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Preface

This text began as sets of notes provided to students to supplement the text in
several of my Math classes at Bellevue Community College. Somehow they grew
to be rather more than that, but still serve that original purpose as a “Swiss Army
Knife” of supplementary notes. Trigonometry students might start at Chapter
One, while Calculus students could start at Chapter Three. Multivariable Calculus
students would be interested in Chapters Four and Five.

I use the first ten sections of these notes when I teach our Math 120 class which
is devoted primarily to Trigonometry. We don’t presume these students have any
experience with mathematically precise presentations, and concentrate on creating
intuition about vectors, linking vector concepts to experiences students have likely
had. We create a structure that can be used to deal with common problems from
the Sciences. There are a number of applications but just a few topics that I
emphasize in this light exposure. In two dimensions, our goal is to:

e Understand the “tip-to-tail” method of drawing the picture of a combi-
nation of vectors such as 24 — 3B.

e Distinguish between a point in the plane with coordinates (a,b) and the
vector (a,b) which, when represented as an arrow in standard position,
“points at” (a,b).

e Write a vector V' as |V % and thereby separate cleanly the two things
that characterize a vector: magnitude and direction.

e Use dot products to calculate the angle between two vectors. Verify with
a picture.

e Decompose a vector into the sum of two vectors, one of which is a multiple
of a specified vector W, while the other is perpendicular to W. Both
drawing the picture and the calculation are key here.

e Understand the idea of parametric constant velocity motion. Again, draw-
ing pictures and creating equations are equally important. If a student
is comfortable with linear motion he or she will find that the parametric
curves in Calculus and Physics are easier to understand.

We then extend these ideas to three dimensions.

In the second chapter we expand on these ideas so we can understand planes
and other surfaces in space, alternative coordinate systems and we begin working
with parametric vector functions which are not constant velocity.

At this point one would want to begin exploring a computer graphing utility,
such as Maple or Mathematica. I do not include instructions on how to use such a
utility in the main part of the text because this type of thing is a rapidly moving
target and will no doubt change (and get easier and cheaper) each year. However I
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do include Maple 8 instructions to graph some of the illustrations in the text in the
endnotes. These utilities are so powerful and useful that it simply makes no sense
not to learn how to access that power. These and other endnotes are referenced
by numbered superscript at the relevant spot in the text. Topics are often placed
in these endnotes not because they are unimportant but to avoid breaking up a
discussion with a side issue. The reader should at least glance at them.

A large fraction of the potential readership has had exposure to vectors before
and will be able to start immediately with Chapter Three. For these folks the first
two chapters should be skimmed to establish notation and provide reference points
for a small library of examples and techniques.

In Chapter Three we look at a collection of topics related to curves. In this
treatment curves correspond to the range of differentiable functions from the real
line into the plane or space. Part of this chapter could be used in conjunction with
a first course in Differential Calculus and the rest saved for a later quarter, after
Integral Calculus is familiar to the reader. If all the sections are used, there is more
depth in some areas than one would expect to see devoted to these topics during a
typical first year Calculus sequence.

Chapters Four and Five contain ideas usually explored in Multivariable Calcu-
lus or beyond.

Chapter Four involves a collection of ideas which are in some sense “dual” to
those introduced in Chapter Three. We study real valued functions from the plane
or space, and their derivatives.

In Chapter Five we discuss integration involving two or three variables.

Exercises form the heart of any math book to be used by students to learn
new material. Sometimes authors create hundreds of problems, many of which are
nearly identical, and gather them at the end of each chapter. In this work you will
encounter far fewer exercises, and these are placed in context throughout the text.
Individual instructors might want to create “drill” type problem sets for several
of the topics. There are good reasons for doing that. In my classes I make sure
students have worked on several of each type of problem I might have on an exam
by adding extra problems this way.

Every problem you find in the text has been included for some reason or other.
That reason might not be obvious until considerably later. The student should try
them all and think about each and every one. Don’t be shocked if a problem takes
a while to understand completely. I have put “stars” by the longer ones and if they
are both longer and require a bit of sophistication I put two stars. You may use
earlier exercises in proving later ones and I sometimes refer to these exercises in
later text.

If you get stuck on a hard exercise you have two choices: persevere or accept
that exercise as fact and go on. It would be a pretty rare student who would take the
time to go through every single exercise in detail. But one would want to, at least,
understand the statements of all the exercises before proceeding. Mathematics, in
general, is not for spectators. That is particularly true in this book after Chapter
Two and an inescapable feature of Chapters Four and Five.
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One way of handling these problems in a classroom setting might be to assign
“no star problems” as individual assignments and “one star problems” as group
problems for those who like that sort of thing. If done this way a group should
cast aside standard group behavior and guarantee, at least, that all of its members
actually understand the statements of these problems. The “two starred problems”
are, I think, best solved by motivated individuals who have either had solid Calculus
classes or who are willing to go back and fill in any gaps on their own.

If you see a word you don’t recognize check the index, which I have tried to
make very complete. The topic might be discussed in the endnotes and referenced
somewhere earlier in the text.

You will no doubt see other more sophisticated (and more complete) treatments
in later courses. The first course in Linear Algebra—the one we offer here at
Bellevue Community College—concentrates on the vector structure from ordered
n-tuples of real numbers and real matrices. A second course in Linear Algebra would
concentrate on the algebraic structure of vectors from a more abstract standpoint.
In still later courses, tensors and sections of vector bundles on manifolds await you.
These classes provide increasingly precise mathematical definitions and discuss more
subtle properties of the ideas we begin to work with here.

In another direction, Physics and Engineering students deal with all kinds of
“vector ideas” at levels of rigor tailored to each topic. In fact, many Math de-
partments downplay vector ideas before Linear Algebra, leaving science students
to learn about vectors elsewhere. Optics uses vectors—discussions of polarization
and refraction are examples. An Electricity and Magnetism class would discuss
vector fields and words like “curl” and “divergence” will be on every page—vector
creatures! Surface tension and viscosity from Fluid Mechanics are phrased in terms
of tensors. Elasticity and stress from a Solid State class are defined in terms of
tensors. Discussions in Quantum Mechanics and Special Relativity use vectors
throughout—not to mention General Relativity and its use of the curvature tensor
and four dimensional manifolds! The list goes on and on.

Suffice it to say that anyone who hopes to understand current thinking about
the physical behavior of the world at the junior or senior undergraduate level must
become a “vector expert.” Many of the ideas that serve as a foundation for intuition
and calculation have been gathered together in these notes.

I have tried to reconcile in this text three conflicting goals: (i) T wanted to
create a text so that the student would find, down the road in later classes with
their particular and more complete approaches, that there were only a few “gaping
holes” in proof structure, and those present were as clearly identified as possible.
(ii) T wanted to include a range of tools with a lot of immediate utility in the classes
for which this text could be used. (iii) I wanted the whole thing to weigh in at under
two hundred pages of text.

