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1. Some Geometry Related to Complex Numbers

A complex number z = a + b i is a point (a, b) in the plane R2 with binary
operations + and · given by (a+bi)+(c+di) = (a+b)+(c+d) i and (a+b i)·(c+d i) =
(ac− bd) + (bc+ ad) i. The notation a+ b i is just an alternative symbol to denote
the ordered pair (a, b). It is quite convenient.

Normally R is identified with the standard horizontal or x axis and the “pure
imaginary” numbers with the vertical or y axis in the usual visualization of R2 as
the xy plane.

There is an additive identity 0 = 0 + 0 i and multiplicative identity 1 = 1 + 0 i.
The operations are associative and commutative and multiplication distributes over
addition, so these rules of real algebra apply to complex numbers, and so to variables
with values from these numbers as well.

For z = a + b i define z = a − b i. Then | z |, defined to be
√
z z =

√
a2 + b2,

corresponds to the usual Euclidean norm in the plane, and we take this to generate
the standard concept of distance between complex numbers.

If z 6= 0 then the multiplicative inverse of z exists and z−1 = z/(z z). The
operations of multiplication and addition and negation are continuous, and the
map z → z−1 is continuous away from z = 0.

R2 with this structure is denoted C.

By an easy extension of results from real power series we find for real b that

eb i = cos(b) + i sin(b).

And a special case of Mertens’ Series Theorem (our Lemma 5.5) then gives us

ea+b i = eaeb i = ea[cos(b) + i sin(b)].

When a is real, b is an angle (measured counterclockwise) from the positive real
axis and the complex number ea+b i.

On the other hand, for real a and b we have the identity

z = a+ b i = r ei θ = r [cos(θ) + i sin(θ)],

where r =
√
a2 + b2 and θ is the angle of z, related to arctan

(
b
a

)
.

So if w = c+ d i = s [cos(β) + i sin(β)] is another (nonzero) complex number

zw = rs [cos(θ + β) + i sin(θ + β)] and
z

w
=
r

s
[cos(θ − β) + i sin(θ − β)].

In words, multiplying complex numbers multiplies magnitudes and adds angles
and it follows that dividing complex numbers divides magnitudes and subtracts
angles.

For z = a + b i = r ei θ, if r = 0 the angle θ can be anything, but if r > 0 the
angle θ is determined up to an additive constant, an integer multiple of 2π.

When complex numbers are written as z = a+b i or complex valued functions as
f = u+ i v it is presumed, unless otherwise specified, that a and b are real numbers,
and u and v are real valued functions.

If w = x+y i and z ∈ R we write (w, z) to denote (x, y, z) ∈ R3. We will identify
C, which is R2 with complex multiplication and addition, with the xy plane in R3.
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Let S = { (x, y, z) ∈ R3 | x2 + y2 + z2 = 1 }. The “North Pole” on this sphere as
N = (0, 0, 1).

For w = (x, y, z) ∈ S − {N} define w̃ by w̃ = (wP , 0) where

wP =
x

1− z
+

y

1− z
i.

This map is called a stereographic projection of the sphere.

For each w, the point w̃ is where the line containing w and N intersects the xy
plane, and wP is the complex number identified with that point.

The two maps w̃ and wP are so closely related we will only distinguish between
them when strictly necessary.

Given nonzero c = a+ b i ∈ C, the point

cP =

(
2a

c c+ 1
,

2b

c c+ 1
,
c c− 1

c c+ 1

)
is in S and

(
cP
)
P

= c.

Similarly, if w ∈ S − {N} then (wP )
P

= w.

One can extend this correspondence of points to the whole unit sphere by adding
a point “∞” to C, binding it to C by making it the distinguished point in the one-
point compactification of C, called the extended complex numbers, and denoted
C∞.

Then defining NP = ∞ gives a continuous extension of ˜ from all of S to the
compactified complex plane. The sphere S with the implied association to C∞ is
called the Riemann sphere.

It is fairly clear that any straight line in the xy plane is the projection of a circle
in the unit sphere which contains N .

To see this, suppose w = (x, y, z) is a generic point on any plane in space not
parallel to the xy plane and which also containing N with normal vector B =
(b1, b2, b3). So the equation of this plane is (w −N) · B = 0. If w is also in S, the
vector w̃ −N is parallel to w −N so (w̃ −N) ·B = b1xP + b2yP − b3 = 0 too, and
the points w̃ which can be obtained this way obviously lie on a line in the xy plane.

On the other hand, any point (x, y, 0) in the xy plane satisfying b1x+ b2y = b3
is the projection of a point cP where c = x+ y i with (cP −N) ·B = 0:(

2x

cc+ 1
,

2y

cc+ 1
,
cc− 1

cc+ 1
− 1

)
·B

=
1

cc+ 1
( 2xb1 + 2yb2 + (cc− 1)b3 )− b3

=
1

cc+ 1
( 2b3 + (cc− 1)b3 )− b3 = b3 − b3 = 0.

Any circle in the sphere is the intersection of the sphere with a plane of the form
w ·E = F where w is a generic point (we assume some of these points are in S) and
E is normal to the plane. Divide E by ±|E| to create a unit vector B in place
of E and a nonegative number k in place of F . The equivalent equation is now
w · B = k. If k > 1 no point w on the sphere satisfies this equation, and if k = 1
only the single point w = B does, so we assume 0 ≤ k < 1.
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To reiterate: for each nontrivial circle in the sphere there is a unique B ∈ S and
k with 0 ≤ k < 1 for which w ·B = k for all points w on the circle.

Note that if b3 = k the vector equation w ·B = b3 reduces to

xb1 + yb2 + (z − 1)b3 = 0

and we find that N is on the circle, and we saw above that circles in S of this kind
are uniquely paired with straight lines in the complex plane.

Suppose k 6= b3 and w on the circle has projection wP = c = X + iY in the
complex plane. The equation w ·B = k gives

2X

cc+ 1
b1 +

2Y

cc+ 1
b2 +

cc− 1

cc+ 1
b3 = k

which becomes
2Xb1 + 2Y b2 + (cc− 1)b3 = k(cc+ 1)

from which we find

cc +
2b1
b3 − k

X +
2b2
b3 − k

Y =
k + b3
b3 − k

.

Completing the square and using b21 + b22 = 1− b23 we find(
X − b1

k − b3

)2

+

(
Y − b2

k − b3

)2

=
1− k2

(k − b3)2

so the projection of w is on a circle in the complex plane with radius and center
given in terms of B and k.

We conclude that every circle in S not containing N projects into a circle in the
complex plane.

This process can be reversed.

Suppose (X−a)2 +(Y −b)2 = K2 is a circle in the plane. A point c = X+ iY on
this circle is associated with a point w = cP on the sphere. Let 2F = K2−a2−b2−1.
Expanding the formula for the circle we find that

2X(−a) + 2Y (−b) + cc− 1 = 2F.

This gives

2X(−a) + 2Y (−b) + (cc− 1)(1 + F ) = (cc− 1)F + 2F = (cc+ 1)F.

Dividing everwhere by cc+ 1 gives

2X

cc+ 1
(−a) +

2Y

cc+ 1
(−b) +

cc− 1

cc+ 1
(1 + F ) = F.

If we let E = (−a,−b, 1 + F ) we see that w · E = F where E and F depend only
on the numbers a, b and K2 and not on the specific point X + iY on the circle in
the plane.

Note that |E| =
√
K2 + F 2 so 0 ≤ |F |

|E| < 1. Setting B = E
±|E| and k = F

±|E|
(choose “±” so that k is nonnegative) we recover the equation w ·B = k as above.

So circles in the complex plane and circles in the sphere not containing N are
taken onto each other via stereographic projection.

We come now to the issue of the relationship between the distance separating
points w = (x, y, z) and v = (r, s, t) on the sphere in terms of the coordinates of
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their corresponding projections wP = c = X + Y i and vP = h in the complex
plane. This provides an alternative metric for the compactified complex plane.

First, the distance between any w 6= N in S and N itself is given by

|w −N |2 = x2 + y2 + (z − 1)2

=

(
2X

cc+ 1

)2

+

(
2Y

cc+ 1

)2

+

(
cc− 1

cc+ 1
− 1

)2

=
4cc

(cc+ 1)2
+

4

(cc+ 1)2
=

4

cc+ 1
.

If d is the metric on the compactified complex plane induced by usual distance on
the sphere we find d(c,∞) = 2√

cc+1
.

More generally, if w and v are points on the sphere whose stereographic projec-
tions are (non-infinite points) c and h, respectively, one calculates that

|w − v|2 =
4(c− h)(c− h)

(1 + cc)(1 + hh)
.

So the metric on the complex plane induced by ordinary distance on the sphere is
given by

d(c, h) =
2|h− c|√

(1 + cc)(1 + hh)
.

It is not completely obvious, from this formula, that the triangle inequality holds
for this proposed metric, but it does because the usual Euclidean metric has that
property in R3.

Finally, we note that stereographic projection is conformal; that is, it preserves
angles, locally.

Specifically, we presume that w = (x, y, z) and h = (a, b, c) are differentiable
curves confined to S which meet at time t = 0 at some point in S other than N .
These curves have stereographic projections

w̃ =

(
x

1− z
,

y

1− z
, 0

)
and h̃ =

(
a

1− c
,

b

1− c
, 0

)
which are themselves differentiable curves that meet at time t = 0 in the plane.

We are saying that the tangent vectors to w and h at t = 0 make the same angle

as do w̃ and h̃ at t = 0. First, observe that

w̃′ =

(
x′

1− z
,
y′

1− z
, 0

)
+

(
xz′

(1− z)2
,

yz′

(1− z)2
, 0

)
and h̃′ =

(
a′

1− c
,
b′

1− c
, 0

)
+

(
ac′

(1− c)2
,

bc′

(1− c)2
, 0

)
.
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Note too that at t = 0 we have x = a and y = b and z = c and x2 + y2 + z2 = 1.
This last implies (actually, for all t) that yy′ + xx′ = −zz′ and aa′ + bb′ = −cc′.

w̃′ · h̃′ =
x′a′ + y′b′

(1− z)2
+
x′ac′ + y′bc′

(1− z)3
+
xz′a′ + yz′b′

(1− z)3
+
xaz′c′ + ybz′c′

(1− z)4

=
x′a′ + y′b′

(1− z)2
+
c′(x′a+ y′b)

(1− z)3
+
z′(xa′ + yb′)

(1− z)3
+
z′c′(x2 + y2)

(1− z)4

=
(x′a′ + y′b′)(1− z)

(1− z)3
+
c′(−z′z)
(1− z)3

+
z′(−c′c)
(1− z)3

+
z′c′(1− z2)

(1− z)4

=
x′a′ + y′b′

(1− z)3
− (x′a′ + y′b′)z

(1− z)3
− 2c′z′z

(1− z)3
+

z′c′

(1− z)3
+

z′c′z

(1− z)3

=
x′a′ + y′b′ + z′c′

(1− z)3
− (x′a′ + y′b′ + z′c′)z

(1− z)3
=

w′ · h′

(1− z)2
.

This tells us several interesting facts. For instance, in the special case of w = h
we find that the w̃′ vector is longer than w′ by factor 1

1−z , and this stretch factor

depends only on the “lattitude” of w(0).

