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INTRODUCTION

These notes accompany the second set of what will be a
number of related talks in this colloquium series (not all on
consecutive weeks of course!) on algebras and representation
theory—critical topics in mathematical physics.

They comprise an outline of (some of) the things that were/will
be said at the talks themselves.

In the previous set of talks we gave a quick review of linear
algebra. Here our main objects of concern are groups. We
discuss the definitions, a few theorems and most pertinent (for
us) examples. Of particular interest will be representations of
these in matrices.

Some groups related to tessellation or tiling of the plane are
considered as interesting and important examples.

—————
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GROUPS
A group is a set together with an associative binary operation
with identity and for which elements have inverses.

More precisely, a group is a set G together with a binary
operation ⊙ : G × G → G with the following properties.
▶ For all a, b, c ∈ G we have a ⊙ (b ⊙ c) = (a ⊙ b)⊙ c.
▶ There is an element e with a ⊙ e = e ⊙ a = a for all a ∈ G.
▶ For each a there is an element b for which a ⊙ b = b ⊙ a = e.

The element b in the third item is called the inverse of a with
regard to this operation. Depending on the specific notation
used for ⊙ this element may be denoted a−1 or −a. The last
notation is only used when the group is commutative: i.e.
▶ a ⊙ b = b ⊙ a for all a, b ∈ G.

Commutative groups are often called Abelian.
—————
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When studying small groups it is often convenient to specify
the group operation by a “multiplication table.”

Here is a table for a generic group with four elements.

⊙ e a b c
e e a b c
a a a2 a ⊙ b a ⊙ c
b b b ⊙ a b2 b ⊙ c
c c c ⊙ a c ⊙ b c2

Associativity and the uniqueness of inverses limits the
possibilities for table entries.

There are only two possible groups (except for re-labeling of
the elements) of order1 four and both are Abelian.
—————

1The order of a group is defined to be its cardinality, as a set.
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When G has more than one operation in play the notation
(G,⊙) may be used to remind us, specifically, which group
structure on G we have in mind.

You have seen many groups before. If V is any vector space
(V,+) is an Abelian group, and that includes (R,+).

If Q and Z denote the rational numbers and integers,
respectively, then (Q,+) and (Z,+) are Abelian groups.

If R+ and R∅ are the positive real numbers and the nonzero real
numbers, respectively, then (R+, ·) and (R∅, ·) are Abelian
groups, where · denotes ordinary multiplication. Also {−1, 1}
and the singleton set {1} are groups with multiplication,
subgroups of (R∅, ·).

If C denotes the complex numbers and S denotes the unit
complex numbers then both the nonzero complex numbers C∅

and S are Abelian groups with complex multiplication.
—————
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ROTATIONAL SYMMETRY IN TWO DIMENSIONS
Why do we think an object such as a square or an equilateral
triangle or a circle is symmetric?

7
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ROTATIONAL SYMMETRY GROUPS

We will call a “symmetry move” a way of rotating or otherwise
performing a rigid motion on an object in such a way that after
the motion is complete we cannot detect that anything has been
done without examining the “labels” on the corners.

Composition of “symmetry moves” is a “symmetry move.”
Reversing a “symmetry move” is also a “symmetry move”.
Doing nothing is the “identity move”. The collection of all
symmetry moves is, therefore, a group.

————— 8
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ROTATIONAL SYMMETRY GROUPS

Cataloging all the symmetry moves for a certain shape reveals
important information about it. You almost get the sense that
this catalog DEFINES the shape in elemental ways, maybe all
the ways that are important to you. What is it, exactly, that is
the same when two shapes have the same symmetry group?

Let’s try to do that specifically for these shapes by “doing” the
“symmetry moves” we can think of using matrices.

Remember, the matrix that acts on vectors in R2 to implement a
linear transformation T is given by (T(e1) T(e2) ) where the ei
are unit vectors in the axis directions and members of R2 are
represented as columns.
—————
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PARALLELOSYM: ORDER TWO

(
1 0
0 1

) (
−1 0
0 −1

)
Reflection across the origin (180 degree rotation) is the only
possible “symmetry move” here, and even that is made possible
only by choosing the origin at the center of the parallelogram.