In achieving some kind of balance certain things were sacrificed, and some might
feel these choices to be a bit eccentric. To give a few examples offhand, there is no
mention of a “right hand rule.” Curvature is not discussed. We do not introduce
differential forms. We don’t talk about re-parameterization by arclength. There
are only one or two problems in the text associated with each idea, rather than
dozens.
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In place of these missing items the reader will find my attempt to create a
thorough introduction to the most basic ideas of vectors for absolute beginners in
the early chapters. The later chapters build rapidly to create a rather detailed and
self-contained description, including proofs often reserved for “Advanced Calculus”
classes, of part of the Vector Calculus involving curves and surfaces and volumes.
An instructor using this work as a supplement to a more conventional text would
likely dip in and out of these later sections, picking and choosing rather than work-
ing straight through. Done this way, some thought regarding the dependency of
text material on earlier exercises will be necessary.

The next steps for the student would be a Linear Algebra course followed by a
more advanced Calculus class using a book such as Michael Spivak’s beautiful Cal-
culus on Manifolds or Walter Rudin’s durable Principles of Mathematical Analysis.
On the less rigorous but eminently practical side I like H. M. Shey’s Div Grad Curl
and All That. Those with interests in the Physical Sciences should gain, as early
as possible, an understanding of Differential Equations and the Linear-Algebraic
basics of Tensors.

This text, like most, is a compromise. I can only hope the reader finds it to be
useful and that it conveys some sense of the elegance and beauty of the ideas which
underlie it all. And, perhaps, a few will decide to dig deeper!

Have Fun!
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1. First Steps

A vector is an object completely characterized by two quantities, which we call
magnitude and direction. The physical meaning of these quantities in an appli-
cation of vectors comes from experience and varies from application to application.

Vectors can be represented as arrows with the direc-
tion given by the “tail-to-tip” direction of the arrow and
the magnitude given by its length.

We take the point of view that two arrows located
anywhere are merely instances of the “same” vector so
long as each has the same length and direction. So the
arrow to the left represents the “same” vector as the
one on the right above, even though it is located at a
different place.

You have plenty of experience with “fuzzing out” the distinctions among things
which are manifestly different but which exhibit similarities upon which we wish to
focus. For example, the fractions 3/4 and 6/8 represent different ideas. In the first,
you break the “whole” into 4 equal pieces, and you have 3 of them. In the second,
you break the “whole” into 8 equal pieces, and you have 6 of them. With these
differences, there is something important that is similar about these two fractions:
namely, I am just as full if T eat 3/4 of a pizza or if I eat 6/8 of a pizza. We choose
to focus on that and we say 3/4 = 6/8. We gather together all the fractions “equal”
to 3/4 and refer to the entire pile of them by picking any convenient representative,
such as that in lowest terms or with some specified denominator.

Similarly, the arrows above are different on the page, but by picking one of
them we refer to both, and any other arrow with the same magnitude and direction

as well!
Two vectors A = and B = \

are added by finding the copy of B which has its tail on the nose of a copy of A.
The sum A + B is the arrow that starts with its tail at the tail of this copy of A
and ends with its tip at the tip of this copy of B.

A+B

It is important to note the direction of A 4+ B, in this case from left to right.
—B is the vector that looks just like B but with tip and tail switched:
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N\ N

A positive constant k times a vector A is a new vector pointing in the same
direction as A but with length stretched (if £ > 1) or shrunk (if £ < 1) by the
factor k. Negative multiples of A are said to have direction opposite to A.

24 = and (1/2)A = ]

A — B is defined to be A+ (—B). So A — B is the vector on the left of the
picture:

-B

A

The process of adding two vectors is called vector addition. Multiplying a
vector by a constant is called scalar multiplication.

The vector with zero magnitude is hard to represent as an arrow: it is called
the zero vector, denoted 0. It doesn’t really have a direction—or perhaps it has
any direction. You pick. Context distinguishes it from the number 0.

1.1. Exercise. You should satisfy yourself that:

A+B=B+ A, A— A=0 and that 2A = A+ A.

On the far left is a picture of the
vector sum 24 — 3B. A vector such
as this, formed as a sum of multiples
of vectors, is often referred to as
a resultant vector. It is also
called a linear combination of
the vectors involved, in this case A
and B.
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1.2. Ezxercise. Draw a picture of 3C — 2D and C + %D where C' and D are
given by:

cp =7

There are a number of things in the world with which you are no doubt familiar
that are commonly represented as vectors, and you should think a bit about the
meaning of “magnitude” and “direction” in each specific case.

e Displacement—a representation of a movement from a starting place to
an ending place, with emphasis on the completed movement rather than
how it occurred or the specific starting spot.

e Velocity—a description of motion, whose magnitude is the speed and
whose direction “points the way.” The velocity would be the displacement
vector over one time unit, if the motion continued unchanged for the whole
time unit.

e Forces—these describe “pushes” by one thing against another. A force is
the cause of acceleration. If you see changes in the motion of something,
it is because there is a force acting on that thing. No such changes require
that the resultant of all forces have zero magnitude.

e A representation of a uniform Wind or Current—in the air or water.
This example is tied to velocity. It can be interpreted as the velocity of a
dust particle swept up and carried along by an unvarying wind or current.

Why should vectors describe faithfully these categories of real-world experi-
ences? I don’t know. It is a puzzle. They just do. It is ONLY through experience,
conjecture bolstered by many experiments, that we (i.e. physicists, engineers, you,
me) decide that vectors are a reasonable tool to try to describe something in the
world. Mathematicians can tell you how vectors behave. Only you can decide if
vectors mimic well some aspect of the world.

There is, obviously, overlap and relationships among the items listed above.
Each will be useful, alone and in combinations.

There are a couple of points I would like to make before getting down to busi-
ness.

First, each instance of a vector in the world actually occurs at some specific spot,
and whenever an arrow is drawn it is drawn somewhere specifically. When we think
of something in the world as a vector, we take the point of view that any specific
representative refers not only to itself but to all others with the same magnitude
and direction too. When you refer to 7/3 you are often making a statement about
21/9 at the same time even without specifically mentioning that second fraction.

Second, a given push (a force) is a real thing that exists however we decide
to describe it. The wind is just whatever it is and doesn’t need us to tell it that
it is 30 miles per hour from the North. A displacement across a room is a real
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thing, in itself. But in physics and other classes we try to describe things, often
using mathematics and numbers. This association always involves a huge pile of
assumptions including, for example, a choice of a distance unit, a time unit, an
“origin,” directions for coordinate axes and methods for measuring lengths and
angles and the passage of time and some way of gauging the magnitude of a “push”
and on and on. There is also a conceptual framework, frequently generated by the
esthetic sensibilities of the creators of the model, which help us think about the
measurements. It is not always clear which among the conceptual underpinnings
are necessary, or even if they are consistent. Our description depends not only on
the real thing, but on all these choices involved in a representation too.

When we go through this process of assembling a model we must never forget
that the map is not the territory. A nickname for a thing is not the thing itself.
The universe names itself, and whatever shorthand we use to describe part of it
leaves out almost everything. In applications we must always be looking “out the
window” to make sure the world is still answering to our nickname for it. It is
astounding how often, over the last couple of centuries, it comes when we call. We
must be doing something right.

1.3. Exercise. This is an exercise designed to connect experiences people have
had with the more abstract ideas we will be thinking about. It is best done in a
group with the discussion guided by an instructor. Alternatively, it could be done
by a single student accompanied by a good imagination. In each item below an ac-
tivity will be described. After each activity there should be a discussion about what
happened and possible alternative responses. The exercise will be repeated at the
end of Section 4.