The equality of the angles between the two pairs of tangent vectors now follows
immediately from the more general formula.

2. Formal Power Series

A formal power series (FPS) is nothing more than a member of CN and an
interpretation. Formal power series are added or multiplied by scalars using the
usual real or complex vector space structure on CN.

When using this vocabulary for a member a ∈ CN the ultimate intent is to study
functions that have a representation, for x taken from a fixed complex Banach
algebra B, as the limit of the sequence of partial sums Sa

n(x) =
∑n

k=0 ak xk, where
the a0 term must be 0 if the Banach algebra has no identity, and otherwise we
interpret a0 x

0 to be a0 e where e is the identity element of B.

We want to be able to discuss properties of the sequence of partial sums whether
or not the sum converges, and for now we will use either a(x) or

∑∞
k=0 ak xk,

standing alone, to denote this sequence of partial sums:

a0 e, a0 e+ a1 x, a0 e+ a1 x+ a2 x
2, . . . , San(x), . . . .

When x is a variable symbol we call
∑∞
k=0 ak x

k a formal power series in x.

We reiterate: there is no assumption of convergence of a(x) for an FPS a for
any particular value of x other than x = 0. There is certainly no assumption of
convergence of a(e), which is the sequence of partial sums with terms given by∑n
k=0 ak e = (

∑n
k=0 ak ) e, even if the Banach algebra has identity e, which it may

not.

A member x of a Banach algebra is called nilpotent if xn = 0 for some positive
integer n. If two sequences of partial sums a(x) and b(x) are equal for even a single
x which is not nilpotent then the two formal power series a and b are equal. In
particular, if the Banach algebra has identity e and there is any nonzero complex
number λ for which a(λe) = b(λe) then a and b are equal.
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a is said to terminate if there is a non-negative integer n for which aj = 0
for j > n. In that case San(x) = San+k(x) for all k ≥ 0. The series corresponds,
essentially, to an ordinary polynomial.

The Cauchy product of two formal power series a and b is the FPS c defined

by ck =
∑k
j=0 ajbk−j .

This product, denoted a ? b, is obviously commutative and the sequence 10,
defined by (10)j = 0 if j 6= 0 and (10)0 = 1, is the identity with Cauchy product.

If a and b both terminate, atm and n respectively, then their Cauchy product ter-
minates too, and corresponds to ordinary polynomial multiplication of Sam(x)Sbn(x)
followed by gathering of like terms. (a ? b)(x) is the sequence with first term a0 b0,
second term a0 b0 + (a0 b1 + a1 b0)x and, ultimately, at the index m+ n term and
beyond is Sam(x)Sbn(x).

This product is associative: If (a ? b) ? c 6= a ? (b ? c) then the two series would
differ at some smallest subscript n. The calculations to produce these unequal nth
coefficients involve no coefficient of a, b or c beyond the nth, so we can redefine
a, b and c to be 0 for all coefficients larger than n and we would still have the
troublesome inequality. But San(x), Sbn(x) and Scn(x) are polynomials of degree no
higher than n and (San(x)Sbn(x))Scn(x) 6= San(x) (Sbn(x)Scn(x)) because they differ
at their nth degree term, impossible given the associativity of ordinary polynomial
multiplication.

So CN is a commutative algebra with Cauchy product, and easily seen to be an
integral domain: a ? b = 0 only if a = 0 or b = 0.

If, for FPS b, we have b0 6= 0 define a0 = 1/b0 and generally ak = −1
b0

∑k−1
j=0 ajbk−j .

Then a calculation verifies that a ? b = 10. These two sequences are called formal
reciprocals of each other.

If, also, a ? c = 10 then b = b ? (a ? c) = (b ? a) ? c = (a ? b) ? c = 10c = c. In other
words, formal reciprocals are unique.

And if b0 = 0 then there is no a with a ? b = 10. So units with Cauchy product
are exactly those sequences b with nonzero b0.

We are now going to consider composition of formal power series, but to avoid
certain combinatorial issues we will do so only with series b for which b0 = 0. Let
CN

0 denote the sequences that start with 0.

For a, b ∈ CN
0 define the formal composition a ◦ b to have nth term obtained

by polynomial multiplication and combining like coefficients. Specifically, (a ◦ b)k
is obtained as the coefficient on the kth degree term of Sak(Sbk(x) ). Expand

a1 (b1 x+ b2 x
2 + · · ·+ bk x

k) + a2 (b1 x+ b2 x
2 + · · ·+ bk x

k)2

+ a3 (b1 x+ b2 x
2 + · · ·+ bk x

k)3 + a4 (b1 x+ b2 x
2 + · · ·+ bk x

k)4

+ · · ·+ ak (b1 x+ b2 x
2 + · · ·+ bk x

k)k

= a1b1 x+ (a1b2 + a2b
2
1)x2 + (a1b3 + 2a2b1b2 + a3b

3
1)x3

+ (a1b4 + 2a2b
2
2 + 3a3b

2
1b2 + a4b

4
1)x4 + · · ·+ (a1bk +Mk + akb

k
1)xk + · · ·

where Mk in the last line involves only coefficients aj and bn for j and n strictly
between 1 and k.
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The kth degree coefficient of Sam(Sbn(x) ) will be the same as above if m ≥ k
and n ≥ k, but this is only true because of our assumption that b0 = 0, and is the
reason for that assumption.

Note that if the first non-zero coefficient of a is at index k ≥ 1 and the first
non-zero coefficient of b is at index n ≥ 1 then the first nonzero coefficient of a ◦ b
is ak b

k
n at index n+ k. It follows that a ◦ b = 0 only when a = 0 or b = 0.

The sequence 11 defined by (11)j = 0 if j 6= 1 and (11)1 = 1 is a left and right
identity with formal composition, which corresponds to the polynomial function
f(x) = x. Specifically, 11(x) = 0, x, x, x, . . . .

Just as before with Cauchy product, if (a ◦ b) ◦ c 6= a ◦ (b ◦ c) then the two
series would differ at some smallest coefficient, say the nth. This nth coefficient
is independent of any coefficient of a, b or c beyond the nth, so we could redefine
a, b and c to be 0 for all coefficients larger than n and we would still have (a ◦
b) ◦ c 6= a ◦ (b ◦ c). But these formal compositions have coefficients generated by
actual compositions of ordinary polynomial functions, and composition of ordinary
functions is associative.

The contradiction implied here gives us associativity of formal composition on
CN

0 .

The coefficients produced by this process seem to be getting complex, but some
patterns emerge that allow us to deduce an Inverse Function Theorem for formal
power series in CN

0 . We are looking for a condition under which c = a ◦ b = 11 or,
as a power series in x, c(x) = (a ◦ b)(x) = 0, x, x, x, . . . .

First, if this is to be true we must have both a1 and b1 nonzero, and then these
numbers are reciprocals. Second the coefficients an and bn first occur in coefficient
cn for c, and

cn = a1 bn +Mn + an b
n
1

where Mn involves only coefficients of a and b with subscripts smaller than n.

So if a is given, b is determined and can be calculated explicitly by a recursive
formula and, conversely, if b is given a is determined and can be found by a recursive
formula.

So every member g of CN for which g1 6= 0 and g0 = 0 (necessary so all the
coefficient formulas are finite sums) has both a left inverse a ∈ CN

0 and a right
inverse b ∈ CN

0 with respect to formal composition, and these inverses are uniquely
determined. But then

b = 11 ◦ b = (a ◦ g) ◦ b = a ◦ (g ◦ b) = a ◦ 11 = a.

So these inverses are two-sided inverses.

Define the formal derivative b′ of FPS b by b′n = (n+ 1)bn+1 for n ≥ 0.

2.1. Proposition. (i) Cauchy product is an associative commutative operation
on CN with identity 10. A member g of CN has a formal reciprocal
(an inverse with respect to Cauchy product) exactly when g(0) 6= 0.

(ii) Formal composition is an associative operation on CN
0 .

(iii) Inverse Function Theorem for Formal Power Series
A member g ∈ CN

0 has left inverse with respect to formal composition
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exactly when g′(0) 6= 0. In that case this left inverse is unique,
and is also a right inverse.

Proof. The proof is organized in the preceding remarks. �

3. Connectedness and Paths in C

When you encounter any expression of the form “a + b i” it is intended, unless
indicated explicitly or by unmistakable context, that a and b represent real numbers
or real-valued functions. As is customary, a complex number a+b i ∈ C is associated
(i.e. it is) an ordered pair (a, b) in R2.

If A ⊂ B ⊂ C and g : B → X we may say that g has a certain property on A.
By this we intend that the restriction of g to A has that property.

A subset A of C is called connected if there do not exist two disjoint open
sets E and F that each have nonempty intersection with A and for which A =
(A ∩ E) ∪ (A ∩ F ).

A is called path-connected if, for every pair of distinct points r, w ∈ A, there is
a continuous map s : [a, b]→ A defined on interval [a, b] with s(a) = r and s(b) = w.
s is said to connect the starting point r to the ending point w in A.

Continuous s is called piecewise linear if the domain can be broken into a finite
number of subintervals [tk, tk+1] so that for each piece there are complex numbers
fk and gk for which s is of the form s(t) = fk + (t− tk) gk when t ∈ [tk, tk+1].

Any two points in a path-connected open subset U of C are start and end points
of a continuous function s : [a, b] → U . Since s([a, b]) is compact, the distance
between s([a, b]) and U c = C−U is positive. So there is a “tube” of positive radius
around s([a, b]) entirely contained in U .

With this “wiggle room” to work with, whenever we require a function s con-
necting r to w and confined to an open set it will be useful and possible to use in
place of a generic s a function with enhanced smoothness criteria. For instance we
might insist that s follow a finite number of line segments, all inside this tube.

A polygonal path is a continuous function s : [a, b]→ C whose image consists of
a finite number of straight line segments parameterized in such a way that s is one-
to-one on both [a, b) and (a, b]. So polygonal paths, by our definition, do not cross or
otherwise intersect except, possibly, to have endpoints meet. We do not require our
polygonal path to be piecewise linear, though usually any explicit parameterization
will be. Any polygonal path can be re-parameterized by a continuous increasing
change of parameter so that the new polygonal path is piecewise linear with the
same domain.

3.1. Exercise. Prove, look up or accept the following facts. Connected subsets of
R are intervals. If f : [a, b]→ C is connected so is the image set f( [a, b] ). If A and
B are connected and in C and A ∩ B 6= ∅ then A ∪ B is connected. If x ∈ A ⊂ C
the union of all connected subsets of A containing x is itself connected, called a
connected component of A. If A is open, so are all its connected components,
of which there are at most countably many. For open subsets of C, connected and
path-connected are equivalent. Prove also that if A is an open connected subset of
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C there is a piecewise linear polygonal path connecting any two distinct points of
A.

Suppose given two continuous functions s and r with common domain [a, b] and
with values in set U ⊂ C and for which s(a) = r(a) and s(b) = r(b).

s and r are called homotopic in U if there is a continuous map

H : [a, b]× [0, 1]→ U

called a homotopy between these two maps, for which for every t ∈ [0, 1] and
x ∈ [a, b]

H(x, 0) = s(x) and H(x, 1) = r(x) and H(a, t) = s(a) and H(b, t) = s(b).