Choosing an origin is part of recognizing a symmetry move.

10
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ISOSCSYM: ORDER TWO

(
1 0
0 1

) (
−1 0
0 1

)

11
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RECTSYM: ORDER FOUR

(
1 0
0 1

) (
−1 0
0 1

) (
1 0
0 −1

) (
−1 0
0 −1

)

12
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SQUARESYM: ORDER EIGHT

e =
(

1 0
0 1

) (
−1 0
0 1

)
b =

(
1 0
0 −1

) (
−1 0
0 −1

)

c =
(

0 1
1 0

)
a =

(
0 −1
1 0

) (
0 1
−1 0

) (
0 −1
−1 0

)
a2 = −e b2 = c2 = e ab = −ba = c cb = −bc = a ca = −ac = b

SquareSym is not commutative!2

2Later we encounter a different group of order 8 related to the quaternions.
13
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CIRCLESYM

(
1 0
0 1

) (
−1 0
0 1

) (
cos(t) − sin(t)
sin(t) cos(t)

)
(
− cos(u) − sin(u)
− sin(u) cos(u)

)

Lots of symmetry . . . BIG symmetry group . . . not commutative
. . . lots of subgroups, including all the symmetry groups we

looked at previously.

14
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LOTS OF SUBGROUPS

The notation A ≤ B indicates that A is a subgroup of B. We
have:

IsoscSym ≤ RectSym ≤ SquareSym ≤ CircleSym

What does it mean about the object when it’s symmetry group
is a subgroup of the symmetry group of another object?
—————
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COMPLEX NUMBERS AS MATRICES

Letting the complex number i be represented as
(

0 −1
1 0

)
and

eit =
∑∞

n=0
tn

n! i
n it is straightforward to show that

eit = cos(t)
(

1 0
0 1

)
+ sin(t)

(
0 −1
1 0

)
=

(
cos(t) − sin(t)
sin(t) cos(t)

)
which is a rotation matrix, counterclockwise by angle t. The
sum formulas for sin and cosine show that eiseit = ei(s+t).
For positive integer k the matrices

Rk =

{
e

2π
k i, e

2π
k 2i, . . . , e

2π
k ki =

(
1 0
0 1

)
= I2

}
forms a group of rotations of the plane of order (that is, size) k.
These groups are cyclic: that is, integer powers of a single
element (in this case e

2π
k i) generate the whole group.3

—————
3If α is an irrational multiple of π do the powers of eiα form a group?
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THE HEXAGON

Evaluating e
2π
k ni =

(
cos

( 2π
k n

)
− sin

( 2π
k n

)
sin

( 2π
k n

)
cos

(2π
k n

) )
for k = 6 we find

R6 =
{

e
π
3 i, e

π
3 2i, eπ i, e

π
3 4i, e

π
3 5i, e2π = I2

}
is part of the symmetry group of the hexagon.

The rest consists of maps that reverse the order of corners and
then rotate, so we have a symmetry group of order 12

HexSym = R6
⋃ (

R6

(
−1 0
0 1

))
.

—————
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THE SEPTAGON

Something similar happens with odd numbers of
edges/vertices.

R7 =
{

e
2π
7 i, e

2π
7 2i, e

2π
7 3i, e

2π
7 4i, e

2π
7 5i, e

2π
7 6i, e2π = I2

}
with the complete symmetry group of order 14 given as

SeptSym = R7
⋃ (

R7

(
1 0
0 −1

))
.

Notice here that the reflection across the y axis is required to
produce the “second 7” of reversed rotations. With an even
number of vertices either x or y reflection does the job.
—————
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TESSELATIONS OF THE PLANE

The plane can be covered or “tiled” with repeating regular
shapes in many ways and these patterns, also called
tessellations, have been studied by many mathematicians from
ancient times to this very day, including by our own
mathematician/artist Luke Rawlings.
—————

19
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In this and the previous case the picture can be shifted in
various ways and rotated/reflected to lie on itself.
—————

20
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These correspond to reflections/rotations in the plane coupled
with translations: these “symmetry moves” are affine maps.
—————

21
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To analyze the regularities of the covered plane4 one might
consider both the symmetries of the individual tiles and
symmetries of the overall pattern, and groups appear naturally
in trying to understand both parts of this puzzle.