A(i) The instructor picks a volunteer toward the back of the room. The instructor
then mowves about ten feet across the front of the room. The instructor then asks
the volunteer to mimic that movement.

A(ii) The instructor moves ten feet in a different direction. Does this seem like
“the same movement” as the first one?

A(iit) The instructor moves two feet in the same direction as the first movement.
Does this seem like “the same movement” as the first one?

B(i) The instructor picks two volunteer who move toward an open area where ev-
eryone can see. The instructor gives each volunteer a heavy smooth ball, such as
a billiard ball, and asks the first volunteer to roll it across the floor. The instruc-
tor asks the second volunteer to stand ready and, while the first ball is still rolling,
mimic the motion of the first ball using his or her ball.

B(ii) The instructor rolls a ball with about the same speed but in a different direc-
tion. Does this seem like “the same motion” as the first one?

B(iii) The instructor rolls a ball in the same direction as the first motion but much
faster. Does this seem like “the same motion” as the first one?

C(i) The instructor picks four volunteers, at least two of which claim to be phys-
ically durable. The instructor asks a volunteer to give “a medium sized push” to
one of the durable volunteers. The instructor then asks another volunteer to mimic
that push on a different durable volunteer.

C(ii) The instructor walks up to the original durable volunteer and gives a “medium
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push” in a direction different from the first push. Does this seem like “the same
push” as the first one?
C(iii) The instructor walks up to the original durable volunteer and gives a “very
light push” in the same direction as the first push. Does this seem like “the same
push” as the first one?

2. Position Vectors and Constant Velocity Motion: Part 1

In this section we will use vectors to describe specific locations and then the
path and motion of a “particle” traveling in a straight line with constant speed.

Vectors which are used to describe specific locations are called position vec-
tors. Since vectors do not have specific locations, we need to create a “convention”
for how we should interpret a vector thought of in this way.

The only thing we need to create the interpretation beyond the ideas of the
first section of this chapter, is to agree on a “center of the universe.” This will be a
known and agreed upon place, usually called the origin. All other locations will be
described by the displacement vector needed to get to the location from this origin.

To reiterate: a vector which is to be used to describe a particular spot is called
a position vector. To use a vector this way, you must first decide upon a “center”
point called the origin. The copy of the vector with its tail at this origin is said to
be in standard position. When in standard position, the nose will “point” to the
spot in the plane we are trying to identify.

"The Spot”
- X l?i.
This copy of ¥
in use as a
L /?—ansitinn Yector
Origin For "The Spot”

With this idea in hand, we will use position vectors to describe constant
velocity motion of an object—that is, an object moving in such a way that
displacements during any two equal time intervals are the same.

You can think of a moving object as a “moving point of light” that leaves a
trace (a burn mark or a smoke trail perhaps) after it has passed over a point. If
that doesn’t suit your fancy, you can think of it as a “moving slug” that leaves a
slime trail after it has passed over a point. We will label points on the track by the
time or times when the light (or slug) passes over the point. That is what people
mean when they say the motion is parameterized, and the time in this case is
called the parameter.

First, we remind the reader of the distinction between speed and velocity. Ve-
locity is a vector that “points the way” of the motion. It is the displacement during
one time unit. Its length is the speed.

We have thrown a new element into the mix here: to talk about velocity we
must agree on an idea of time and a means of measuring intervals of time.
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For specificity, let’s think of our motion as describing the position of a constant
velocity slug, with time measured in minutes from a moment we all agree is “time
0” and that the slug has constant velocity V. Each minute the slug moves the
length of the velocity vector (the speed) in the direction of the velocity vector. If
we find the copy of the velocity vector with tail at the slug starting place, the tip
will be at the slug position after one minute of motion. If we only go for a fraction
of a minute, or for many minutes, the slug position will be the tip of the appropriate
multiple of the velocity vector when the tail of this vector is at the starting place.
The displacement of the slug position over ¢ minutes from any starting place will
be the vector tV.

The starting time might have been chosen for convenience rather than the
actual time the slug started moving. So negative times would merely refer to times
before then. So to get to the location of the slug one minute before time 0 you
would use a displacement vector —V from its position at time 0.

e t=-1

e M"‘——-——__f;i
t=1
s RV T3

-\_\_\_\_\_\_‘—‘—.\—...
Dizolacernent over 2.5 MiNUTES

Lisplacernent from
position at tirne O to
position at tirme -1

e
L3

Cisplacernent owver
L3 minutes

Finally, we get to a position vector description of the journey of the slug. If an
origin is chosen and the position vector of the slug at time zero is P with respect
to this origin then the position vector of the slug at time t is given by

Q(t) = P +tV.

This is called a parametric vector equation for the position of the slug.
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t=-2 t=-1 Qlt)=P+t¥y

e N

LN
from O

L 3 v t=0
u(:iz) H Y 1=1
N\ et-1)  P=o(0) \?‘»i
[ i

. .\_-\.-"""ﬂ
(1)

W

2.1. Exercise. In the picture of constant velocilty slug motion you see below,
the origin and slug positions at times 4 and 8 are identified. From this picture,
create a vector V. which represents the velocity of the motion. Identify the position
vector P which points to the position of the slug at time 0. Finally, use the formula
Q(t) = P+ tV to help you find the position on this picture at times —1,1 and 2.

origin N

n
iy

=8

Put a copy
of ¥ here
for reference

3. Decomposition of Vectors: Part 1

We know how to add vectors, combine them into a single resultant vector. A
natural next step might be to see how we can break them into pieces in various ways.
In this section we will think about how to break a vector into the sum of two others.
One of these will be a multiple of a specified vector and the other perpendicular
to that specified vector. This is a very important process in applications. The
process is called decomposition. When we finally get to precise calculations,
decompositions will be easy to find from an arithmetical standpoint.

In order to create the picture of a decomposition you need to know only one
thing not shown in the first section of this chapter. You must have a concept of
perpendicularity, and be able to tell when two arrows are perpendicular to each
other by some method. In this section, the old standby “eyeball” method will
suffice.
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A common and very important usage of vector decomposition occurs when we
consider force vectors. A classic example would be that of a box sliding down a
slanted board. The most obvious force here is the weight of the box. But that force
is directed straight down and the surface of the board prevents movement in that
direction. The right way to handle this is to decompose the force caused by gravity
into two perpendicular pieces: the part that is straight into the surface of the board
(the source of friction) and the other pointing along the line of the board. It is only
this last part which makes the box slide.

wasied, or
causes friction

gravity

downhill push

Whatever the source of the vectors involved may be, we will draw some pictures
here to see “how to do it.” We want to learn how to decompose a vector V into
the sum of a vector P which is a multiple of some vector W and another vector
V' — P which is perpendicular to W. We call the second vector V' — P because
whenever V = P+ A it must be that A = V — P, so there is no point in introducing
an independent name for the perpendicular part of the decomposition. Find below
three different decompositions of this type in picture form.

Y NY Y
— W
W
p p
Y/ Tv-p Y
P Y r ¥-P

Notice two things about the pictures above: First, in each case P and V — P
are perpendicular to each other. Second, P is a multiple of W.