The phrase “s can be continuously deformed into r leaving endpoints fixed and
without leaving U” is used to describe this situation.

A connected subset U of C is called simply connected if every pair of contin-
uous maps r and s as above are homotopic in U .

3.2. Exercise. A connected subset U of C is simply connected if, whenever s : [a, b]→
U is continuous with s(a) = s(b) then s is homotopic to a constant function in U .
Colloquially, loops are all homotopic to points.

4. The Complex-Derivative and the Derivative Matrix

When using tools from linear algebra or multi-variable calculus an ordered pair

a + b i = (a, b) is represented as a column

(
a
b

)
, a two-row one-column matrix. In

that context it is not a one-row two-column matrix ( a b ): these represent linear
functionals instead.

Suppose function f is defined on an open set and p is in this set. f is called
complex-differentiable at p if

lim
λ→0

f(p+ λ)− f(p)

λ

exists, and if it does that limit is denoted f ′(p) and called the complex-derivative
of f at p.

And f is called complex-differentiable on a set S if it has a derivative at
every point on some open set (possibly S itself) containing S.

A function that has complex-derivative in the whole plane is called entire.

If f ′ exists and is continuous on an open set containing S we say f is holomor-
phic on S. We will see later that every function that is complex-differentiable
on an open set is holomorphic on that set, but that surprising result will require
considerable preliminary work to prove.

For each positive k and p ∈ C let Dk(p) denote the closed disk in C centered at
p of radius k. Let Bk(p) denote the interior of that disk.

When f has a complex-derivative on Bk(p) and Bk(p) is contained in the domain
of function g, f is called a local primitive for g on Bk(p) if g(x) = f ′(x) for all
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x ∈ Bk(p). More generally, any complex-differentiable f is called a primitive for
g if g(x) = f ′(x) for every x in the domain of g.

Many of the important results of this subject depend explicitly on the domain
under consideration. For instance, a result might fail unless the domain is con-
nected. Or it might fail unless the complement of the domain is connected. A
function defined and differentiable on a set might have an extension to a differen-
tiable function on larger set. It is possible that if A ⊂ B, a function g defined on
B might have a primitive (i.e. an antiderivative) when restricted to A but fail to
have a primitive on its original domain B. Or the function g might have a nonzero
derivative, and important properties that follow from this, on A but not on B.

For that reason we will make explicit mention of domain in definitions and state-
ments of results and this acknowledgment is essential, not perfunctory.

Just as in the real case, when g is complex-differentiable at p,

lim
λ→0

f(p+ λ)− f(p)− f ′(p)λ
λ

= 0

and so the difference between f(p+ λ) and its local linear approximant f(p) +
f ′(p)λ is small even in comparison to λ when λ is sufficiently small.

As mentioned before, a function that is complex-differentiable on a set actually
has continuous derivative there, and so the derivative has a maximum magnitude
on any line segment. So in the following lemma, there actually will be, always, a
maximum magnitude of the derivative. But since we have not proved that result
yet, we assume the maximum magnitude given as part of the lemma.

4.1. Lemma. Suppose g is complex-differentiable at each point on a line segment
with endpoints p and q. Suppose that M is the maximum magnitude of |g′| on this
segment. Then | g(p)− g(q) | ≤M | p− q |.

Proof. Suppose ε > 0. For each particular x in the segment there is a δ > 0 for
which | g(x+λ)−g(x)−g′(x)λ | < ε |λ| whenever |λ| < δ. But since the line segment
is compact, a single δ can be chosen that “works” for every x in the segment.

Let x0, . . . , xn be a list of points on the segment moving along the segment from
x0 = q to xn = p where the segments between xi−1 and xi for different i values
don’t overlap and with |xi − xi−1 | < δ for i = 1, . . . , n.

|g(p)− g(q)| =

∣∣∣∣∣
n∑
i=1

g(xi)− g(xi−1)

∣∣∣∣∣ ≤
n∑
i=1

|g(xi)− g(xi−1)|

≤
n∑
i=1

( | g′(xi) (xi − xi−1) |+ ε |xi − xi−1 | ) ≤ (M + ε) | p− q |.

Since ε can be chosen to be arbitrarily small, the result follows. �

The existence of a complex-derivative of a function g(z) = u(z) + i v(z) (u and
v are real valued) is far more restrictive than the existence of the derivative matrix
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of the map from R2 to R2. Introducing notation

z = x+ i y =

(
x
y

)
, g(z) = u(z) + i v(z), g

(
x
y

)
=


u

(
x
y

)
v

(
x
y

)
 ,

we have a representation for g when complex notation is suppressed. If g has a
complex-derivative then it definitely has a derivative matrix

g′(p) =

(∂u
∂x (p) ∂u

∂y (p)

∂v
∂x (p) ∂v

∂y (p)

)
,

but with the additional property that multiplication by this matrix corresponds to
complex multiplication, which itself corresponds to multiplication by a non-negative
constant followed by a rotation. This implies that the derivative matrix has certain
symmetry properties.

Specifically, a function g that has a derivative matrix at p has, also, a complex-
derivative there exactly when the real and complex parts of g satisfy the Cauchy-
Riemann equations at p:

∂u

∂x
(p) =

∂v

∂y
(p) and

∂u

∂y
(p) = −∂v

∂x
(p).

That these equations are necessarily satisfied by a complex-differentiable function
can be seen by using the definition of complex-derivative and observing we must
have equality of the limits as you approach p from the two axis directions, yielding

g′ =
∂g

∂x
=
∂u

∂x
+ i

∂v

∂x
=

1

i

∂g

∂y
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
=
∂v

∂y
− i ∂u

∂y
.

And any pair of functions u and v defined around p that satisfy the Cauchy-
Riemann equations at p and that, individually, have matrix derivatives there can
be used as real and complex parts of a function that is complex-differentiable at p.
And then the matrix form of the derivative is

g′(p) =

(
∂u
∂x (p) − ∂v

∂x (p)

∂v
∂x (p) ∂u

∂x (p)

)
=

( ∂v
∂y (p) ∂u

∂y (p)

−∂u∂y (p) ∂v
∂y (p)

)
which generates two forms of the complex derivative

g′ =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i ∂u

∂y
.

This is all closely related to properties of harmonic functions, which are the
solutions to Laplace’s equation:

∂2F

∂x2
+
∂2F

∂y2
= 0.

If a solution F to Laplace’s equation has second partials on an open domain and
if the mixed second partials are equal (if second partials are continuous this will
be true) then the pair of functions u = ∂F

∂y and v = ∂F
∂x form a solution to the

Cauchy-Riemann Equations on the domain.

On the other hand, if a pair of functions u and v satisfy the the Cauchy-Riemann
Equations on an open domain and if they have second partial derivatives and the
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mixed partials are equal (if second partials are continuous this will be true) then
both u and v are solutions to Laplace’s Equation.

4.2. Proposition. The chain, product, quotient and linearity rules all apply for
complex-derivatives with the usual provisos from ordinary calculus. In particular,
if f(z) = zn then f ′(z) = n zn−1 for any integer n.

Proof. This is left as an exercise. �

5. Convergence of Power Series

We note for later a useful, purely algebraic, fact.

Suppose ∆ is the difference operator which when applied to any sequence sj
produces the difference sequence ∆sj = sj − sj−1.

Consider the summation by parts formula, the algebraic identity
n∑

k=m

ak ∆Bk =

n∑
k=m

ak(Bk −Bk−1) = an+1Bn − amBm−1 −
n∑

k=m

Bk(ak+1 − ak)

= an+1Bn − amBm−1 −
n∑

k=m

Bk ∆ak+1.

We now suppose that sequence Bk has the particular form Bk =
∑k
j=0 bk. If we

are interested in the series
∑∞
j=0 ajbj =

∑∞
j=0 aj ∆Bj we can transform the partial

sum
∑n
j=1 ajbj , by a procedure referred to as the Abel transform, into the form

an+1Bn − a1b0 −
n∑
k=1

Bk ∆ak+1 = an+1Bn − a1b0 −
n∑
k=1

Bk (ak+1 − ak).

Just as in applications of integration by parts, we transform one sequence of par-
tial sums,

∑n
j=1 ajbj , which may be hard to work with directly, into two sequences

Bn and an+1Bn−a1b0−
∑n
k=1Bk (ak+1−ak) with which we hope to make progress.

Although this last sum may seem messier, we will see examples (notably the proof
of Abel’s Second Theorem) where the Abel transform is tractable and the initial
sum is not.

5.1. Theorem. Abel’s First Theorem
If
∑∞
j=0 aj (z0 − p)j converges then

∑∞
j=0 aj (z − p)j converges

absolutely and uniformly on Dk(p) for each k < t = | z0 − p |.

Proof. To see this, let M = sup{ |an| | z0 − p |n | n ≥ 0 }. Assume temporarily that
none of the an = 0 and select z ∈ Dk(p). Then

∞∑
n=0

|an| | z − p |n ≤
∞∑
n=0

M

|an| | z0 − p |n
|an| | z − p |n

= M

∞∑
n=0

| z − p |n

| z0 − p |n
≤ M

∞∑
n=0

(
k

t

)n
<∞.
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Modify slightly to account for possible terms with an = 0 and note that the mag-
nitude of any tail sequence

∑∞
n=j aj ( z− p )n cannot exceed M

∑∞
n=j

(
k
t

)n
and the

proof is complete. �

5.2. Corollary . Suppose the domain of function f is the set of those z
for which the power series

∑∞
j=0 aj (z − p)j converges, and define

f(z) =

∞∑
j=0

aj (z − p)j

on this domain. Suppose z0 is a particular member of the domain of f ,
and z0 6= p. Suppose also that 0 < k < | z0 − p |.
Then Dk(p) is entirely contained in the domain of f , and the sequence of
partial sums fn(z) =

∑n
j=0 aj (z − p)j converges absolutely and uniformly

to f in Dk(p).

Proof. This is a rephrasing of Abel’s First Theorem. �

Abel’s Second Theorem is also of interest. It says that “nontangential ” limits
exist. Specifically, suppose z0 = p + r ei µ for positive r and

∑n
j=0 aj (z0 − p)j

converges. Then we know that f(z) =
∑∞
j=0 aj (z− p)j exists, and the convergence

is absolute, whenever |z − p| < r by Abel’s First Theorem.

Abel’s Second Theorem states that for any ζ with 0 < ζ < π/2 and any sequence
θn with −π/2+ζ < θn < π/2−ζ and sequence tn with 0 < tn < r and limn→∞ tn =
0

lim
n→∞

f
(
z0 − tn ei (θn+µ)

)
exists and equals f(z0).

Note that if θ = ±π/2 then ei (θ+µ) is actually perpendicular to the angle of z0
as seen from p, so if we allowed such values for θn we would be approaching z0 from
outside the closed disk Dr(p). With the specified restriction on θn we approach z0
(when tn is small enough) from inside Dr(p) and between two rays symmetric to
the line from p to z0. The sequence z0 − tn ei (θn+µ) is said to approach z0 within
a Stoltz angle; dependency on the parameter ζ is an issue when considering the
rate of convergence.

For f and z0 and ζ and r as above, define g(z) = f
(
p+ r z ei µ

)
− f(z0). So

g(0) = f(p) − f(z0) and g(1) = 0 and points in B1(0) corresponds, for g, to the
points in Br(p), which are all in the domain of f .