A symmetry of a tile must correspond to an isometry of the
plane and must be affine so we don’t need to consider the
possibility of “wild” isometries that map a tiling onto itself, by
the Mazur-Ulam Theorem.

Any linear isometry of the plane is a combination of one or two
reflections, by the Cartan-Dieudonné Theorem, and two
reflections form a rotation.

The affine transformations that map a tiling onto itself form a
group. Any such transformation has the form T(w) = v + Fw
for some constant vector v and some rotation or reflection F.
—————

4There are “quasi-repeating” tilings called Penrose tilings which are
fascinating and exhibit patterns, even reflection or rotational symmetries, but
not translational symmetries. Their study goes well beyond our introduction.

22
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Suppose H is a group of translations that “preserve” a
tessellation and G is a group of linear transformations (i.e.
rotations and/or reflections) that also preserve it. Then any
affine map of the form

T(w) = v + Fw

will too if the maps A(w) = v + w and B(w) = Fw are in H and
G, respectively.

If S(w) = z + Mw is another such then K = S ◦ T must also
preserve the tiling.

K(w) = (S ◦ T)(w) = S(v + Fw) = z + M(v + Fw)

= Mv + (z + MFw).

So the translations v and the linear transformations M must be
closely related: any M in G must map any translation vector
from H to another translation vector from H.
—————

23
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If (H,⊙) and (G,⊗) are groups the direct product group is
defined with set H × G = { (h, g) | h ∈ H, g ∈ G } with
operations (h1, g1)(h2, g2) = (h1 ⊙ h2, g1 ⊗ g2).

However if we consider the situation of symmetry group of the
previous slide where H is a group of translations and G is a
group of linear transformations, composition of affine maps
corresponds to operation

(z,M)(v,F) = (z + Mv,MF)

and not
(z,M)(v,F) = (z + v,MF).

The product set with operation corresponding to composition
of affine functions is called a semidirect product and this type
of group is the one studied by crystallographers and . . . some
mathematicians.
—————
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Lets take another look at the set of affine transformations: all
maps from R2 to R2 of the form

T(w) = v + Fw

for 2 × 2 matrix F and v ∈ R2.

The action of T on w can be calculated as the top two entries of(
F v

0 0 1

)(
w
1

)
=

f1,1 f1,2 v1
f2,1 f2,2 v2
0 0 1

w1
w2
1

 =

(
Fw + v

1

)
.

The product of this matrix with another representing affine S(
M z
0 0 1

)(
F v

0 0 1

)
=

(
MF z + Mv
0 0 1

)
has the same form, so compositions of affine functions and,
ultimately, S ◦ T(w) itself, can be calculated by matrix
multiplication alone.

The set of all these 3 × 3 matrices is a group, designated Aff2.
————— 25
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Zn AND n
Zn is the non-negative integers less n made into a group with
mod n arithmetic.

We let a + b mod n be the remainder of a + b after division by
n. Any such group is Abelian.

Thus in Z2 we have set { 0, 1 } and 1 + 1 mod 2 = 0.

And in Z4 we have set { 0, 1, 2, 3 } with

1 + 1 mod 4 = 2, 1 + 2 mod 4 = 3, 1 + 3 mod 4 = 0,

2 + 2 mod 4 = 0, 2 + 3 mod 4 = 1, 3 + 3 mod 4 = 2.

Z4 and Z2 × Z2, which has set { (0, 0), (1, 0), (0, 1), (1, 1) }, are
the two possible groups5 of order 4: any member of Z2 × Z2
added to itself is the identity. But in Z4 we find 3 + 3
mod 4 = 2.
—————

5We will prove this later.
26
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n is the group of positive integers less than n and relatively
prime to n with multiplication mod n. (By definition this
always includes 1.)