In constructing the decomposition, the length of W is irrelevant. The only
thing that is important about W is its direction.
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To create the decomposition, draw a fresh picture of a V' and W pair from one
of the pictures above on a sheet of paper.

V' should be somewhere in the middle and W off to the side for reference. Draw
a dotted line through the tail of the copy of V. The dotted line must go along the
same direction as W. Extend this dotted line a good bit on either side of V', across
the whole paper.

Next lay your pencil down on the paper. Put the eraser on this dotted line with
the point on the same side as V' is on. Make the shaft of the pencil perpendicular
to this dotted line. This is where you need to know about perpendicularity.

Slide the pencil up or down the dotted line, keeping it perpendicular to the
dotted line, till the pencil tip points at the tip of V' or the shaft crosses the tip of
V. Stop. This gives the decomposition.

3.1. Exercise.

Q—,’; (i) Draw a picture showing the decomposition

as described above for the indicated V. and W
on the left.

(ii) Draw a picture showing the decomposition
R\i as described above for the indicated V- and W
on the left.

4. Vectors in the Plane

We have spent considerable time thinking about arrows and drawing pictures
and introducing vocabulary. Those pictures will guide you in the later work, and
help you to understand what the calculations are telling you. But if we are to
produce exact answers rather than qualitative approximations we must do things
differently. Our first precise description of vectors will be as arrows in the ordinary
XY plane, freighted with all of its preliminary choices of axes at right
angles to each other, origin, choice of units and so on.

To describe each arrow we must identify a tail followed by a tip. In the XY
plane this requires a number of pieces of information—the coordinates of each and
also which is tail and which is tip. There is, evidently, some redundancy here and
we can cut this down by choosing that representative of a vector which has its tail
at the origin: the standard position version of the vector. With this convention
the vector can be completely described by referring to its tip alone.

The following arrows all represent the SAME vector (draw pictures and con-
vince yourself of this!)
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e tail at (0,0) and tip at (2,2)
e tail at (3,—7) and tip at (5, —5)
e tail at (—2,—2) and tip at (0,0)

The vector corresponding to ALL these arrows, or any one of them, will be
denoted (2,2). The difference between (2,2) and (2,2) is the following: (2,2) is
the location of a spot in the plane; (2,2) is a vector which, when represented as an
arrow with its tail at the origin, points at (2, 2).

An additional benefit of the standard position description of a vector is that it
is ready to use as a position vector whenever we want. (2,2) is the position vector
for the point located at (2,2).

You should satisfy yourself by drawing pictures that multiplication by constants
and vector addition can be handled using this standard representation according
to the following pattern: If A = (2,2) and B = (2, —2) then

2A — 3B =2(2,2) —3(2,—2) = (4,4) — (6, —6) = (—2,10).

To multiply vectors by a constant, multiply the coordinates of the standard repre-
sentation by the constant. To add or subtract vectors, add or subtract correspond-
ing coordinates.

Usually we will denote vectors by capital Latin letters, such as V, W, A or
B and the coordinates of the tip of a vector when in standard position will be
represented as lower case letters with subscripts. So we might write V' = (v1,v2) .
The individual coordinates of the tip in standard position are sometimes called the
components of the vector.

The magnitude of a vector V' = (v, v2) is denoted |V| and is defined to be
the length of any arrow representing V.

By the Pythagorean distance formula, this length is: |V| =/ v +v3 .

4.1. Exercise. Verify directly that, unless V = 0, the vector % = <%, %>

has length 1. Why does it point in the same direction as V ¢

Note: if 8 is the counterclockwise angle from the positive X axis to V' we have

Vo=V <|1"/—1| F/—2|> = [V {cos(0), sin(0)) .

aray

v=I¥I<cos(®), sin(a)
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The angle 6 is related to arctan (Z—f)

This is a very important representation for vectors in the plane. It separates
cleanly the two things that make up a vector (direction and magnitude) in a way
that the XY coordinates of the tip do not. The direction is indicated by an arrow
(cos(0),sin(f)) of unit length—these are called unit vectors—with its nose resting
on the unit circle and “pointing the way.” Unit vectors are also sometimes called
direction vectors. The magnitude |V| is the “stretch or shrink factor” which
modifies the length of the direction vector.

So we have two ways of representing vectors in the plane. The first gives the
XY coordinates of the tip when the vector is in standard position and is better for
doing most kinds of vector algebra. The second is more intuitive and emphasizes
the two defining properties of a vector. The ability to translate from one form to
the other is a key skill.

There is an alternative notation for the XY representation of a vector that you
will see from time to time.

"'r' < = We let 7 stand for the unit vector in
Y11 ¥z the positive X direction, and let j stand
for the unit vector in the positive Y di-
rection.
i=(1,0) and j = (0,1).

—¥ . - .
Do not confuse this vector 7 with

Y
2-j the complex number ¢. With this
convention, any vector can be written
as a vector sum involving ¢ and j.

V = <1)1,1)2>
p— } x :1)1S170>—i-1)2 <O,1>

. =111 + V2.
?1 | 1 2]

There is nothing terribly significant about this alternative notation (other than
that you will see it often) but it does introduce the idea of breaking a vector up
into a sum of two perpendicular vectors.

4.2. Exercise. You should verify (and be able to translate from one form to
the other yourself if needed) the following equations:

2

(2. 2= VB <‘T\/_2 ‘Tﬁ> V- < (i{) sim <i§)>

0,-7) =7 (0, —1) = 7 <cos <3§> sin (37”>>

2,2) = V8 <§, Q> = V8 <cos (g), sm(%)>
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(=2 ,3) =V13 ( cos (7 + arctan (—1.5)), sin (7 + arctan (—1.5)) )
~ 3.61 ( cos(2.16),sin(2.16) ) ~ 3.61 (—.556,.832).

4.3. Exercise. Repeat Exercise 1.3. Then discuss and compare the three dif-
ferent ways of thinking about vectors we have seen:
e vectors as “experiences:” pushes on your shoulder, actual completed move-
ment of your body from one spot to a second spot and as a description of
a motion which you witness as it happens

e vectors as arrows (where arrows are “the same” if they have the same
direction and length)

e vectors given by a coordinate pair such as (3,8) .

5. Dot Products
We will now define a way of multiplying two vectors called dot product.
If V = (v1,v9) and W = (w1, ws) we define V- W = vyw; + vows.

This product takes two vectors and produces a number obtained by simple
arithmetic involving the coordinates of each.

5.1. Ezxercise. (i) Show thatV.-W =W - V.
(11) Show that (7V) - W =V . (TW)=7(V -W).

(111) Satisfy yourself that, in general, constants can be moved around in a dot
product like the 7 above.

(iv) Show that (V+P) W=V - W+P-W and W -(V+P)=W -V+W.P.
(v) V-V =|V]2.

Properties (iii) and (iv) of the exercise together make the dot product an ex-
ample of a tensor. Since there are two vectors involved, it is called a 2-tensor.
Property (i) in this context is called symmetry. The dot product is an example of
a symmetric 2-tensor. If you stay in this business awhile you will run into tensors
of various kinds.