Letting b0 = a0 − f(z0) and, for k > 0, bk = ak r
k ek i µ we have

∑∞
k=0 bk =

g(1) = 0 and, generally, if z is in B1(0) then
∞∑
k=0

bk z
k = − f(z0) +

∞∑
k=0

ak
(
r z ei µ

)k
= −f(z0) +

∞∑
k=0

ak
( (
p+ r z ei µ

)
− p

)k
= f

(
p+ r z ei µ

)
− f(z0)

where p+ r z ei µ is a member of Br(p).

The sequence 1− tn ei (θn) is in a Stoltz angle for g, D1(0), ζ and domain point
1 for large enough n, and each such point corresponds to a point in a Stoltz angle
for f, Dr(p), ζ and domain point z0.
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The transformation from f − f(z0) to g involves composition with a continuous
function (linear, actually) so convergence of g

(
1− tn ei θn

)
to 0 will imply the

convergence of f
(
z0 − tn ei (θn+µ)

)
to f(z0).

5.3. Theorem. Abel’s Second Theorem
Suppose the domain of function f is the set of those z

for which
∑∞
j=0 aj (z − p)j converges, and define

f(z) =

∞∑
j=0

aj (z − p)j

on this domain. Suppose z0 is in the domain of f and | z0 − p | = r.

Then for any ζ with 0 < ζ < π/2 and any sequence θn with

−π/2 + ζ < θn < π/2− ζ
and any sequence tn with 0 < tn < r and limn→∞ tn = 0 we have

lim
n→∞

f
(
z0 − tn ei (θn+µ)

)
exists and equals f(z0).

Proof. We will prove the theorem for the function g related to f as described above,
and draw the conclusion for f by the obvious extension.

Suppose x = 1− t ei θ and 0 < θ < ζ < π
2 and t is positive and small enough so

that x is in B1(0). Note that if t is made smaller (but still positive) x will remain
in B1(0).

We examine the fraction

| 1− x |
1− |x|

=
t

1−
√

(1− t ei θ) (1− t e− i θ)
=

t

1−
√

1− 2t cos(θ) + t2

=
t ( 1 +

√
1− 2t cos(θ) + t2 )

2t cos(θ)− t2
=

1 +
√

1− 2t cos(θ) + t2

2 cos(θ)− t
<

1

cos(θ)− t/2
.

Suppose γ is any angle strictly between ζ and π/2. Then t, which is the distance
between x and 1, can be chosen sufficiently small (depending on γ) so that

| 1− x |
1− |x|

<
1

cos(θ)− t/2
< sec(γ)

regardless of the value of θ, so long as x is in the Stoltz angle defined by ζ.

So suppose x = 1 − t ei θ to be in that Stoltz angle for g, D1(0), ζ and 1 and
require t to be small enough so |1− x| = t < sec(γ) (1− |x|) for a fixed choice of γ
(it doesn’t matter which one) strictly between ζ and π/2.∑n

k=0 bk z
k converges to g(1) = 0 at z = 1, and also converges absolutely for z

in the in B1(0). Our point x is in this set.

LetGn =
∑n
k=0 bk x

k. Our goal is to show that g(x) = limn→∞Gn =
∑∞
k=0 bk x

k,
which we know converges absolutely, can be made arbitrarily small by choosing t
small enough.

Let Bn =
∑n
k=0 bk so that ∆Bn = Bn+1 −Bn = bn+1. By our assumptions, Bn

converges to g(1) = 0, though that convergence need not be absolute. In any case,
there is a constant W so that |Bn| < W for all n.
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Using the summation by parts formula we have

Gn =

n∑
k=0

bk x
k = b0 +

n∑
k=1

bk x
k = b0 +

n∑
k=1

xk ∆Bk−1

= b0 + xn+1Bn − xB0 −
n∑
k=1

Bk ∆xk

= b0(1− x) + xn+1Bn −
n∑
k=1

Bk (xk+1 − xk)

= xn+1Bn + (1− x)

n∑
k=0

Bk x
k.

We know Gn → g(x) and xn+1Bn → 0 so we have a new series representation

g(x) = (1− x)

∞∑
k=0

Bk x
k

= (1− x)

n∑
k=0

Bk x
k + (1− x)xn+1

∞∑
k=0

Bk+n+1 x
k.

For any ε > 0 choose n so large that |Bn+1+k| < ε for all k ≥ 0. Then we have

| g(x) | ≤ |1− x|
n∑
k=0

W |x|k + |1− x| |x|n+1
∞∑
k=0

ε |x|k

= |1− x|W (1− |x|n+1)

1− |x|
+ |1− x| |x|n+1ε

1

1− |x|
< sec γ

(
W (1− |x|n+1) + ε

)
.

The number sec(γ) depends on a choice involving the maximum angle from which
x can approach 1, not x itself. The number W and choice of n depends on the series
for g(1), not x. The term 1 − |x|n+1 cannot exceed (n + 1) t. So by insisting that
t < ε

(n+1)W we find that |g(x)| < 2 ε sec γ.

The necessary conclusion follows. �

5.4. Theorem. The Cauchy-Hadamard Theorem
The radius of convergence R of a power series

∑∞
j=0 aj (z − p)j is the

reciprocal of lim sup |an|1/n, or ∞ if the limit is 0, or 0 if the limit is ∞.

Convergence is absolute on the interior of the disk of convergence
and uniform on any Dk(p) where k < R.

Proof. Suppose L = lim sup |an|1/n is neither 0 nor ∞ and let R = 1/L.

If 0 < r < R then 0 < lim sup r |an|1/n < 1. So there is a number C < 1 and
integer N for which 0 < r < C

|an|1/n
whenever n > N . But then if z ∈ Dr(p) we

have ∣∣∣∣∣∣
∞∑

j=N+1

aj (z − p)j
∣∣∣∣∣∣ ≤

∞∑
j=N+1

|aj | rj <
∞∑

j=N+1

Cj
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and the last sum converges to 0 as N →∞. So
∑∞
j=0 aj (z−p)j converges absolutely

and uniformly on Dr(p).

The last calculation works without change for any positive r if lim sup |an|1/n = 0
so the power series converges on the whole complex plane in that case.

Similarly, if | z−p | = r > R then | an (z − p)n | exceeds 1 in magnitude infinitely
often, so the series

∑∞
j=0 aj (z − p)j cannot converge.

The last calculation works without change for any positive r if lim sup |an|1/n =
∞, so the power series cannot converge unless z = p. �

5.5. Lemma. Mertens’ Series Theorem (and Corollaries)
Suppose

∑∞
i=0 ai and

∑∞
i=0 bi converge to limits A and B, respectively,

and at least one of the two converges absolutely.

Define cj =
∑j
n=0 an bj−n for each integer j ≥ 0.

(So c is the Cauchy product a ? b of the formal power series a and b.)
Then

∑∞
j=0 cj converges, and its limit C satisfies C = AB.

If both constituent series converge absolutely, so too does
∑∞
j=0 cj.

This applies immediately to power series.

Suppose
∑∞
i=0 ai (z − p)i and

∑∞
i=0 bi (z − p)i converge and at least

one of the two converges absolutely. Then
∑∞
i=0 ci (z − p)i converges, and

∞∑
i=0

ci (z − p)i =

( ∞∑
i=0

ai (z − p)i
) ( ∞∑

i=0

bi (z − p)i
)
.

When both of the original power series converge absolutely, so too does
the Cauchy product power series.

If it is known only that the three series for A, B and C converge
(no absolute convergence assumed) then C = AB.

Proof. Assume the first conditions of the lemma, and suppose the series for A
converges absolutely. Let An =

∑n
i=0 ai and Bn =

∑n
i=0 bi and Cn =

∑n
i=0 ci.

Let H =
∑∞
i=0 |ai|.

Let K denote the supremum of the numbers | tn | where tn denotes the tail
sequence tn = B −Bn =

∑∞
i=n+1 bi which converges to 0 by assumption.

Consider the sequence of numbers xn =
∑n
i=0 aitn−i and suppose ε > 0.

Select N so large that whenever n ≥ N we have
∑∞
i=n+1 |ai| < ε/K and also

|tn| < ε/H. For any such n we find that

|x2n| ≤
n∑
i=0

| ai | |t2n−i |+
2n∑

i=n+1

| ai | |t2n−i |

≤ ε

H

n∑
i=0

| ai |+
2n∑

i=n+1

| ai |K ≤
ε

H
H +

ε

K
K = 2ε.

Our conclusion then is that x2n → 0, and it follows immediately that xn → 0.



18 LARRY SUSANKA

Now we have

Cj =

j∑
n=0

n∑
k=0

ak bn−k =

j∑
k=0

j−k∑
m=0

akbm =

j∑
k=0

ak

j−k∑
m=0

bm

=

j∑
k=0

akBj−k =

j∑
k=0

ak (B − tj−k) = AjB − xj .

Taking the limit on j we find C = AB.

The conclusion of absolute convergence when both constituent series converge
absolutely follows easily by comparison of |Cj | to the partial sums of the bigger

series (which also converges) formed as the limit of
∑j
n=0

∑n
k=0 |ak| |bn−k|.

Finally, if it is known that the series for A, B and C converge define f(z), g(z)
and h(z) as above. So the series for these three functions converge absolutely for
|z| < 1. By Abel’s Second Theorem and real x

lim
x→1−

f(x) = f(1) = A lim
x→1−

g(x) = g(1) = B lim
x→1−

h(x) = h(1) = C

and for each x with 0 ≤ x < 1 we have h(x) = f(x)g(x). So C = AB. �

5.6. Proposition. Suppose f is a function with open domain whose value f(z)
can be given by the power series f(z) =

∑∞
n=0 an (z − p)n for those z

in the domain of f for which the series converges.

Suppose that the power series has nonzero radius of convergence R
and that |z − p| < R.

Then the function f is infinitely differentiable at z and if f (n) denotes
the nth derivative of f then

f (n)(z) =

∞∑
j=n

j !

(j − n) !
aj (z − p)j−n =

∞∑
k=0

(k + n) !

k !
ak+n (z − p)k.

In other words, these derivatives can be calculated by differentiating
the series “term-by-term,” and this corresponds to the derivative we
defined previously for formal power series.

The radius of convergence of such series is not changed by this procedure.

And an is therefore seen to be f(n)(p)
n ! for each n.

This implies that for each p in the domain of a function there can be
at most one representation of the function as a power series in z − p
valid on a disk centered at p with positive radius.

Proof. We need only prove the result for n = 1. The general formula and the
interpretation of ak follow by an induction.

By the Cauchy-Hadamard Theorem, the derivative series

G(z) =

∞∑
k=0

k ak+1 (z − p)k

does have the same radius of convergence as the original series. Our goal is to prove
that f ′(z) = G(z).
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For z with |z− p| < r < R require λ to be in the interior of the disk around 0 of
radius r− |z− p|. So z+λ as well as z are in a disk Dr(p) of absolute and uniform
convergence of both series.