Using the fact that integers a and n are relatively prime if and
only if there are integers x and y for which xa + yn = 1 it is
straightforward to show that mod n multiplication is closed in
n. These groups are all Abelian too.

For instance 8 has set { 1, 3, 5, 7 } and so its table must be like
the table of Z4 or Z2 × Z2.

But 9, 25 and 49 are all “equal to” or in the usual vocabulary
“congruent to” 1 in mod 8 arithmetic, we see the table matches
that of Z2 × Z2.

The order or “size” of n is not so easy to determine as n grows.
That number is called “Euler’s totient function” and explicit
formulas for it involve the prime factorization of n.
—————
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THE QUATERNION GROUP
The group of order 8 given by set {±1, ±⃗i, ±⃗j, ±k⃗ } and
multiplication table determined by associativity and

i⃗
2
= j⃗

2
= k⃗

2
= −1 and i⃗ j⃗ = k⃗, j⃗ k⃗ = i⃗, k⃗ i⃗ = j⃗

is called the quaternion group. I am tempted to call this one
Quat, but the anti-euphonious nature of the word forbids it.

The set H = {w + x⃗i + y⃗j + z⃗k | w, x, y, z ∈ R }
is a four-dimensional real vector space and will be important to
us later. It contains the quaternion group and its nonzero
members H0 form a group themselves with the implied
multiplication. The unit sphere of quaternions may be
identified with the 3-dimensional sphere in R4 and may be
denoted S3.

S3 allows us to handle rotations in R3 in a way that is similar to
how complex numbers do in the plane.
————— 28
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QUATERNION’S “ARE” MATRICES TOO
As with complex numbers, you can reproduce the quaternion
multiplication table using matrices as group elements, and in
this sense the quaternions “are” matrices.

Consider the real vector space consisting of all matrices which
can be formed, for real w, x, y and z, as

Q =w
(

1 0
0 1

)
+ x

(
0 −1
1 0

)
+ y

(
i 0
0 −i

)
+ z

(
0 i
i 0

)
=

(
w 0
0 w

)
+

(
yi −x + zi

x + zi −yi

)
=

(
w + yi −x + zi
x + zi w − yi

)
.

The matrix Q is associated with q = w + x i⃗ + y j⃗ + z k⃗.

The unit quaternions are those for which w2 + x2 + y2 + z2 = 1.
These matrices are exactly those complex matrices for which
MM∗ = I2 and they are also known as special unitary matrices.
—————
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A BIT MORE NOTATION INVOLVING QUATERNIONS
You may recall that S is the set of rotations in the plane, which
may be identified with the group of unit complex numbers and
also the unit circle in the plane.

If conjugation of quaternion q = w + x⃗i + y⃗j + z⃗k = w + v⃗ is
given by q∗ = w − v⃗ then the square magnitude6 of q is given as
the positive real number qq∗ = w2 + x2 + y2 + z2. A rather
tedious calculation shows that ∥pq∥ = ∥p∥ ∥q∥ for any p, q.

It follows that S3, the unit-magnitude quaternions, is also a
group with Hamilton product.

Note that Sn is the unit sphere in Rn and not the set of n-tuples
S× · · · × S, whose coordinates are points on the unit circle or, if
you prefer, unit magnitude complex numbers. That direct
product group is called a torus, denoted Tn.
—————

6Unlike complex conjugation, we have (pq)∗ = q∗p∗ and not (pq)∗ = p∗q∗.
30
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CONTINUOUS GROUPS
CircleSym is different from the other symmetry groups: it is
“continuous” in the sense that its members can be identified by
a continuous matrix-valued function of a real parameter.(

cos(t) − sin(t)
sin(t) cos(t)

) (
− cos(u) − sin(u)
− sin(u) cos(u)

)
Members of H0, the group of nonzero quaternions,

w + x⃗i + y⃗j + z⃗k

are also defined by the real coefficients on 1, i⃗, j⃗ and k⃗.