Dot products are incredibly useful.
If V =|V|{cos(a), sin(a)) and W = |W]|{cos(f), sin(B))
then V-W =|V||W]{cos(a), sin(a)) - (cos(B), sin(B))

= |V||W](cos(a)cos(B) + sin(a)sin(5)) = |V ||W]cos(a — [3).
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This means that you can use elementary arithmetic to get information about
the angle o« — 3 between two vectors!
We have just show that if 6 is the angle between vectors V and W then
V-W =|V||[W|cos(h).

For example, the angle 6 between (3,7) and (5, —3) satisfies
(3,7)-(5,-3) = 15— 21 = /9149 v/ 257 9 cos(0)

= cos(f) which means 6 =~ 98°.

—6
and so v 9F49 / 2549

5.2. Exercise. (i) Verify the angle found above by drawing a careful picture
and doing trigonometry.

Also, satisfy yourself that the following statements are true:
(1)) V- W > 0 implies that V and W are less than 90° apart.

(i11) V-W = 0 implies that V and W are perpendicular—that is, are at right
angles to each other. Vectors that are perpendicular to something (a line, a plane,
another vector) are often called normal or orthogonal to that other object. This
vocabulary is most useful when neither V-nor W is 0.

() V- W < 0 implies that V and W are more than 90° apart.
(v) V- W = |V||W] implies that V and W point in the same direction.
(vi) V- W = —|V||W| implies that V and W point in the opposite direction.

(vii) (5,3) is normal to (—3,5). Find a vector normal to (a,b).

5.3. Exercise. If V. = (v1,v2) and W = (w1, ws) we define det (V, W) to be
the number viws — vowy. The notation comes from the fact that, for those among
you who know about determinants, it is the determinant, usually denoted det A,

of the matriz A where
A = (”l ”2> :
wy w2

Here is an application for this number:

¥
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V and W can be used to form a parallelogram. Show that the area of this

parallelogram is
[W||V]sin(0) = |[WI|V|\/1 — cos?(6).

Now square this last number and verify that it is (viwy — U2w1)2. Conclude that
the area of the parallelogram is | det(V, W)|.

6. Problems in the Plane: Displacements, Forces and Velocity

The reader should work through all the statements made in this section.
Problem 1: Displacements

Bearings are commonly used in navigation problems to indicate direction. A
bearing looks like this:

N10°W or S38°W or S18°F.

The meaning of a bearing is as follows: You first point your nose straight north or
south, whichever is indicated by the first letter. Then you rotate the given angle
toward the compass heading suggested by the second letter, either east or west.
That is the direction.

N

M M
WJ‘E W7~7E L} E
5 5 )

The problem is as follows:

Suppose a cross country runner jogs 5 miles N10°W and 3 miles S38°W and
then 4 miles S18°F. How far is the runner from home, and what bearing should
the runner take to get there?

The Solution:
The resultant displacement vector is:
5 (cos(100°), sin(100°))
+3 (cos(—128°), sin(—128°))
+4 {cos(—=T72°), sin(—72°))

This vector is, approximately, (—1.479, —1.244) | or about
1.93 (c0s(2207), sin(220°)) .

It is about 1.93 miles to home and the runner should head 180° away from the
angle of the resultant vector. The bearing will be N50°FE.

Problem 2: Forces

Three people are pushing on different sides of a huge ball but the ball is not
moving. The pushes of first and second of these people are represented by force
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vectors (30,20) and (15, —10), respectively. Which force vector represents the push
of the third?

The Solution:

Since the ball is not moving, the sum of the three forces must add to the zero
vector. So if F' is the force of the third person, F' + (30,20) + (15, —10) = (0,0).
So F = —(30,20) — (15, —10) = (—45,10).

Problem 3: Forces

We suppose that there is a 100 pound weight hooked
(not moving but free to slide) over a length of rope.
The rope is at a given angle (on both sides) from
the horizontal as indicated. The rope is very light in
comparison to 100 pounds, so the weight tightens it to
(nearly) a straight line. The tension is a measure of
how hard the rope is pulling, and is the magnitude of a
force vector whose direction lies along the rope. What
is the tension, T, on this rope?

100 LB

The Solution:

Since nothing is moving, all the forces must counteract each other at each point
along the rope and, in particular, at the point where the weight is attached. The
resultant of the three forces there, indicated by arrows, must be zero. The sum is

(0,0) =100 (0, —1) 4+ T {(cos(8), sin(0)) + T (cos(w — ), sin(m —0)).
After fiddling around with some algebra, this gives
50
sin(0)
Note: the minimum tension occurs when the angle is 90°. When the angle gets
small enough, the weight WILL break the rope.

(0,0) = (0,—100 + 2T sin(f)) andso T =

Problem 4: Forces

Let’s embellish the last problem a bit and think about it from the standpoint

of a bolt anchored to a wall and to which the rope is attached.
In one situation, the rope is

tied off at each anchor point. In
the other situation, the rope slides
through rings at the same height
and is allowed to run freely in a big
loop. The issue here is to find the
forces acting on the anchor bolt in

100 LB each case. 100 LB
The Solution:

Experience shows that a bolt like this will refuse to move until it breaks or pulls
out of the wall. So it musters up whatever force is required to keep it from moving
(to counteract the other forces on it) until that catastrophic event. Unbalanced
forces always generate a change in motion. No change in motion means that the
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resultant of all forces is the zero vector in each case. In the diagram on the left,
the situation is clear. The force which the upper right bolt must counteract is

50
sin(6)’
But in the second case, there are TWO forces tugging on the upper right bolt, one

along each segment of the rope leading away from that bolt. The resultant force to
which it must respond is

T (—cos(0), —sin(0)) + T (—1,0) = T (—1 — cos(#), —sin(0)) .
This vector has magnitude

T/ 1+ 2cos(0) + cos2(0) + sin2(0) = TV2y/1 + cos(0).
By merely looping the rope around the pair of bolts rather than tying it off at each
one you increase the magnitude of the force on the bolt by at least 40% and up to
100%. The worst case also happens for smaller angles, exacerbating an already bad
situation.

T (—cos(f), —sin(f)) which has magnitude T =

If you made the apparatus using real bolts and a rope, friction each time the
rope changes direction at an anchor would reduce this effect somewhat. Calculating
friction can be quite complicated, involving the diameters of rope and bolt shaft,
angle of contact and so on. But friction must be considered to make sense of more
complicated situations or to make accurate predictions. But that is for a physics
class!

Problem 5: Combining Velocities

Suppose that a plane is pointing N10°W and its throttle and altitude are such
that if it were flying on a windless day it would be moving at 400 kilometers per
hour. However there is a wind, coming from N40°W at 50 KPH. How fast is the
plane moving with respect to the ground and with what bearing?

The Solution:
400 (cos(1007), sin(100°)) — 50 (cos(130°), sin(130))
~ (—37.3, 355.6) ~ 357.6 (cos(96°), 5in(96°)) .

So the plane is flying at a speed of about 358 KPH at a bearing of NG6°V .

7. Position Vectors and Constant Velocity Motion: Part 2

In this section we will take another look at the material of Section 2, this time
with coordinates. For specificity, we will measure the parameter ¢ in seconds.

