
algebras, the exponential and logarithm maps, Lie groups and
algebras, Clifford algebras, spinors, Dirac matrices and more.

Most of the results we discuss are not particularly hard to
prove, as these things go, but we will not be bashful about
quoting and discussing important facts with references to the
proofs and getting on with business.

Let’s start!

—————
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LINEAR ALGEBRA BASICS

Algebras are a vector space with a multiplication operation that
satisfies certain properties, so first we establish a few facts and
notation involving vector spaces generally.

The notion of a vector space comes from our natural perception
of certain aspects of the world around us.

For instance the displacement of a butterfly in space, in front of
our nose, can be visualized by an arrow floating in space with
tail at the original position of the butterfly and nose at the final
position.

—————
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Such displacements can be combined or stretched and yield
operations on these visible arrows (at least potentially, in the
metaverse) which we call vector addition and scalar
multiplication.

—————
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Velocities and forces are also commonly represented as arrows
in this way, and in these instances the magnitude (length) of the
arrows have their own meaning attached to the particular
domain of discourse.

At this point we allow the Mathematician’s instinct for
structure to take over and define an “abstract” representation
of these common things, suitable (eventually) for doing
calculations and producing numerical answers to natural
questions.
—————
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A real vector space1 is a set V together with two binary
operations

· : R×V → V

and +: V×V → V

which satisfy a short list of properties suggested by the
behavior of the arrows.

The details are explored early in any linear algebra class but
include such properties as, for instance,

r · (v + w) = r · v + r · w and v + w = w + v
and (rs) · v = r · (s · v) and 1 · v = v.

for real r and s and vectors v and w.

—————
1Vector spaces can be defined over any field, such as the complex numbers

or finite fields. It is even possible to create “vector-space-like” objects called
modules whose scalars are drawn from other algebraic objects called rings,
such as the quaternions. We work with real vector spaces for now.
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There are numerous examples of real vector spaces studied and
used throughout mathematics, engineering and physics.

For instance Rn which consists of the ordered n-tuples

v = (v1, v2, . . . , vn)

of real numbers is a real vector space for each positive integer n.

The cases n = 2 and n = 3 are often called (i.e. “identified
with”) the plane and space, while in some contexts R4 might be
identified with space-time.

The set Mn×m of n × m matrices

M =
(
mi,j

)
with real entries and the usual addition of matrices and scalar
multiplication is a real vector space, always visualized as a
rectangular array of numbers with n rows and m columns.

—————
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The set of all real-valued functions on the unit interval with the
pointwise operations given for real c and functions f , g by

(cf )(x) = cf (x) and (f + g)(x) = f (x) + g(x) for all x ∈ [0, 1]

is a vector space too, apparently different from the previous
examples.

However those earlier vector spaces really aren’t much
different from this example if you think of them “properly.”

A member of R3 is an ordered triple of real numbers and that is
nothing more or less than a function from { 1, 2, 3 } to R.

A member of Mn×m is, similarly, just a real valued function
defined on the nm “location inside” ordered pairs

{ (1, 1), (2, 1), . . . , (n, 1), (2, 1), (2, 2), . . . , (n,m) }.

The way we visualize it is just a stacking of these values in a
way that is convenient for us.
—————
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In fact every vector space you will see in any common
application “is,” or can be construed as, a subset of a function
space with pointwise operations consisting of all functions

f : D → V

where D is an index set and V is a previously defined vector
space which may be chosen to be R if you prefer.

The reason this is a highly convenient way of thinking about
this is that it is easy to show that the ten or so properties
required of scalar multiplication and vector addition hold for
the set VD of all these functions with pointwise operations for
any D and any V, once and for all, in your beginning linear
algebra class.

—————
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So if you have any subset W of VD and want to verify that it,
independently, is a vector space you need only demonstrate
closure of the two operations in W: that is to say, whenever r is
real and v,w ∈ W we have

rw ∈ W and v + w ∈ W.

The other properties required of these operations are
“inherited” from VD and so require no verification.

For instance if you want to know if the set of differentiable real
functions on [0, 1] is a vector space you merely observe that the
sum of two differentiable functions is differentiable and a scalar
multiple of a differentiable function is differentiable and you
may draw that conclusion, since the set R[0,1] of all real valued
functions defined on [0, 1] is definitely a vector space.

—————
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Functions from one vector space to another are called linear
transformations if they “preserve” the vector space structure of
the domain space. Specifically, T : V → W is called a linear
transformation if

T(rv + w) = rT(v) + T(w) for all real r and all v,w ∈ V.

Linear transformation T is called an isomorphism if it is
invertible, an endomorphism if V=W and an automorphism if
it is an invertible endomorphism.

A linear transformation is the equivalent, in higher dimensions,
of a direct variation. It’s graph “goes through” the origin and
restricted to any “line” through the origin it actually is a direct
variation.

If v is a vector in the domain and z(t) = tv for real t is the line
through the origin with “velocity vector” v then T(tv) = tT(v).
The vector T(v) plays the role of a direct variation constant, in
the higher dimensional case a constant vector.