We will see that the quaternions themselves can be represented
as matrices, so the nonzero quaternions can be represented as a
continuous group of matrices with four real parameters.
—————
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The continuous Heisenberg group, H3(R), is the set of 3 × 3

matrices of the form

1 a b
0 1 c
0 0 1

 with three real parameters.

If A = I3 + U1 and B = I3 + U2 are two Heisenberg matrices
then AB = I3 + U1 + U2 + U1U2 which is also a Heisenberg
matrix. And 1 a b

0 1 c
0 0 1

−1

=

1 −a ac − b
0 1 −c
0 0 1

 .

It is a subgroup of the six-parameter group of affine
transformations in two dimensions, Aff2, the group of matrices
of the form f1,1 f1,2 v1

f2,1 f2,2 v2
0 0 1


—————
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We will want to consider n × n matrices with real, complex or
quaternion entries. The real vector space of these will be
denoted Mn×n(F) where F is one of R, C or H.

Since C has dimension 2 over R and H has dimension 4 over R
it is easy to see that these matrix vector spaces have dimensions
n2, 2n2 or 4n2 as real vector spaces.

F = C M = M1 + iM2

F = H M = M1 + M2⃗i + M3⃗j + M4k⃗

= (M1 + M2⃗i ) + (M3 + M4⃗i ) j⃗.

—————
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GLn(F) consists of the members of Mn×n(F) which are
nonsingular: that is

Mx = 0 implies x = 0 where x is taken from Fn.

In the real or complex case this happens exactly when M is
invertible, and that happens exactly when M has nonzero
determinant. But the usual definition of determinant uses the
commutative property throughout, and so the determinant
construction fails for quaternionic matrices.

Still, quaternionic M is nonsingular exactly when it has an
inverse matrix7, and by representing quaternions themselves as
matrices a determinant condition equivalent to invertibility can
be resurrected for quaternionic matrices too.

GLn(F) is a group for each n and for all three possibilities for F.
—————

7A one-sided quaternionic inverse matrix is actually a two-sided inverse,
but this is not entirely obvious.

34
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GLn(F) has lots of named subgroups corresponding to various
properties and the names vary depending on F.

For instance On is the subgroup of GLn(R) consisting of the
orthogonal matrices8 that is, those matrices with MT = M−1.
Note: such matrices must have determinant ±1.

The real special linear matrices and SLn(R) are the matrices
with determinant 1.

The intersection of any two subgroups of a group is also a
subgroup, and in this case we have On ∩ SLn(R) = SOn, the
special orthogonal group.

These groups will all be very important to us later.

—————

8CircleSym is actually O2, and SO2 is the subgroup consisting of the
matrices with positive determinant.
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Un, the unitary matrices, is the subgroup of GLn(C) consisting
of those matrices for which M∗M = In where M∗ denotes the
Hermitian conjugate of matrix M, the conjugate transpose of M,
and In is the n × n identity matrix.

The determinant of a unitary matrix must have magnitude 1.
The complex matrices with determinant 1 is denoted SLn(C),
the complex special linear group.

The subgroup of Un consisting of those matrices whose
determinant is actually 1, Un ∩ SLn(C), is called the special
unitary group and denoted SUn.

We will consider symplectic groups and groups of quaternionic
matrices later.

None of these groups are commutative.
—————
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A NOMENCLATURE PUZZLE
These groups have been studied for over 100 years and every
conceivable feature and property is known and recorded.
Somewhere. I find it entirely odd that the group of real matrices
with determinant ±1 has no name, other than its defining
description. Nor does the group of complex matrices with
determinant of magnitude 1. If ∥det(M)∥ = ∥ det(N)∥ = 1 then

∥ det(MN)∥ = ∥ det(M) det(N)∥ = ∥ det(M)∥ ∥det(N)∥ = 1.

1 = det(In) = ∥det(MM−1)∥
= ∥det(M)∥ ∥det(M−1)∥ = ∥ det(M−1)∥.

I have queried and received null responses from 8 different
mathematicians including one famous author of a linear
algebra text, two other not-so-famous authors of such texts, an
author of a wonderful text on Lie Groups and Algebras and an
author of a well-known book on Matrix Analysis.