Suppose we have an object moving in the plane with velocity that never changes
and starting at some place at time ¢ = 0, such as (1,2). In this context, (1,2)
in standard position points at the spot and we will say that the object is at
P = (1,2). Let us say that the velocity vector is found to be V' = (—3,4). The
velocity vector is the displacement vector after one second of motion, so you could
get these two pieces of information by watching the motion for one second. We will
say that the velocity vector lies in the line of the motion. The vocabulary means
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that if you choose the copy of V' with its tail on the line of the motion, the tip (and
so the whole arrow) is in the line too.

-3 4
Note that V = (=3,4)=5 <?, g> ~ 5 (c0s(126.9%), sin(126.9°)).
After 1 second the object will have moved 5 meters in the direction of V' and so will
be at P+ V. After 2 seconds it will have moved another 5 meters in the direction

(—3,4) and so will be at P+V +V =P +2V.

At time ¢ = —1, that is one second before it was at P, it must have been at
P —V (if it is to arrive at P one second later.) In general, for any time ¢, the
position at time ¢, which we will denote @ or Q(t), will be given by

Q(t) = P +1tV.

W

—

o =

J's moving finger,
having writ, i
moves on ...

As you will recall from Section 2, this is called a parametric vector equation
for the motion. The tip of the arrow Q(t) = P + ¢V sweeps out the motion as time
passes. You might think of this as like a “slope-intercept form” for the linear motion.
P is the location at time 0, and V' carries the direction and speed information about
the motion.

Note that:
Qt)=P+tV={_1-3t,2+4t) so X =1—3t and Y = 2+ 4¢,

where X and Y represent the X and Y coordinates of the tip of @) as functions of
time. We can eliminate t from this whole business as follows:
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1-X —4 10
t = —— SO Y_2+4<T) or Y—TX—F?.

Another (easier) method of eliminating ¢ is to use the fact that, for a generic
point @ = (X,Y) on the line, @ — P = tV: that is, @ — P is a multiple of the
velocity vector V. So if N is any vector perpendicular to V' then (Q — P)- N = 0.
This is called the normal form for the line in the XY plane..

In our situation we can pick N = (4,3) so ((X,Y) — (1,2)) - (4,3) = 0 which
yields (X —1)4 + (Y —2)3 =0 or 4X + 3Y = 10.

In any case, we can see the motion is along a line in the plane, and we have a
formula for this geometrical track of the parametric motion. Note how the slope
is related to the components of the velocity vector (—3,4). This is not chance.

There is something important missing when we eliminate the parameter. In
this form we lose all knowledge of when we are anywhere on this line, which in
applications is often the whole point! Knowing the geometrical track can be an aid,
however, in drawing the graph or for other reasons.

In applications you will not always be given the velocity and position at time 0,
just as in the old line exercises from elementary algebra you were not always given
the slope and Y axis intercept. Still, we should be able to cook up an equation for
the motion given two independent facts about it.

In the problems below we assume constant velocity motion in the plane. If you
get stuck - DRAW PICTURES FOR VARIOUS t VALUES!

Problem 1: A Parametric Vector Equation—Where Will the Object Be?

Write a parametric vector equation for the position of a moving object located
at (3,5) at time 0 and (4,7) at time 1. Where will it be at ¢t = 27

Movement during 1 second: (4,7) — (3,5) = (1,2) = velocity.

Q(t) = (3,5) + t(1,2). So it will be at Q(2) = (3,5) +2(1,2) = (5,9) at time
2. You can also get this by adding a copy of the velocity vector to the position at
time 1.

Problem 2: A Parametric Vector Equation Plus Elimination

Write a parametric vector equation for the position of a moving object with
velocity vector (1,—5) and which is located at (5,9) at time 4. What is the XY
formula for the geometrical track upon which the motion takes place?

At time 0 it was at (5,9) — 4 (1, —5) = (1, 29).

So Q(t) = (1,29) +t(1,-5) = (1 +¢,29—-5¢t). So X =1+t and Y = 29 — 5¢.
SoY =29 —5(X — 1) or, in slope-intercept form, ¥ = —5X + 34.

Problem 3: A Parametric Vector Equation Plus a “Wall”

Write a parametric vector equation for the position of a moving object located
at (—3,0) at time 5 and (12,6) at time 8. When will the object pass through a
barrier set up on the line ¥ = —X + 1007
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Movement during the 3 seconds from ¢t =5tot =8: (12,6)—(—3,0) = (15, 6).
So the movement in 1 second is one third as much: (1/3) (15,6) = (5,2) = velocity.
At time 0 it was at (12,6) — 8 (5,2) = (—28, —10).

So Q(t) = (—28,—10) 4 t (5,2). This will be at the barrier at ¥ = —X + 100
when —10 + 2t = —(—28 + 5¢) + 100. That means ¢t = 138/7 seconds.

7.1. Ezercise. (i) Write a parametric vector equation for the position of a
moving object located at (0,5) at time 0 and with velocity vector (—1,7). Where
will it be at time 109 Where was it at time —5% When will it hit a wall set up on
the line Y = X + 1007

(ii) Write a parametric vector equation for the position of a moving object
located at (—2,3) at time 0 and (—4,1) at time 1. Draw a picture of this motion.

(iii) Write a parametric vector equation for the position of a moving object with
velocity vector (—1,8) and which is located at (1,—9) at time 6. Draw a picture of
this motion. What is the XY formula for the geometrical track upon which the
motion takes place?

(iv) Write a parametric vector equation for the position of a moving object
located at (—2,9) at time 5 and (12,16) at time 12. When will the object hit a wall
set up on the line Y = —X + 1007

8. Decomposition of Vectors: Part 2

In this section we revisit the ideas of Section 3 only this time we use coordinates
and can obtain more precise information. You will recall that the goal was to
decompose a vector into the sum of two other vectors one of which was along a
given direction while the other was perpendicular to that direction.

Being able to draw the picture is important and will allow you to estimate the
decomposition fairly accurately in the plane, so you might want to go back and
take another look at Section 3 at this point.

The fact we need for our calculation is:
V-W =|V||[W|cos(f) where 0 is the angle between nonzero vectors V and W.
We will use the fact that % = |V|cos(#) in the calculation below.

Notice in the following picture that, with W as shown, the length of P is
[V|cos(0).
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So P =|VicosO)ty = (%)t = (%) W
The vector V' — P should be perpendicular to W if the picture is correct.

Let’s see:

V-W
w.-(V-P)=W-V-W-P=W.-V-W-. 14
- P) (W,W)
VW
w.-w

=W.-V-w.-V=0.

:W.v_( )W.W

So V — P and W are perpendicular as advertised.

The complete decomposition calculation is in three steps:

e Calculate P = (%) w.
e Then calculate V — P.

e Then verify that P-(V — P) = 0. (This catches most arithmetic “issues.”)

Problem: A Decomposition

Decompose (4,5) into the sum of a vector which is a multiple of (1,2) and
another which is perpendicular to (1,2).

Verify:
14 28 6 —3
P. _p)y = (= 22N (2 =
(v -p) 5,5><5,5>
84 84
25 25

8.1. Exercise. (i) Draw a picture to verify that the decomposition in the prob-
lem, given algebraically, is “about right.”

(i) Decompose (—4,1) into the sum of a vector which is a multiple of (—1,8)
and another which is perpendicular to (—1,8). Using a picture, verify that your
decomposition is “about right.”