We assume that p = 0 for notational clarity and let SN =
∑N
k=0 ak z

k be the
Nth partial sum of the series for f and TN =

∑∞
k=N+1 ak z

k the corresponding tail
sequence.∣∣∣∣TN (z + λ)− TN (z)

λ

∣∣∣∣ =

∣∣∣∣∣ 1λ
∞∑

k=N+1

ak ( ( z + λ )k − zk )

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=N+1

ak
(

( z + λ )k−1 + ( z + λ )k−2z + · · ·+ ( z + λ )zk−2 + zk−1
) ∣∣∣∣∣

≤
∞∑

k=N+1

|ak| rk−1.

This is the tail of a convergent series, so for each ε > 0 an integer N can be
chosen so that for all relevant λ this ratio is smaller than ε. We also require N to
be large enough so that |S′N (z)−G(z) | < ε. Now we have

f(z + λ)− f(z)

λ
− G(z)

=

(
SN (z + λ)− SN (z)

λ
− S′N (z)

)
+ (S′N (z)−G(z) ) +

TN (z + λ)− TN (z)

λ
.

The first group in the line above converges to 0 with λ. And N was chosen so
neither the second group nor the ratio involving the tail sequence can exceed ε,
which can be chosen to be as small as desired. �

A power series
∑∞
k=0 ak (z − p)k is said to represent f around p if there is

some t > 0 for which f(z) =
∑∞
k=0 ak (z − p)k for every z ∈ Bt(p). In particular,

this assumes that the series has positive or infinite radius of convergence.

A function that can be represented by a power series around every point in its
domain is called analytic.

We have found that an analytic function is not just complex-differentiable, but
holomorphic and infinitely differentiable on its entire domain.

5.7. Proposition. Suppose zn is a sequence of distinct points in connected open U
converging to a point p which is also in U . Suppose also that f and g are analytic
and f(zn) = g(zn) for all n. Then f = g on all of U .

Proof. h = f − g is analytic and h(zn) = 0 for all n. Since p ∈ U , h has a series
representation h(z) =

∑∞
n=0 an (z−p)n that converges on some Bε(p), and we may

assume that zn ∈ Bε(p) and zn 6= p for all n. Since h is continuous, h(p) = 0, so
a0 = 0.

If h is not the zero function on Bε(p), then ak 6= 0 for some least k ≥ 1. Then

h(z) = (z − p)k
(
ak + (z − p)

∞∑
n=0

an+k+1 (z − p)n
)
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It follows then that for every n

ak
p− zn

=

∞∑
n=0

an+k+1 (zn − p)n.

But the series on the right corresponds to function values of a function analytic
on Bε(p) and this function must be bounded on any compact neighborhood of
p inside Bε(p). And zn is eventually in such a neighborhood and the sequence
ak/(p− zn) has unbounded magnitude, by our assumption that ak 6= 0. Since that
assumption leads to a contradiction, we have ak = 0 for all k and, in particular, h
is 0 on all of Bε(p).

Now suppose h(q) 6= 0 at some point q ∈ U . Since U is connected there is
a continuous path r : [0, 1] → U from p to q. Let t0 be the infinum of all those
t ∈ [0, 1] for which h(r(t)) 6= 0. By continuity of h and r we know that t0 < 1, and
since h = 0 on Bε(p) we know t0 > 0.

But then there is an increasing sequence an converging to t0 for which h(r(an)) =
0 for all n. That means, by the earlier result, that h = 0 on some disk around
h(r(t0)), and so there will be some η > 0 for which h(r(t)) = 0 for every t ∈ [0, t0+η],
contrary to definition of t0.

We conclude that no such q exists: h is 0 on all of U , so f = g on all of U . �

6. Integration of Complex-Differentiable Functions Along Paths

In this section we discuss integrals of complex-valued functions along paths in
the plane using, essentially, the Riemann integral, and we will rely on the standard
facts and vocabulary about such integrals.

We do not strive here for greatest generality.

A path in open connected U is a piecewise continuously differentiable function
s : [a, b]→ U for nonempty interval [a, b] ⊂ R and open U ⊂ C.

Piecewise differentiability entails that there is a partition P = { t0, . . . , tn }
of [a, b] for which s is continuously differentiable on each (ti, ti+1) and s has right
and left one-sided derivatives at each internal partition member and derivative from
the right at a and from the left at b. This implies that s is continuous.

If s(a) = s(b) we call this path a loop. The vocabulary “closed path” is often
used to describe loops.

If g = u + i v is a continuous complex valued functions with domain U and
s = x+ i y is a path in U define∫ b

a

g ds to be

∫ t=b

t=a

g(s(t)) s′(t) dt

=

(∫ t=b

t=a

u(s(t))x′(t)− v(s(t)) y′(t) dt

)

+ i

(∫ t=b

t=a

u(s(t)) y′(t) + v(s(t))x′(t) dt

)
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where, if s fails to be differentiable at one or more members of finite set { t0, . . . , tn },
where a = t0 < t1 < · · · < tn = b, we define∫ b

a

g ds =

n∑
k=1

∫ tk

tk−1

g ds.

Using |ds| to denote the symbols
√

(x′)2 + (y′)2 dt, we have∣∣∣∣∣
∫ b

a

g ds

∣∣∣∣∣ ≤
∫ b

a

|g| |ds| =
∫ t=b

t=a

|g ◦ s|
√

(x′)2 + (y′)2 dt.

When g is the constant function g ≡ 1 the integral on the right above, a number
L, is just the distance traversed by moving along the curve using this parameteri-
zation. If pieces of the curve are not traversed more than once, this number is the
arclength along the curve. For more general g and s, since the image of s is compact
and g continuous, g ◦ s has a finite maximum magnitude M and the integral on the
right will not exceed ML.

As a trivial special case we allow the “point” s : {c} → U or constant path
s : [a, b] → U , s(t) = p ∀t ∈ [a, b], and define the integral with respect to any such
path to be 0.

Typical integration theorems hold. For constant k and continuous f and g∫ b

a

kg + f ds = k

∫ b

a

g ds+

∫ b

a

f ds.

Also if c ∈ [a, b] then∫ b

a

g ds =

∫ c

a

g ds+

∫ b

c

g ds and

∫ b

a

g ds = −
∫ a

b

g ds.

If f has continuous complex-derivative then a fundamental theorem of calculus
holds

f(s(b))− f(s(a)) =

∫ b

a

f ′ ds.

We rephrase this critical result below using a slightly different vocabulary. We
assume in the statement of this theorem that g is continuous. However we will soon
see that any complex-derivative defined on any open domain must be continuous,
so this assumption is actually superfluous.

6.1. Theorem. Fundamental Theorem of Calculus

Suppose s : [a, b]→ U is a path in U and F is a primitive
for continuous g in U .

Then F (s(b))− F (s(a)) =

∫ b

a

g ds.

In particular, if s is a loop and g has a primitive on some
open set containing s([a, b]) then∫ b

a

g ds = 0.
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Proof. Suppose s = x+ i y and F = u+ i v and then g = ∂u
∂x + i ∂v∂x .

∫ b

a

g ds =

∫ b

a

(
∂u

∂x
+ i

∂v

∂x

) (
dx

dt
+ i

dy

dt

)
dt

=

∫ b

a

∂u

∂x

dx

dt
+ i

∂v

∂x

dx

dt
+ i

∂u

∂x

dy

dt
− ∂v

∂x

dy

dt
dt

=

∫ b

a

(
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

)
+ i

(
∂v

∂x

dx

dt
+
∂v

∂y

dy

dt

)
dt

= u(s(b))− u(s(a)) + i (v(s(b))− v(s(a)))

= F (s(b))− F (s(a)).

�

If r : [c, d] → [a, b] is continuously differentiable with positive derivative and
r(c) = a and r(d) = b then if s is a path so is s ◦ r and for any continuous g∫ b

a

g ds =

∫ d

c

g d(s ◦ r).

A path can be reparameterized by a linear change of parameter to conform to
any convenient parameter interval.

Generally, reparameterizing the path of integration by a change of parameter with
non-negative derivative doesn’t change any integral computed using that path.

For this reason we frequently denote an integral
∫ b
a
g ds by∫ b

a

g ds =

∫
γ

g(z) dz

where γ is intended to denote the image set { s(t) | t ∈ [a, b] } together with an
orientation, which is, essentially, an assumption that this set actually is the image
of at least one path s and an agreement to choose to calculate the integral using
a path that “goes in the same direction” and “traverses all parts of the curve the
same number of times” as does s.

Specifically, two paths s and w with the same image set have the property we
require provided that each one can be obtained from the other by a change of
parameter which is piecewise differentiable, but not necessarily continuous, with
non-negative derivative wherever that derivative exists, and which can be made
one-to-one and onto by removing a finite number of points from domain and range
intervals. Such paths are called compatible with γ.

The importance of the “not necessarily continuous” and “remove finite number of
points” conditions is to allow compatible parameterizations to traverse the pieces of
a self-intersecting image set in different orders, so long as each piece is traversed the
same number of times in the same direction. Piecewise differentiability does restrict
such “switchings around” to be finite in number. And the two paths involved are
both, themselves, assumed from the outset to be continuous.

6.2. Exercise. Suppose s : [−1, 1] → C is defined by s(t) = t + i t3 cos
(
π
t

)
for

t ∈ [−1, 0) and s(t) = −t+ i t4 if t ∈ [0, 1]. Then s is a piecewise differentiable loop
that self-intersects an infinite number of times.
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The letter z in the integral involving γ above is present to distinguish the variable
in a formula for g, which in practice might have several parameters, at which the
intended integration is to take place.

Any single parameterization can be used to define the whole equivalence class
of parameterizations with which it is compatible. When called upon to actually
calculate an integral on γ, any compatible parameterization may be used and will
give the same result.

γ as described above, with its image set together with an orientation (an equiv-
alence class of mutually compatible paths with this image set) is called a curve.

If one of the compatible paths defining γ is a loop then all compatible paths are
loops, and we call the curve closed.

6.3. Exercise. In this exercise we will consider generic paths, continuous but with-
out differentiability assumptions.

If U is open in C, a path s : [a, b]→ U of this kind is called rectifiable provided
there is a number L so that for every ε > 0 there is a number δ > 0 so that
|L−

∑n
k=1 | s(tk)− s(tk−1) | | < ε for every partition { t0, . . . , tn } of [a, b] with

mesh less than δ.

If s is piecewise differentiable (as all of the paths in the text are, unless the
contrary is made explicit) then it is rectifiable.

If f is continuous on the image of rectifiable s then there is a real number M
with | f(s(t)) | ≤M for all t ∈ [a, b], and f ◦ s is uniformly continuous on [a, b]. It
follows that there is a number I so that for every ε > 0 there is a number δ > 0 so
that | I −

∑n
k=1 f(s(ck)) ( s(tk)− s(tk−1) ) | < ε for every partition { t0, . . . , tn } of

[a, b] with mesh less than δ and any choice of ck with ck ∈ [tk−1, tk] for k = 1, . . . , n.

The number I is unique and denoted
∫ b
a
f ds. The use of this symbol agrees with

the previous usage when s is piecewise differentiable.

Two rectifiable paths s : [a, b] → U and r : [c, d] → U are called equivalent,

notation s ' r, provided
∫ b
a
f ds =

∫ d
c
f dr for every function which is contin-

uous on s([a, b]) ∪ r([c, d]). It is fairly easy to show (Urysohn’s Lemma) that
s([a, b]) = r([c, d]) whenever s ' r. Reparameterizing s with a continuous and non-
decreasing change of parameter will produce an equivalent rectifiable path, though if
portions of the image are traversed more than once that may not be the only way
to produce equivalent paths.