————— 37
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I posted the question to the Math Stack Exchange site at
math.stackexchange.com. No joy.

ChatGPT4 gave responses (yes, it was PROBED) that sounded
like a student who hadn’t done enough homework trying to
transform BS and fancy vocabulary into an answer on an essay
exam. It was very polite though.

A puzzle.
—————

38
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GROUP HOMOMORPHISMS
A group homomorphism is a map F : (G,⊙) → (H, ·) between
two groups that preserves the group operation.

F(g ⊙ k) = F(g) · F(k) for all g, k ∈ G.

If group homomorphism F is invertible then F−1 is also a group
homomorphism and it is called a group isomorphism. It is
called a group endomorphism if (G,⊙) = (H, ·) and a group
automorphism if it is an invertible group endomorphism.

This vocabulary is very similar to the vocabulary for linear
transformations on a vector space, and in fact variants of these
terms are to be found throughout mathematics.

We write G ∼= H if G and H are isomorphic groups.

Isomorphic groups are regarded as, essentially, the same group.
They are two manifestations of the same group structure.
—————
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A permutation of any set G is a one-to-one and onto function
P : G → G. So invertible P “switches around” the members of
G. The set of ALL permutations on G is a group with
composition of functions, denoted PermG. The identity map id
on G is the group identity. Every group (G, ·) is (isomorphic to)
a subgroup of a permutation group. To see this we will create a
group isomorphism.

If g ∈ G define Fg : G → G by Fg(h) = g · h for all h ∈ G.

So if g1 and g2 are in G then for every h ∈ G

(Fg1 ◦ Fg2)(h) = Fg1(g2 · h) = g1 · (g2 · h) = (g1 · g2) · h = Fg1·g2(h).

So Fg1 ◦Fg2 = Fg1·g2 and in particular we have Fg−1 ◦Fg = Fe = id.

Let H be the set of all Fg for g ∈ G.

(H, ◦) is a subgroup of (PermG, ◦).
Then the function Ψ: G → H given by Ψ(g) = Fg for each g ∈ G
is a group isomorphism onto H.
—————
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We now show that any group of permutations G on a finite set
A = { 1, . . . ,n } is associated with a group of n × n matrices
with matrix multiplication. If σ is a permutation let

Ψ(σ) =
(
eσ(1) eσ(2) · · · eσ(n)

)
be the matrix of column basis vectors in permuted order. So
Ψ(σ)(ei) = eσ(i) for each i. This matrix re-orders the column
vectors in the same way that σ re-orders the integers.

A calculation shows that

Ψ(σ)Ψ(τ) = Ψ(σ ◦ τ)
and so this set of matrices with matrix multiplication is
isomorphic to the permutation group G.

The composition of isomorphisms is an isomorphism. Our
conclusion is that any permutation group on a finite set of
integers—and therefore any finite group at all—is isomorphic
to a group of permutation matrices.
—————
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Here is another interesting isomorphism. Consider the group
(Rn,+), the vectors with ordinary vector addition.

Consider too the n × n matrices of the form (λ1, . . . , λn) where
the numbers λi are positive, arranged along the diagonal of the
matrix, with all other entries 0. The set (H, ·) of all matrices of
this form with matrix multiplication is a group, a subgroup of
the group of all invertible n × n matrices.

Define Ψ: Rn → H on x ∈ Rn by Ψ(x) = diag
(

ex1
, . . . , exn

)
.

It is easy to show that Ψ(x + y) = Ψ(x) ·Ψ(y), that Ψ is
invertible (apply the logarithm function to the diagonal
elements) and is an isomorphism.

This is an example of something that will be of concern to us in
more complex (and, arguably, more interesting) situations: the
representation of a group as a group of matrices with matrix
multiplication.
—————
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COUNTING WITH COSETS
If S is a subgroup of group G and g ∈ G the sets

gS = { gs | s ∈ S} and Sg = { sg | s ∈ S}

are called left or, respectively, right cosets of S in G.

gS ⊂ S if and only if g ∈ S if and only if gS = S and the same is
true for right cosets.