(i1i) Decompose (0,1) into the sum of a vector which is a multiple of (—1,1)
and another which is perpendicular to (—1,1).
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We will make two final points here:

First, the vector P found above is also called the vector projection of V
in the direction of W and often denoted Proj w (V). The specificity provided
by this notation is needed when there are decompositions of different vectors or
along various directions within one problem. It is apparent from the definition that
Proj w (V) = Proj vy (V) when U is a nonzero multiple of W.

Second, sometimes the decomposition vectors P and V — P themselves are
o : o . Wi .
projection of V in the direction of W. It is a positive number if the angle 6
between V and W is less than 90°. Its absolute value is the magnitude of P.

is called the scalar

not needed but only their magnitudes. The number

The various magnitudes are are related by:
_vwi

[P = [V]|cos(0)]
W

and |V — P| = |V||sin(0)].
Also note that:
V> =|P]*+|V - P,

Using this last equation, you can get the magnitude of the third from the magnitudes
of any two of the terms involved.

9. Problems in the Plane: Work, the Inclined Plane and a Robot Arm

In this section we are going to use dot products to perform some calculations
whose meaning will be explored in much greater depth in physics and engineering

classes.

The concept of “work” in physics is not the usual idea of work that pops to mind
when we say “I worked all day weeding the garden.” In the colloquial sense, work
means “I accomplished something today.” or “I expended a lot of effort today.”
Neither of these fuzzy notions corresponds to the idea of work as defined in physics,
which is part of the energy “accounting system.”

‘Work done by a constant force, in physics, involves the magnitude of the part
of the force that lies in the direction of displacement times the magnitude of that
displacement. The speed of the motion is not relevant: only the displacement.

So if I am standing in a room holding a 200 pound sack of flour, beads of sweat
popping out on my forehead—but not moving—then I am doing no work. If there
is no movement there can be no work.

Even if I move, so long as I move horizontally and not up or down, no work has
been done by or against gravity. At least part the force must lie in the direction of
motion.

When I have found the component of the force along the line of the displace-
ment, I calculate its length and multiply by the length of the displacement vector.
If the angle between the force and the displacement is less than 90° this number is
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the work. If the angle between the force and the displacement is more than 90° I
multiply this number by —1. This number is the work.

When the work is positive the displacement took place aided by the force.
When negative, the force was hindering the displacement.

—>

Displacement=D
rce=F

Part of F in Direction of

From a calculation standpoint, if F' is the force vector and D is the displacement
vector we have, from the picture above,

D-F

So to calculate the work, dot the displacement vector against the force vector.

Why should this odd number be useful in physics? Good question. The story
is pretty long and is the object of much thought in physics or engineering classes.
However now, if anyone should ask, you can calculate it.

We should make several points here about the picture shown above. The force
vector shown is less than 90° away from the displacement vector, so the dot product
is positive. If the force acts to “slow down” the displacement instead of “helping
it along” the angle exceeds 90° and the dot product will be negative. Second,
this calculation is for constant force and straight line motion situations. Other
situations are considered after you have had calculus. Finally, notice that the part
of the force perpendicular to the motion is discarded—it serves no purpose in the
work calculation.

Problem 1: Work

Suppose I am walking due east and a very hard wind is pushing on me 40 LB
from N20°FE. How much work is done if I move 200 feet?

The Solution:
D = (200 feet)(1,0) and F = (40 pounds) (—cos(70°), —sin(70°)).
So the work is D-F = —8000 cos(70°) foot pounds or roughly 2736 foot pounds.

|The Inclined Plane|

If an object is sitting on an inclined plane the force of gravity is pulling
straight down. But “straight down” is not a direction that the object can move.
Any push directly into the face of the plane is countered by a corresponding push by
the molecules of the surface to prevent the object from sinking in. Because of this,
it is only the part of the force of gravity pointing down along the hill that can
influence the motion of the object. The rest is “wasted” against the constraint—
the hard surface of the hill.
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It is the vector P (shown above) that acts to accelerate the object down the
hill and you learn how to calculate the effect of the magnitude of P on the motion
in basic physics classes. Sometimes in these classes the part F' — P of F that is
perpendicular to the hill is discarded. We say the hill is “frictionless.” Usually we
say this because we don’t want to think about friction, which is very complicated
to understand physically, involving molecular forces and tiny rugosities binding on
each other. But in real inclined planes, the push directly into the surface creates
friction. F — P causes an “effective” force up the hill and this will completely
counteract the downhill force if the downhill force is too small. In many cases, the
magnitude of the maximum “up the hill” force that could be generated by friction is
k|F — P| where k is a positive constant called the coefficient of static friction. k
depends on how the surfaces are prepared, the material of which they are composed
and a myriad of other complicated factors, and is measured for a specific situation,
not calculated.

Problem 2: The Inclined Plain

Find P and F' — P in the picture above if the object weighs 100 pounds and
the plane is inclined 37° from horizontal.

The Solution:

To calculate the decomposition we can use ANY vector that points along the
hill. The easiest one is (cos(37°), sin(37°)). So

B (cos(37°), sin(37°)) - (0,—100) cos(37°). sin(37°
P = os37), 5in(37) - (cos37%) sin@re)) 3BT s (37%))
= — 100 sin(37°) (cos(37°), sin(37°)) ~ 60.18 (cos(37°), sin(377))
~ (—48.06 ,—36.22)
F—P = (0,—100) — 100sin(37°) (cos(37°), sin(37°))

Q

(0, —100) — (—48.06, —36.22) = (48.06, —63.78)
~ 79.86 (cos(—53°), sin(—53°))

If all you needed was the magnitude of these two vectors, that is easier:
|P| = |F|sin(0) and |F — P| = |F|cos(6).

In our case that means |P| is about 60.18 pounds and |F — P| is approximately
79.86 pounds.

Problem 3: The Inclined Plain

Consider the situation from Problem 2. Suppose the coefficient of static friction
is k = .65. Will the object slide down the hill?

The Solution:
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The maximum force that could be generated by friction has magnitude
(.65)(79.86) ~ 51.9 pounds up the hill.

This is less than the magnitude of P so there will be a net force down the hill.

If there is a net force there is always a change in the motion, so the object will
move.

A Tool on a Robot Arm

If you are trying to control the activity of a tool at the end of a robot arm, the
first step is to have a means of sensing the location of the tool. One way of doing
this is to have a device that measures the angle of each joint relative to the previous
arm segment or an anchor point. The picture below indicates a robot arm confined
to move in a vertical plane with two arm segments, together with the angles o and
(8 which can be measured by the sensors at each joint: one sensor at the shoulder
measures the angle between the first arm segment and the floor and one at the
elbow which measures the angle between the upper arm and the forearm. These
measurements are called feedback. The robot arm segments have fixed lengths,
L4 and Lp respectively. Let us also suppose that the mechanism of the joint allows
you to control the angles, but that the angles must be positive and cannot exceed
180°.

Floor

If a specific angle feedback arrives at the controller computer, where is the tool?
Using vectors, the tool is at the tip of the resultant vector

L4 {cos(a), sin(a)) + Lp (cos(a + ), sin(a + ) .

9.1. Ezercise. If the shoulder-to-elbow part of the arm has length 2 and the
elbow-to-tool part has length 1:

(i) Describe the part of the plane which is accessible to the tool.
(i1) Will there be more than one way to get to any accessible point?