————— 14
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Every vector space has a basis: that is, a linearly independent
spanning set.

Subset B of vector space V is a basis if and only if for each v ∈ V

there is a finite set of scalars v1, . . . , vn and a collection b1, . . . , bn
of distinct members of B for which

v = v1b1 + v2b2 + · · ·+ vnbn

and with the key property that this representation is unique
except for order of terms.

If V is vector space with basis B and T : V → W is linear then T
is completely determined by what it does to members of B.

—————
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If there is a finite basis for V then V is called finite dimensional
and the number of vectors in a basis for a finite dimensional
vector space does not vary. This number is called the
dimension of the space.

In practice it is convenient to give members of a finite basis an
ordering and we will presume this, with another ordering of
the same vectors regarded as a different ordered basis.

An example of a basis for the familiar vector space Rn is the set

En = { e1, e2, . . . , en }

where each ei has a 1 in the i th spot and zeroes elsewhere. For
instance the basis E3 of R3 is

{ (1, 0, 0), (0, 1, 0), (0, 0, 1) }

with basis vectors ordered as listed.
—————
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A finite basis for V let’s us “represent” members of V, and
linear transformations between two such finite dimensional
spaces, as matrices.

This is super-convenient: an abstract vector space is just
that—abstract. Presumably Rn is (more) familiar.

And matrices allow us to perform calculations (usually with
hardware assistance) in a uniform manner, not dependent on
the vagueries of the specific vector spaces involved.

Facts about these matrices are then interpreted in the original
setting.

—————
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We define the coordinate map for ordered basis B containing n
basis vectors, denoted [·]B : V → Rn, to be the isomorphism that
sends

v = v1b1 + v2b2 + · · ·+ vnbn

to (v1, v2, . . . , vn) = v1e1 + v2e2 + · · ·+ vnen ∈ Rn.

Note that in particular we have [bi]B = ei for each i.

We use the following convention:
Members of Rn are columns, i.e. n × 1 matrices. Displaying
these as rows is convenient as above for purely typographical
reasons, to avoid taking up too much space on the page, but
when doing calculations with other matrices they “are”
columns.

—————
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Of course someone else might have chosen ordered basis C for
V and created coordinates for members of V using [·]C and we
need to see how these coordinates are related.

Each ci ∈ C has coordinates [ci]B in basis B. Create n × n matrix

PB←C =

(
[c1]B . . . [cn]B

)
called the matrix of transition from basis C to basis B.

Columns of PB←C are the B-coordinates of the C-basis vectors.

A calculation (check on members of the basis C) shows that

[v]B = PB←C [v]C for any v ∈ V.

PB←C is the “translator” from language C to language B.

And PB←C is invertible with P−1
B←C = PC←B.

—————
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THE MATRIX OF A LINEAR TRANSFORMATION

If f : V → W is a linear transformation between finite
dimensional V with basis B of dimension n and finite
dimensional W with basis C of dimension m define the m × n
matrix fC←B to be

fC←B = ( [f (b1)]C [f (b2)]C · · · [f (bn)]C ).

Verifying on the basis vectors in B we find that for every v ∈ V

[f (v)]C = fC←B [v]B

so the coordinates of f (v) in basis C can be calculated by
left-multiplying the matrix fC←B on the B-coordinates of v.
—————
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For linear transformation f : V → W between finite
dimensional V with basis B of dimension n and finite
dimensional W with basis C of dimension m the individual
entries of

A = (ai,j) = fC←B = ( [f (b1)]C [f (b2)]C · · · [f (bn)]C )

have a meaning in terms of direct variation of coordinates in
these bases.

The entry ai,j is the direct variation constant of the changes
induced by f on the ith range coordinate values with respect to
changes in the jth domain coordinate values. Since there are n
domain coordinate variables and m range coordinate variable
there must be (and are) mn of these variation constants.

Purely in terms of coordinates in these bases we have

y = Ax and
∂yi

∂xj = ai,j.

————— 21
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If D is another basis for W and A another basis for V we have

fD←A [v]A = [f (v)]D = PD←C [f (v)]C = PD←C fC←B [v]B
= PD←C fC←B PB←A [v]A.

This means the matrix fD←A can be calculated as

fD←A = PD←C fC←B PB←A.

We do calculations in bases where the work is easiest and very
often these are not coordinates which are natural or in which
the vector spaces or transformations are originally specified.
Then transfer back to the original context via the (inverse of
the) coordinate map.

Any finite dimensional space is isomorphic (via the coordinate
map) to Rn. There is, essentially, only ONE VECTOR SPACE
of each given dimension!!! And we may use matrices to
describe ALL LINEAR TRANSFORMATIONS between
them!!!

—————
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AFFINE MAPS

Linear transformations are the equivalent of direct variation
functions in the context of vector spaces. Affine maps, on the
other hand, are the equivalent of those functions from
elementary algebra whose graphs are straight lines—whether
they pass through the origin or not.

Specifically, a function g : V → W is called affine if there is a
vector w ∈ W and linear transformation f : V → W with

g = w + f .