And if gS ∩ hS ̸= ∅ then there are members s1, s2 ∈ S with

gs1 = hs2 =⇒ h−1g = s2s−1
1 ∈ S.

It follows that hS = hh−1gS = egS = gS. So left cosets are either
disjoint or equal. The same result holds for right cosets.

Since cosets partition G and cosets all have the same cardinality
we have |G| = (number of left cosets)|S| where we use |A| to
denote the cardinality of set A. Therefore the cardinality of any
subgroup S must divide the cardinality of G.
—————
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This counting principle is a powerful tool to understanding the
structure of groups of a given cardinality.

If G is a group and g ∈ G the cyclic group generated by g,
denoted (g), is the commutative group consisting of all gn

where n ∈ N. This set could be finite or infinite, and the
cardinality of (g) is called the order of g. The order of any
element of g is a factor of the cardinality of G.

You may recall that I said there were only two groups of order
4, and we can prove this easily now.

Suppose G is such a group. It either has an element of order 4
or not. If |(g)| = 4 then G = (g) and its table is determined. If
not it has three elements of order 2 and one (the identity) of
order 1. In that case its table is determined also, and easily seen
to be (isomorphic to) Z2 × Z2.
—————
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NORMAL SUBGROUPS AND THE KERNEL

A subgroup N of group G it is called normal if gNg−1 ⊂ N for
every g ∈ G. This implies gN ⊂ Ng and (switching g and g−1)
Ng ⊂ gN for every g, so gN = Ng for every g and gNg−1 = N.

Left and right cosets coincide for a normal subgroup.

If T : G → H is a group homomorphism it is easy to show that
the kernel of T, defined by ker(T) = { g ∈ G | T(g) = eH }, where
eH is the identity element of H, is a normal subgroup.

ker(T) is nonempty, since T(eG) must equal eH. It could also,
possibly, be all of G if T is the trivial homomorphism. And
ker(T) = { eG } if and only if T is one-to-one.
—————
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If A,B are two nonempty subsets of group G define

AB = {ab | a ∈ A, b ∈ B }

If N is normal in G and W is the set of cosets of N then a
product on W given by

gN ⊙ hN = (gN)(hN) = (Ng)(hN) = NghN = (ghN)N = ghN

is well-defined (that is, it doesn’t depend on the representatives
gN and hN chosen to define it) and makes W into a group called
the quotient group of G by N. The quotient group W is usually
denoted G/N. Its identity is the coset N = eGN. The function

T : G → G/N via T(g) = gN

is a group homomorphism with kernel N.

So normal subgroups coincide exactly with the kernels of
homomorphisms.
—————
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Suppose T : G → H is a group homomorphism.

Define the image of T to be the set

T(G) = {T(g) | g ∈ G } ⊂ H.

Note that T(G) is closed under multiplication in H, since every
element in T(G) is of the form T(g). So
T(g)T(h) = T(gh) ∈ T(G).

Also, if T(g) ∈ T(G) then eH = T(eG) = T(gg−1) = T(g)T(g−1) so
T(g−1) = T(g)−1 ∈ T(G).

This means T(G) is a subgroup of H.

—————
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THE FIRST ISOMORPHISM THEOREM

Let N = ker(T). Then G/N is isomorphic to the image T(G) of T.

Define Ψ: T(G) → G/N by Ψ(T(g)) = gN.

If T(g) = T(h) then T(h−1g) = eH so h−1g ∈ N. But then
hN = hh−1gN = gN. So Ψ is well-defined.

And it is obviously onto: any gN ∈ G/N is Ψ(T(g)).

Ψ(T(g)) = Ψ(T(h)) implies hN = gN so h−1g ∈ N = ker(T). So
T(h)eH = T(h)T(h−1g) = T(hh−1g) = T(g): that is, Ψ is also
one-to-one.