Show that if s is continuous there is a number δ > 0 so that the tube

Ts,δ = { z ∈ C | | z − s(t) | ≤ δ }
is a compact subset of U .

Show that for each rectifiable s and each ε > 0 and for each function f defined
and continuous on Ts,δ ⊂ U there is a piecewise linear1 path r : [a, b]→ U for which

| r(t)− s(t) | ≤ δ and

∣∣∣∣ ∫ t

a

f ds−
∫ t

a

f dr

∣∣∣∣ ≤ ε ∀t ∈ [a, b].

1This parameterization may cross or retrace segments, and if you recall we defined “polygonal
path” to forbid this: technically, r might not be a polygonal path.



24 LARRY SUSANKA

If a curve γ is given using a particular compatible path s we define −γ to have
the same set as γ but with opposite orientation: specifically, that given by the
reverse path s̃ which has domain [a, b] and is defined by s̃(t) = s(b+ a− t).

For any continuous g ∫
−γ

g(z) dz = −
∫
γ

g(z) dz.

If γ and τ are two curves and γ ends where τ starts we define γ + τ using
a parameterization s : [0, 2] → U for which s restricted to [0, 1] is a compatible
parameterization of γ and s restricted to [1, 2] is a compatible parameterization of
τ . It is not hard to see that if µ is a curve that starts where τ ends we can define
(γ + τ) + µ and γ + (τ + µ) and these curves are equal.

If γ is a closed curve then γ+ γ is defined, and the notation 2 γ may be used for
this. Generally, if n is any nonzero integer we leave it as an exercise to define nγ.
We resist the urge to engage in further arithmetic with closed curves.

And for any continuous g, when γ + τ is defined∫
γ+τ

g(z) dz =

∫
γ

g(z) dz +

∫
τ

g(z) dz.

Note that γ + τ and τ + γ can only both be defined if the sum is a closed curve,
in which case for any continuous g∫

γ+τ

g(z) dz =

∫
τ+γ

g(z) dz.

There are a few curves that come up often enough to warrant names. For any
positive b and complex number p define the curve µb,p, called the circle of radius
b centered at p, to be the curve given by the parameterization sb,p(t) = p+ b ei t

for 0 ≤ t ≤ 2π. Note that the interior of the circle is on the left as you walk
along the image of sb,p using this parameterization, and the curve is traversed
once, counterclockwise, over the parameter interval.

A polygonal curve is a curve having a polygonal path with that curve’s ori-
entation. Of particular interest are the segments, which have parameterizations
onto a single piece of a straight line, and triangles and rectangles which are
closed polygonal curves of the specified shape that are the sum of three and four
segments, respectively, and whose parameterizations traverse the segments in the
counterclockwise direction: the interior of the triangle or rectangle is on the left as
the parameter increases.

It is important to note that any compatible parameterization of a segment, as
we have defined it, is one-to-one. By our definition, polygonal paths traverse their
image just once. If you want a curve of triangular shape that traverses the image
three times you would use 3 γ where γ is a triangle. −2 γ traverses the image twice,
clockwise.

As a general convention, whenever we use curves to carve out and
identify a piece of the complex plane, we will (unless the contrary is
made explicit) choose boundary curves, and parameterization of these
boundary curves, so that the interior of the intended part of the plane
is on the left as you move in the direction of increasing parameter.
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For complicated shapes it might be arduous to keep track of this. In the cases
seen in virtually every application, the required parameterization is obvious.

We have a substitution identity: if f is holomorphic on the path s and if
f(s(t)) is always in the domain of continuous g then∫ b

a

(g ◦ f) f ′ ds =

∫ b

a

g d(f ◦ s).

Also, If f and g are both holomorphic, we have integration by parts∫ b

a

f g′ ds = f(s(b))g(s(b))− f(s(a))g(s(a))−
∫ b

a

f ′ g ds.

6.4. Lemma. A complex valued function with zero derivative and defined on a
connected open domain must be constant. Two such functions with equal complex-
derivatives differ by a constant and a function on connected open domain whose
(n+ 1)st complex-derivative is 0 must be an nth degree polynomial.

Proof. This is left for the reader, using integration by parts. �

6.5. Exercise. A complex valued function with constant magnitude and defined on
a connected open domain must be constant.

Several classical integrability results are useful.

6.6. Lemma. Suppose gn is a sequence of continuous complex valued functions de-
fined on a common domain U converging uniformly to continuous g and s : [a, b]→
U is a path in U .

Then
∫ b
a
gn ds converges, and the limit is

∫ b
a
g ds.

Proof. The proof is left for the reader. �

6.7. Lemma. Suppose sn : [a, b] → U is a sequence of continuously differentiable
paths that converge uniformly to a function s : [a, b]→ U and s′n converges uniformly
to s′. Suppose also that g is a continuous complex valued function defined on domain
U .

Then
∫ b
a
g dsn converges, and the limit is

∫ b
a
g ds.

Proof. Since sn converges to s uniformly, the sequence is eventually in some closed
“tube” T around s which is entirely contained in U . T is compact so g has bounded
magnitude on T . The remainder of the proof is left for the reader. �

The second result is actually somewhat more general than it appears, as can be
seen by thinking about the following fact.

6.8. Lemma. Suppose sn : [a, b] → U is a sequence of continuously differentiable
paths. Suppose the sequence of numbers sn(a) converges to a number z0 and the
sequence of derivatives s′n converges uniformly to a function w : [a, b]→ U . Then w
is continuous and sn converges uniformly to a continuously differentiable function
s : [a, b]→ U and s′ = w.
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Proof. A uniformly convergent sequence of continuous functions defined on a com-
pact interval converges to a continuous limit, so w is continuous. Now define

s(p) = z0 +

∫ p

a

w(h) dh and fn(p) = z0 +

∫ p

a

s′n(h) dh for p ∈ [a, b].

Each fn differs from sn by a constant but that constant converges to 0. And it is
easy to show that fn converges to f uniformly. The required conclusion follows. �

The third result is a bit more involved.

6.9. Lemma. Suppose g : [a, b]× [c, d]→ C is continuous with continuous
partial derivative in its second domain factor, and we denote this
derivative with notation ∂g

∂t . Now define

H : [c, d]→ C by H(t) =

∫ b

a

g(s, t) ds.

Then H is continuously differentiable (one-sided derivatives at the
endpoints) and

H ′(t) =

∫ b

a

∂g

∂t
(s, t) ds.

Proof. Suppose ε > 0.

Since ∂g
∂t is continuous on a compact domain it is uniformly continuous. So there

is a δ > 0 so small that t, t′ ∈ [c, d] and | t− t′ | < δ then
∣∣∣∂g∂t (s, t′)− ∂g

∂t (s, t)
∣∣∣ < ε.

Now select t ∈ (c, d) and for this t require h 6= 0 to be so small that t±h ∈ (a, b)
and also |h| < δ. Finally, for this t and h select µ > 0 so small that it too is smaller
than δ and also any Riemann sum for∫ b

a

∣∣∣∣g(s, t+ h)− g(s, t)

h
− ∂g

∂t
(s, t)

∣∣∣∣ ds
using partition P = { s0, . . . sn } whose mesh is less than µ differs from the integral
by an amount less than ε.

For any such partition, by the mean value theorem there are points ti between
t and t+ h for which∣∣∣∣∣H(t+ h)−H(t)

h
−
∫ b

a

∂g

∂t
(s, t) ds

∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣g(s, t+ h)− g(s, t)

h
− ∂g

∂t
(s, t)

∣∣∣∣ ds
< ε+

n∑
i=1

∣∣∣∣g(si, t+ h)− g(si, t)

h
− ∂g

∂t
(si, t)

∣∣∣∣ ∆ si

= ε+

n∑
i=1

∣∣∣∣∂g∂t (si, ti)−
∂g

∂t
(si, t)

∣∣∣∣ ∆ si < ε+

n∑
i=1

ε∆ si = ε+ ε(b− a).

We conclude that the limit of the difference quotient forH exists and is the indicated
integral for these t. The one-sided limits at the endpoints are handled similarly.
Continuity of H ′ follows from the uniform continuity of ∂g

∂t . �



A FEW OF THE EASIER PARTS OF COMPLEX ANALYSIS (FIRST DRAFT) August 9, 2016 27

7. Primitives and Goursat’s Theorem

7.1. Proposition. Suppose complex valued continuous g with connected
open domain U has the property that

∫
γ
g(z) dz = 0 for every closed

polygonal curve γ in U .

Then g has a primitive on U and so
∫
γ
g(z) dz = 0 for every

closed curve γ (polygonal or not) in U .

Proof. Select p ∈ U . For each q ∈ U let γq be a polygonal curve in U that starts at
p and ends at q. We propose to define the primitive F on U by F (q) =

∫
γq
g(z) dz.

First, note that this definition does not depend on the specific choice of γq, since if
τ is another polygonal curve that starts at p and ends at q then γq + (−τ) = γq − τ
is a closed polygonal curve so

0 =

∫
γq−τ

g(z) dz =

∫
γq

g(z) dz −
∫
τ

g(z) dz

and we have
∫
γq
g(z) dz =

∫
τ
g(z) dz.

So any choice of γq would do just as well to define F .

Now select q and closed disk Dk(q) so small that it is entirely contained in U .

If any starting place p other than p had been used in the definition of F the new
function would differ from the original one by the constant

∫
γ
g(z) dz where γ is a

polygonal curve connecting p to p. So the complex derivative of this new function,
if it exists, would be the same as the complex-derivative of F . So we are free to
assume p = q when calculating the derivative at q, and we make that choice now.

Suppose |h| < k. Define path s : [0, 1] → Dk(q) by s(t) = q + t h. So s is a
straight-line path connecting q to q + h and can therefore be used to calculate
F (q + h).

Since g is continuous, for each ε > 0 there is a δ > 0 so that | g(q+h)−g(q) | < ε
whenever |h| < δ. We insist |h| < δ as well. Define M(h) = g(q + h)− g(q).

1

h
(F (q + h)− F (q) )− g(q) =

1

h
F (q + h)− g(q)

=
1

h

∫ 1

0

g(s(t)) ds− g(q) =
1

h

∫ 1

0

g(q + t h)h dt− g(q)

=

∫ 1

0

g(q + t h) dt− g(q) =

∫ 1

0

g(q) +M( t h ) dt− g(q) =

∫ 1

0

M( t h ) dt

The magnitude of the last term cannot exceed ε, which can be made as small as
desired by choosing |h| small enough. So

lim
h→0

F (q + h)− F (q)

h
exists and equals g(q).

�
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7.2. Theorem. Goursat’s Theorem for Triangles and Rectangles
If S is a closed triangle or rectangle entirely contained in the domain
of function f , and if f is complex-differentiable on S
then

∫
γ
f(z) dz = 0 where γ is a boundary curve for S.

Proof. We suppose first that S is triangular and γ is the curve that traverses the
boundary of S once, counterclockwise. By assumption, f is complex-differentiable
on an open set containing S and, in particular, at every point in γ or in the interior
of S. Assume

∫
γ
f(z) dz = M.