In later examples (of groups) we will be particularly interested
in the case of W = V where f is invertible.
—————
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EUCLIDEAN ISOMETRIES

A function T : Rn → Rn is called a Euclidean isometry if
(T(v)− T(0)) · (T(w)− T(0)) = v · w for all v,w ∈ Rn. So T
preserves the notion of Euclidean distance in Rn.

Any rotation about an axis is a Euclidean isometry and so is
inversion: the map T(x) = −x.

The Mazur-Ulam Theorem tells us that any Euclidean isometry
is an affine map: it is linear except for translation of the origin.
The Cartan-Dieudonné Theorem says that any nontrivial linear
isometry on Rn is the composition of no more than n
consecutive reflections, and each pair of reflections forms a
rotation about some axis. The case of dimension 2 will be
featured in some of our examples of groups.
—————
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PROJECTION AND REFLECTION
For nonzero vector v ∈ Rn the function

Projv : Rn → Rn given by Projv(x) =
v · x
v · v

v

is called a projection. The map CoProjv : Rn → Rn given by

CoProjv(x) = x − Projv(x)

is called a coprojection.

CoProjv(x) is always orthogonal to Projv(x) (i.e. their dot
product is 0) and for a = CoProjv(x) and b = Projv(x)

x · x = a · a + b · b (the Pythagorean Theorem).

A calculation shows that reflection, defined by

Reflv(x) = x − 2Projv(x)

is a Euclidean isometry. It is the reflection across the (hyper)
plane perpendicular to v.
—————
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FUNCTIONALS AND THE DUAL

A linear functional on a vector space W is a linear function
f : W → R. The set of all of these functionals is itself a vector
space denoted W∗ and called the dual of W.

If B is a basis for W define for each i in the index set for B the
functional bi : W → R by specifying its values on the basis
members from B.

Specifically, bi(bj) = δi,j where δi,j = 1 if i = j and δi,j = 0 if i ̸= j.

(Note: δ is called the Kronecker delta function and the matrix
(δi,j) = In, the n × n identity matrix.)
—————
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B∗ = { b1, . . . , bn } is a linearly independent set in W∗ and
spans W∗ so is a basis. The dimension of W∗ is the same as W.
In a basis functionals are usually represented as row matrices,
not columns. So if row p represents functional σ and column q
represent vector x then σ(x) = pq ∈ R.

Note that pq = pPB←CPC←Bq = (pPB←C)(PC←Bq) so coordinates of
functions change in a different way (right multiplication by
PB←C rather than left-multiplication by PC←B) when changing to a
new basis. Functionals are called covariant and vectors
contravariant to describe this difference2.

W∗∗ is “essentially the same as” (i.e. naturally isomorphic to)
finite-dimensional W. The isomorphism is through the
evaluation map: if f ∈ W∗∗ there is a unique x ∈ W for which
f (σ) = σ(x) for every σ ∈ W∗. So f is “identified with” this x.
—————

2Commonly represented as vectors, electric fields are best thought of as
functionals and exhibit this covariant behavior under coordinate changes.
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In a certain sense if you understand linear functionals on a
vector space you have gone a long way toward understanding
any linear transformation on that space. Suppose f : W → V is a
linear transformation and C is a finite basis for V.

Then
f (w) = g1(w)c1 + · · · gi(w)ci + · · · gm(w)cm

for linear functionals gi : W → R, called the coordinate
functionals for f in basis C.

If A is a finite basis for n-dimensional W the ith row of the
m × n matrix fC←A is the row matrix gi

E1←A for the coordinate
functional gi.

In any basis f is determined by these m linear functionals.

—————
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PRODUCT OF TWO VECTOR SPACES

If V and W are two vector spaces their product V×W is the set
of ordered pairs (v,w) for all v ∈ V and w ∈ W with scalar
multiplication and vector addition defined by

a(v,w) = (av, aw) and (v,w) + (p, q) = (v + p,w + q).

If A is a finite basis for V and B is a finite basis for W then
{ (0, q), (p, 0) | p ∈ A and q ∈ B } so the dimension of a product
vector space is the sum of the dimensions of the factor spaces.
Example: R2 and R× R.

A function g : V×W is called a bilinear form if both g(p, ·) and
g(·, q) are linear for each p ∈ V and q ∈ W.

Unless it is the zero function a bilinear form is not linear. We
will encounter these often.
—————
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TENSOR PRODUCT OF TWO VECTOR SPACES

If V and W are two vector spaces their tensor product V⊗W is
the set of bilinear functions on V∗ ×W∗.

This set is made into a vector space with the usual pointwise
operations, and its members are called tensors.

If q ∈ V and p ∈ W the element q ⊗ p defined by
(q ⊗ p)((σ, τ )) = σ(q)τ (p) is called a simple tensor.

If A is a finite basis of V and B is a finite basis of W the set of
simple tensors of the form a ⊗ b for a ∈ A and b ∈ B span
V⊗W and form a linearly independent set and so constitute a
basis.

So the dimension of a tensor product vector space is the
product of the dimensions of the factor spaces.
—————
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