Finally,

Ψ(T(g)T(h)) = Ψ(T(gh)) = ghN = gNhN = Ψ(T(g))Ψ(T(h))

So Ψ is a homomorphism, and invertible: T(G) ∼= G/N.
—————
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SIMPLE GROUPS

A group is called simple if it has no nontrivial normal
subgroups. This is equivalent to saying that the only nontrivial
homomorphisms with domain G are isomorphisms9.

Simple groups are important because they are “rigid” in the
sense that there is no way to “switch around” their members
except in ways that preserve everything important about the
group. Simple groups are the “atoms” of the group “periodic
table.” An important goal in understanding a group is to
understand how its atoms—the simple groups that may be
nested inside if it is not, itself, simple—are organized.

The words “simple” and “irreducible” are related, and we will
have more to say about this later.
—————

9No commutative group of non-prime order can be simple. So simplicity
is a concept more relevant for non-commutative groups.
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MORE EXAMPLES OF HOMOMORPHISMS AND

NORMAL SUBGROUPS

Let S denote the group of complex numbers of norm 1 and
define T : R → S by T(x) = e2πx i. So T is onto S but not
one-to-one. And T(x + y) = e2π(x+y) i = e2πx ie2πy i = T(x)T(y) so
T is a group homomorphism.

T(x) = 1 if and only if x ∈ Z so Z = ker(T).

That means S ∼= R/Z.

For F = R or C we know that det : GLn(F) → F∅ is a group
homomorphism.

ker(det) = SLn(F) and so GLn(F)/SLn(F) ∼= F∅

—————

50

AOS2 TOC Intro Groups Symmetry Groups Other Groups Continuous Groups Homomorphisms

Let S3 denote the group of quaternions10 of norm 1. This is the
3-dimensional sphere in R4. We identify R3 with the space of
pure quaternions in R4.

It is a fact (references provided upon request) that any rotation
in space (i.e a member of SO3) can be implemented using unit
quaternions as either q⃗vq∗ or (−q)⃗v(−q∗) where q ∈ S3 and v⃗ is a
point in space, and these two quaternions ±q are the only two
quaternions that will act as this rotation. And any map
v⃗ → q⃗vq∗ is an isometry on space with determinant 1 and so is
actually a rotation.

The map T : S3 → SO3 given by this map is a homomorphism:

T(pq)⃗v = (pq)⃗v(pq)∗ = pq⃗vq∗p∗ = p(T(q)(⃗v))p∗ = T(p)T(q)⃗v.

So SO3 ∼= S3/{±1}.

Note: Sn/{±1} is called real projective space, denoted RPn.
—————

10We will see later that S3 ∼= SU2.
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It is a fact (references provided upon request) that any rotation
in R4 (i.e a member of SO4) can be implemented using unit
quaternions as either pwq∗ or (−p)w(−q∗) where p and q are in
S3 and w is a point in R4: that is, a quaternion.

The two pairs of quaternions (p, q) and (−p,−q) are the only
two unit quaternion pairs that will act as this rotation. And any
map w → pwq∗ is an isometry on R4 with determinant 1 and so
is actually a rotation of R4.

The map T : S3 × S3 → SO4 given by this map is a
homomorphism and this is proved by means very similar to
the previous slide.

So SO4 ∼= (S3 × S3)/{ (1, 1), (−1,−1) }.
—————
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A COMPENDIUM OF EXAMPLES
We have seen MANY example groups in this chunk of slides.

V (any vector space) and ,R,C,Q,Z,H,Mn×n(F) with addition
R+,R∅,C∅,H∅ and the tori Tn with multiplication

{−1, 1 }, S and S3 (unit spheres of dimensions 0, 1, 3)

Parallelo, Isosc, Rect, Square, Circle, Hex, Sept (symmetry)

Rk (finite cyclic, order k) Aff2 (affine group in two dimensions)

Zn and RelPrimen (finite abelian, mod n arithmetic on integers)

Quat and H3(R) (Heisenberg) and PermG (permutations)

GLn(F), SLn(R), SLn(C) (general and special linear)

Real matrices: On, SOn (orthogonal and special orthogonal)

RP3 = S3/{±1} (real projective space of dimension 3)

Complex matrices: Un, SUn (unitary and special unitary)

—————
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