Bisect the three sides of γ to obtain four smaller triangles a, b, c and d. Integrals
over internal segments are counted twice but with opposite orientation, yielding∫
γ
f(z) dz =

∫
a
f(z) dz +

∫
b
f(z) dz +

∫
c
f(z) dz +

∫
d
f(z) dz. And then∣∣∣∣ ∫

γ

f(z) dz

∣∣∣∣ ≤ ∣∣∣∣ ∫
a

f(z) dz

∣∣∣∣+

∣∣∣∣ ∫
b

f(z) dz

∣∣∣∣+

∣∣∣∣ ∫
c

f(z) dz

∣∣∣∣+

∣∣∣∣ ∫
d

f(z) dz

∣∣∣∣
So one of those integrals has magnitude at least M/4.

Call that one γ1, which has perimeter L/2.

Proceed in this way next with γ1 in place of γ, ultimately creating a sequence

of triangles γi for which γi has perimeter L/2i and
∣∣∣ ∫γi f(z) dz

∣∣∣ ≥ M/4i. These

triangles form nested sequence of compact sets and so have nonempty intersection
p in the domain of f .

Suppose ε > 0. n can be chosen so large that for every z on or inside γn

| f(z)− f(p)− f ′(p)(z − p) | < ε |z − p|.

Since polynomials have antiderivatives we know that
∫
γn
f(p)+f ′(p)(z−p) dz = 0

which means

M

4n
≤
∣∣∣∣ ∫
γn

f(z) dz

∣∣∣∣ ≤ ε ∫
γi

| z − p| dz ≤ ε L
2n

L

2n
= ε

L2

4n
.

The conclusion M
L2 < ε for any ε > 0 requires M to be 0 and we have proved

this theorem for triangular S.

Now suppose S is rectangular and that γ = γ1 + γ2 + γ3 + γ4 is the curve on the
boundary of S and where each γi is the appropriate curve on the four edges. We can
break the rectangle into two triangles by adding a curve σ along the diagonal. Then
τU = γ1 +γ2 +σ is the bounding curve for the upper triangle, and τL = γ3 +γ4−σ
is the bounding curve for the lower triangle. So∫

γ

f(z) dz =

4∑
k=1

∫
γk

f(z) dz +

∫
σ

f(z) dz −
∫
σ

f(z) dz

=

∫
τU

f(z) dz +

∫
τL

f(z) dz = 0 + 0.

�

The proof of this theorem does not use the continuity of f ′. Instead,
coupled with results below, continuity of f ′ will follow from this theorem.
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8. Cauchy’s Integral Theorem and a Few Consequences

An open set U is called star-shaped if it possesses a point p for which the entire
line segment from p to x is in U for every x ∈ U . We refer to p as a central point
of U . Any star-shaped open set is, of course, connected.

Examples of star-shaped regions are rectangles, half-planes, triangles, the region
between two parallel lines, the region between two line segments that meet at a
vertex, a disk and a sector of a disk. Any convex open set is star-shaped, since any
of its points can serve as a central point.

8.1. Theorem. Cauchy’s Integral Theorem for Star-Shaped Domains
If g is complex-differentiable on star-shaped open domain U then g has a
primitive on U so

∫
τ
g(z) dz = 0 for every closed curve γ in U .

Proof. Suppose U is star-shaped with central point p. We define, for each q ∈ U
the number F (q) =

∫
γq
f(z) dz where γq is a polygonal curve connecting p to q by

a single straight-line segment. For each q the distance between the compact set γq
and the complement of U is positive, so there is a number k > 0 so that Dk(x) ⊂ U
for every point x on γq. In particular, if q + h ∈ Dk(q) every point inside and
on the triangular curve with corners p, q and q + h is in U . Goursat’s Theorem
applied to this triangular curve µ tells us that

∫
µ
f(z) dz = 0 and it follows that

F (q + h)− F (q) is just
∫ 1

0
g(s(t)) ds where s : [0, 1]→ Dk(q) by s(t) = q + t h.

The calculation to show that F is a primitive for g now proceeds just as in
Proposition 7.1. �

This theorem is also true for domains other than star-shaped ones, but these
domains become arduous to describe as their shapes become more complex. In
fact, the theorem is true for open domains whose complements are connected. We
will not need this generality now. However, there is one such shape, the keyhole,
which we will need for one of our more important results.

We suppose disk Dε(z0) is contained in Bk(p). Connect z0 to point q on
the boundary of Dk(p) with line segment L(z0, q). Suppose δ < ε and define
Corridor(z0, q, δ) to be the points in C whose distance from L(z0, q) does not ex-
ceed δ.

Keyhole(p, z0,q,k, ε, δ)

=Bk(p)− ( Corridor(z0, q, δ) ∪Dε(z0) ).

The boundary of the keyhole is a closed curve consisting of two arcs-of-circles
and two line segments.

An annulus is the set Annulus(ε,R), where ε ≥ 0 and R > ε, given by

Annulus(ε,R) = { z ∈ C | ε < |z| < R }.

An indented semicircle is the set Indent(ε,R), where ε ≥ 0 and R > ε, given
by

Indent(ε,R) = { z = x+ i y ∈ C | ε < |z| < R and y > 0 }.
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8.2. Exercise. Adapt the construction above to prove Cauchy’s Integral Theorem
for keyholes and indented semicircles. Show that the theorem does not hold for
annuli.

One of the principal pieces of complex-variables-technology used to prove facts
about holomorphic functions is (the easiest version of) Cauchy’s Integral Formula.
Recall that the curve µk,p is the circle of radius k centered at p.

8.3. Lemma. Suppose Dk(p) is entirely contained in the domain of
complex-differentiable f and z is in the domain but z /∈ Dk(p). Then

0 =

∫
µk,p

f(y)

y − z
dy

Proof. For fixed z the function f(y)
y−z is complex-differentiable on an open disc slightly

larger than Dk(p), and the result follows from Cauchy’s Integral Theorem. �

8.4. Theorem. Cauchy’s Integral Formula

f(z) =
1

2π i

∫
µk,p

f(y)

y − z
dy

where we assume that Dk(p) is entirely contained in the domain of
complex-differentiable f and z is in Bk(p).

Proof. Select z as above and define for those w in the domain of f (but w 6= z)

G(w) =
f(w)

w − z
=
f(w)− f(z)

w − z
+

f(z)

w − z
.

We assume f to be complex-differentiable on Dk(p) so the function M(w) =
f(w)−f(z)

w−z can be extended (define it to be f ′(z) at w = z) to a continuous function

on Dk(p). So the magnitude of M(w) cannot exceed some number C for w in
compact Dk(p).

Let γ be a parameterization of the boundary of Keyhole(p, z,q,k, ε, δ) where
the point q is the closest point to z on the boundary, or chosen at random if p = z.

Since f is complex-differentiable on a disk slightly larger than Dk(p), G is
complex-differentiable on a keyhole slightly larger than the one given above for
any choice of δ and ε subject only to 0 < δ < ε. So Cauchy’s Integral Theorem
applies for any G and γ:

∫
γ
G(y) dy = 0.

γ can be represented as

γ = γk + γdown + γε + γup

where γk is a counterclockwise curve on the arc of the disk Dk(p), γdown is the part
of γ that runs down the corridor, γε runs clockwise on the arc of the disk Dε(z)
and γup runs back up the corridor to close the curve at the boundary of Dk(p).

By continuity of G, choosing the corridor width δ small enough forces∫
γdown

G(y) dy ≈ −
∫
γup

G(y) dy.
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This implies then that for small enough δ∫
γk

G(y) dy ≈ −
∫
γε

G(y) dy.

As δ approaches 0, integrals over γk approach integrals along the path sk,p pa-
rameterizing all of µk,p, and integrals over −γε approach integrals along the path
sε,z.

Therefore, for any small ε∫
µk,p

G(y) dy =

∫
µε,z

G(y) dy.

We can write ∫
µε,z

G(y) dy =

∫
µε,z

M(y) dy +

∫
µε,z

f(z)

y − z
dy

=

∫
µε,z

M(y) dy + f(z)

∫
µε,z

dy

y − z
.

The first of the two integrals on the far right cannot exceed C 2πε. The second
integral is

f(z)

∫
µε,z

dy

y − z
= f(z)

∫ 2π

0

ε i ei t

z + ε ei t − z
= f(z) 2π i.

Since ε can be chosen as small as required, we have∫
µk,p

f(y)

y − z
dy =

∫
µε,z

f(z)

y − z
dy = f(z) 2π i

and the result we claimed in the statement of the theorem follows. �

For function f we let f (n) refer to the nth derivative of f . (If n = 0 this is
intended to denote the function itself.)

8.5. Theorem. Suppose Dk(p) is entirely contained in the domain of
complex-differentiable f and z is in Bk(p).
Let γ denote the boundary curve of Dk(p) which is parameterized by a
one-to-one counterclockwise parameterization.

Then f has complex-derivatives of all orders, which can be calculated on
Bk(p) by

f (n)(z) =
n!

2π i

∫
γ

f(y)

(y − z)n+1
dy.

Proof. We have the result for n = 0, which is Cauchy’s Integral Formula. Suppose
we have proved this result in the case n− 1 for positive integer n. Then

f (n−1)(z + h)− f (n−1)(z)
h

=
(n− 1)!

2π i h

∫
γ

f(y)

(y − z − h)n
− f(y)

(y − z)n
dy

=
(n− 1)!

2π i h

∫
γ

f(y)
(y − z)n − (y − z − h)n

(y − z − h)n(y − z)n
dy

=
(n− 1)!

2π i

∫
γ

f(y)

∑n−1
j=0 (y − z)n−1−j(y − z − h)j

(y − z − h)n(y − z)n
dy
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The numerator in the integral converges uniformly on γ as h→ 0 to n (y−z)n−1
while the denominator converges uniformly to (y−z)2n, and this denominator limit
is bounded away from 0 on γ. So

f (n)(z) =
(n− 1)!

2π i

∫
γ

f(y)
n (y − z)n−1

(y − z)2n
dy =

n!

2π i

∫
γ

f(y)

(y − z)n+1
dy.

�

8.6. Corollary . Cauchy’s Estimate
Suppose Dk(p) is entirely contained in the domain of complex-differentiable
f and |f(y)| ≤M for y in the boundary circle of Dk(p). Then

| f (n)(p) | ≤ n!M

kn
.

Proof. This follows immediately from Theorem 8.5. �

8.7. Corollary . Liouville’s theorem
A bounded entire function is constant.

Proof. Suppose f is entire and bounded, and |f(z)| ≤ M for all z. By Corollary
8.6, for any p ∈ C and any positive k we have | f ′(p) | ≤ n!M

kn .

That means f ′(p) = 0 for all p. So f is constant. �

8.8. Theorem. A function f defined on an open set U
is complex-differentiable on U if and only if it is analytic on U .

Any power series centered at p that represents complex-differentiable f
converges on any Bk(p) contained in the domain of f .

In particular, f is entire (i.e. f is complex-differentiable and U = C)
if and only if every power series that represents f on any disk
has infinite radius of convergence.

Proof. Suppose f is complex-differentiable and Dk(p) is any disk entirely contained
in the domain of f . By Cauchy’s Integral Formula

f(z) =
1

2π i

∫
µk,p

f(y)

y − z
dy =

1

2π i

∫
µk,p

f(y)

(y − p)
dy

1− z−p
y−p

.

There is some r with 0 < r < 1 so that
∣∣∣ z−py−p

∣∣∣ < r for every y on µk,p.

That means that
∑∞
j=0

(
z−p
y−p

)j
converges uniformly to 1

1− z−p
y−p

on µk,p.
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This justifies exchanging the order of limit-taking and integration, and conver-
gence of the final series, in

f(z) =
1

2π i

∫
µk,p

f(y)

(y − p)

∞∑
j=0

(
z − p
y − p

)j
dy

=
1

2π i

∞∑
j=0

∫
µk,p

f(y)

(y − p)

(
z − p
y − p

)j
dy

=
1

2π i

∞∑
j=0

(∫
µk,p

f(y)

(y − p)j+1
dy

)
(z − p)j .

The remaining statements in the theorem follow from uniqueness of power series
representations. �

8.9. Proposition. Suppose gk is a sequence of complex-differentiable
functions whose domains all contain a disk Ds(a) for some s > r > 0,
and suppose the domain of complex-differentiable f also contains
Ds(a). Suppose that the sequence gk converges uniformly to f on
µs,a, the boundary circle of Ds(a).

(i) For each n ≥ 0, g
(n)
k converges uniformly to f (n) on all of Dr(a).

(ii) Every coefficient in the series representations for the gk at a converges
to the corresponding coefficient for the limit function f .

Proof. Suppose ε > 0 and choose N so large that | gk − f | cannot exceed ε on the
boundary circle of Ds(a) for k ≥ N . For such k and z ∈ Br(p) and n ≥ 0

| g(n)k (z)− f (n)(z) | = n!

2π

∣∣∣∣∣
∫
µs,a

gk(y)− f(y)

(y − z)n+1
dy

∣∣∣∣∣
≤ n!

2π

∫ 2π

0

ε

(s− r)n+1
s dt =

n! s

(s− r)n+1
ε.

Item (ii) is now just an observation. �

9. Morera’s Theorem

9.1. Theorem. Morera’s Theorem
Suppose complex valued continuous g with domain U has the property
that for every x ∈ U there is a disk Dk(p) entirely contained in U
and containing x in its interior for which

∫
γ
g(z) dz = 0 for every closed

triangle γ in Dk(p).

Then g has a local primitive on each Bk(p) and it follows that g is
analytic at every point in U .

Proof. By Proposition 7.1 g has a local primitive Fp defined on each Bk(p). By
Theorem 8.8 that local primitive, and hence g itself, is analytic in Bk(p), and hence
at each x ∈ U . �
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9.2. Corollary . Suppose fn is a sequence of holomorphic functions converging
uniformly to continuous f on Bk(p).

Then f is holomorphic on Bk(p).

Proof. By Cauchy’s Integral Theorem
∫
γ
fn(z) dz = 0 for each n and every closed

curve γ in Bk(p). By uniform convergence on the image set for γ, we have

0 = lim
n→∞

∫
γ

fn(z) dz =

∫
γ

lim
n→∞

fn(z) dz =

∫
γ

f(z) dz.

Now Morera’s Theorem has f holomorphic. �

9.3. Corollary . Suppose g : Bk(p)× [c, d]→ C is continuous
and g(·, t) : Bk(p)→ C is holomorphic for each t ∈ [c, d].

Then the function H : Bk(p)→ C given by H(s) =
∫ d
c
g(s, t) ds

is holomorphic.

Proof. Suppose γ is a closed curve in Bk(p) with compatible parameterization
w : [a, b] → Bk(p). The interval [a, b] can be written as the finite union of n in-
tervals [aj , bj ] upon which w is continuously differentiable, and∫ b

a

H(w(r))w′(r) dr =

n∑
j=1

∫ bj

aj

H(w(r))w′(r) dr.

So hj : [aj , bj ]× [c, d]→ C defined by hj(s, t) = g(w(s), t)w′(s) is continuous on the
compact product space [aj , bj ] × [c, d] and so Fubini’s theorem is justified for this
function. Then we have∫

γ

H(z) dz =

n∑
j=1

∫ bj

aj

H(w(r))w′(r) dr =

n∑
j=1

∫ bj

aj

∫ d

c

g(w(r), t)w′(r) dt dr

=

n∑
j=1

∫ d

c

∫ bj

aj

g(w(r), t)w′(r) dr dt =

∫ d

c

 n∑
j=1

∫ bj

aj

g(w(r), t)w′(r) dr

 dt

=

∫ d

c

(∫
γ

g(z, t) dz

)
dt = 0

where the final parenthesized integral is 0 because each g(·, t) is holomorphic.

We invoke Morera’s Theorem to conclude that H too is holomorphic. �

10. The Field of Meromorphic Functions

Suppose f(z) =
∑∞
j=0 aj (z − p)j has radius of convergence exceeding k. Let

M denote the maximum magnitude of |f(z) − f(p)| for z ∈ Dk(p). Define g(z) =
f(z + p) − f(p) and suppose f ′(p) = g′(0) 6= 0. So g is defined on all of Dk(0)
and the maximum magnitude M of continuous g on this disk is actually attained
at some z0 ∈ Dk(0).

g(z) = a1 z + a2 z
2 + · · · =

∞∑
j=1

aj z
k a1 = g′(0) 6= 0.
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According to Proposition 2.1 the formal power series for g has inverse with re-
spect to formal composition of formal power series as discussed before that propo-
sition, given by a recursive formula

b1 =
1

a1
, b2 =

a2b
2
1

a1
, b3 =

2a2b1b2 + a3b
3
1

a1
, · · ·

That construction says nothing about convergence of the sequence of partial
sums for these power series in z. However, we do know that∣∣∣∣∣∣

∞∑
j=1

bj ( g(z0) )j

∣∣∣∣∣∣ = |z0| ≤ k.

10.1. Proposition.

Proof. �

11. Conformality and Complex-Differentiability

A function f with open domain U is called conformal if, whenever s and w are
continuously differentiable paths in U with domain (−1, 1) for which s(0) = w(0),
and if neither s′(0) nor w′(0) are zero vectors, then the paths f ◦ s and f ◦w have
nonzero derivative at 0, these derivatives are continuous, and the counterclockwise
angle from (f ◦ s)′(0) to (f ◦w)′(0) is the same as the counterclockwise angle from
s′(0) to w′(0).

The existence and continuity of these derivatives for any path implies that f has
a continuous derivative matrix, and the angle-preservation property requires that
this matrix is a nonzero multiple of a rotation matrix. So the real and complex
parts of f satisfy the Cauchy-Riemann equations and f is holomorphic on U , with
nonzero complex-derivative.

Conversely, if f is holomorphic with derivative never 0 the Cauchy-Riemann
equations imply that f ′, represented as a 2 by 2 matrix, is a non-zero multiple of a
rotation matrix so f is conformal.

Intuitively, when “moved” by f , tiny polygonal figures don’t change their shape
because their interior angles all remain the same, though the figure might be ro-
tated or made larger or smaller. Continuity of the complex-derivative is needed
to complete this visualization: we don’t want one corner of a tiny polygon to be
rotated by a different angle than another.

Conformality is a geometric condition equivalent to complex-differentiability on
neighborhoods where the function has nonzero derivative.
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12. Analytic Continuation and Monodromy

The magnitude |f(z)| attains both maximum and minimum on any closed disk
Dk(a) in its domain, and this maximum cannot exceed

∑∞
i=0 |ai| ki when the series

for f centered at a has coefficients ai.

Any local maximum of |f(z)| on Dk(a) must occur at a boundary point
of Dk(a), a fact called the Maximum Modulus Principle. (Also, any one-to-one
conformal map from the disk to itself is linear. Also, Schwartz reflection principle.)

Local maxima cannot occur in the interior unless the function is constant.
Local minimum values of |f(z)| on Dk(a) cannot occur in the interior either unless
the function is constant or that local minimum value is 0, a result obtained by
examining 1/f .

Two complex-differentiable functions which agree at a sequence of
points converging to a limit point which is in both domains agree ev-
erywhere on the connected component of the intersection of their domains within
which the limit point resides.

So if f ′(zn) = 0 on a sequence of domain members zn that converges to a point
of the domain of f then f is constant.

This also implies that a complex-differentiable function defined on a
disk has isolated zeros unless it is constantly zero on that disk. (In fact, the set
of points f−1(c) cannot have a limit point in the disk for any c unless f is constant.)

More, if g(a) = 0 and g is complex-differentiable and is defined and not constant
on some disk around a then there is a positive exponent n and complex-differentiable
function f with f(z) 6= 0 on some disk around a and so that g(z) = (z − a)n f(z)
for every z in the domain of g. In other words, zeros of a holomorphic function
are not only isolated but have “finite order” as well.

Finally, we note that non-constant holomorphic functions (remember,
our domains are connected) are open maps: f(U) is an open set whenever
U is open in the domain. That implies that a one-to-one holomorphic map has
holomorphic inverse.

For positive number k let Fk(p) denote the set of functions which possess Tay-
lor series centered at p whose radius of convergence exceeds k. Compactness of
Dk(p) implies that any member of Fk(p) is complex-differentiable on an open set
containing Dt(p) for some t > k, and this allows for convenient framing of various
convergence results.

We quote (again without proof) a handy theorem due to Osgood.2

12.1. Lemma. Suppose gn ∈ Ft(p) for each n and the sequence converges pointwise
to a function f , and t > k > 0. Then f ∈ Fk(p) and the sequence converges
uniformly to f on Dk(p).

2See W. F. Osgood, Note on the functions defined by infinite series whose terms are analytic

functions of a complex variable, with corresponding results for definite integrals, Ann. Math. 3
(1901), 25-34 and R. Remmert Classical Topics in Complex Function Theory, Springer-Verlag

1998 page 151.
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Suppose f(z) =
∑∞
i=0 ai (z − p)i ∈ Fk(p) and fn(z) =

∑n
i=0 ai (z − p)i.

By Lemma 12.1 and Abel’s First Theorem we know the series converges abso-
lutely, and convergence is uniform, on Dk(p), and in particular

∑∞
i=0 |ai| ki <∞.

For n > m ≥ 0 and any z in this closed disk,

|fn(z)− fm(z)| ≤
n∑

i=m+1

|ai| ki and also ‖f(z)‖ ≤
∞∑
i=0

|ai| ki <∞.

12.2. Lemma. Suppose f ∈ Ft(p) and g ∈ Fk(q) are complex-valued functions
of one complex variable and g(z) =

∑∞
i=0 bi (z − q)i. Suppose further that

g(q) = p and
∑∞
n=0 |bn| kn < t.

Then f ◦ g ∈ Fk(q).

Proof. The maximum value of |g(z)− p| on an open disk slightly larger than Dk(q)
is less than t, so the derivative of f ◦g exists everywhere on this slightly larger open
set and can actually be calculated by the chain rule. So f ◦ g has Taylor series
centered at q with radius of convergence exceeding k. �

Kelley General Topology [3], Dugundji, Topology [1], Steen and Seebach, Coun-
terexamples in Topology [4] and Engelking, General Topology [2].
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