(i11) * Suppose that you want to get to a specific point with the tool. How should
you control the arm to get there? (I am asking for o and (3. hint: Represent the
point as a {cos(7y), sin(y)) where a >0 and 0 < v < 180°.)
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10. Vectors in Three Dimensions

Locations in the plane require two numbers (X and Y coordinates, for instance)
to describe. Sometimes people say that the plane has two dimensions, or is 2D
because of that. Locations in space require three, commonly called X, Y and Z.
Space is said to have three dimensions, or to be 3D. When we describe locations
by the X and Y coordinates in 2D or X, Y and Z coordinates in 3D we are said
to be using rectangular coordinates. Vectors in space require three components
too: the X, Y and Z components of the tip of the arrow when the tail is at the
origin. When we make this identification for a particular application of vectors we
assume concepts of origin, perpendicularity and distance to be agreed upon and
reflected in the identification.

Vectors V' = (v1,va,vs) still have a length, found by using Pythagoras twice
in the picture found below—first to find the length of L. You will find that the

magnitude of a vector V, denoted |V, is y/ v} + v3 + v3 .
(. %, %l

(v,vz,l]]

There are three special planes, called the coordinate planes, to which we refer
in order to get “oriented” in a 3D picture. These are called the XY, YZ and XZ
planes, and correspond to all the points with Z, X and Y coordinates, respectively,
equal to 0. They divide space into eight octants.
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There are three special vectors ;, jand k (not just i and j anymore) pointing along
the three coordinate axes:
=(1,0,0), j=1(0,1,0) and  k=(0,0,1).

This second definition for i and j invites confusion. However, with use you will
come to consider that a “feature” rather than a “bug.”

LA

(v, LY ?5]

Any vector V' = (v1, v2,v3) in space can be written also as
V = ’Ul;—F 'UQJ—F ’UgE

and both notations for vectors in space are in common use. One advantage of this
notation is facilitate the transition from 2D to 3D which is frequently useful in
applications. A vector V' = (v1,v2) in 2D is different from the vector (v1,v2,0) in
space, but sums and multiples of vectors in the XY plane in space all correspond
to the same operations on the related vectors in 2D. You have merely changed
your descr1pt10n of the arrows, not the arrows themselves. By using the notation
V =i+ ’Ugj you can make the move from 2D to the XY plane in 3D by merely
redefining which ¢ and j you mean in a formula. Mathematicians don’t like this
kind of thing very much, but Engineers seem to like it a lot.

s

When V' is any nonzero 3D vector it is still true that % is a unit vector. X%

is called the direction vector for V.

So any nonzero vector V' can be written as V' = |V|‘7V‘ The vector part has its

nose on the unit sphere which consists of all points (X,Y) with X2+Y2+22% = 1.
This part indicates direction of V, while |V| carries the magnitude information
about V.

We define the dot product of two vectors V' = (v1, va, v3) and W = (wy, wa, w3)
to be

V- W = viwy + vaws + v3ws.
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It is still true but a bit harder to show that
V-W =|V||W]cos(0)

where 6 is the angle between V' and W as measured in a plane containing both
vectors. There is a discussion of this in the next section if you are interested.

If you accept that formula as fact, then there is a simple meaning for the entries

Vo <£ 2 v_s>

V| v wve v/
They are (cos(f;),cos(02),cos(f3)) where the angles 0,02 and 63 are the an-
gles between V' and the coordinate axes! To show this, dot % against Z, j and

in

k one at a time. The numbers cos(6;), cos(f2) and cos(f3) are called direction
cosines for the vector.

It is just as easy in 3D as in 2D to come up with vectors perpendicular to
a given one: simply select them to have dot product 0 with the first. For example
(3,6,—1) is normal to both (—6,3,0) and (0, 1, 6).

The formulas for decomposition (and the proof that the decomposition has the
expected properties) and the formulas involved in parameterized constant velocity
motion are unchanged in three dimensions!

To decompose V into the sum of a vector (call it P) which is a multiple of
W and another perpendicular to W we proceed as before:

Let P = (34%)W. ThenV = P+ (V — P) is the decomposition.
Dotting P against V' — P to yield 0 provides the check for your arithmetic.
To describe constant velocity motion the formula is still:
Qt)y=P+1tV

where P is the position at time ¢ = 0 and V is the velocity. The length of V' is the
speed.

Eliminating the parameter can be done in 3D too, although this has less utility
than in 2D. Essentially, you describe the geometrical track as the solution of a
system of two linear equations in the three variables, X, Y and Z.

A parametric equation in 3D:
Qt)=(X,)Y,Z)y=P+tV

yields the 3 equations:

X:pl—i-tvl
Y =p2 +tvg
Z = p3 +tus

Solving for ¢ in one of these equations and eliminating this parameter from
the other two gives the system of two linear equations in three unknowns: a line in
space.



10. VECTORS IN THREE DIMENSIONS 29

If you can find two vectors N7 and No which are not multiples of each other
and which are both normal to V' you can get formulas for a system of two equations
(whose solution is the line) with less effort.

(@—P)-N1=0
(Q—P)-Ny=0.
This system is called the normal form for the line.
Problem 1: A Decomposition

Decompose (4, 5,1) into the sum of a vector which is a multiple of (1,2, 3) and
another vector perpendicular to (1,2, 3).

The Solution:

~((4,5,1)-(1,2,3)
P= (<1,2,3>-<1,2,3>) (1,2,3)

4+10+3 17 34 51
—— ] {1,2,3) = (—, —,— ).
<1+4+9><’ %) <14’14’14>

p_p _ (3870 14\ /17 34 51\ /39 36 37
T \147 147 14 1471414/  \14’ 14" 14 /°

Verification:

17 34 51\ /39 36 —37\ 663 1224 1887
P (V-P)=(— = ). (Z 2 220 o -
( ) <14’14’14> <14’14’ 14>

Problem 2: Parametric Constant Velocity Motion

=196 T 196 196

(i) Write a parametric vector equation for the position of an object moving
with constant velocity and with position vector (—3,0,6) at time 5 and (12,6, 18)
at time 8.

(ii) When will it run into the plane X +Y 4+ Z = 1007

(iii) Eliminate the parameter to give a system of equations for this line.
The Solution:

The movement in the 3 seconds from ¢t =5 to t = 8 is:

(12,6,18) — (—3,0,6) = (15,6,12).

The movement each second is one third of this:
(1/3)(15,6,12) = (5,2, 4).

The position at time 0 is:
(—3,0,6) —5(5,2,4) = (—28,—10, —14).

So the equation for parametric motion can be written in three ways:

Qt) = (—28, 10, —14) + ¢ (5,2, 4)

or
Q(t) = (—28 4 5t,—10 + 2t, —14 + 4t)
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or

X =-28+45t Y =-10+2tand Z = —14 4+ 4t
whichever you prefer.

It remains to solve the second part of the question: When will it hit “The
Wall?”

X+Y +7Z=(—28+5t)+ (—10+2t) + (—14 + 4t) = 100

which implies ¢t = 152/11 seconds is the time when it “hits the wall.”

Finally, we eliminate ¢: The vectors (—2,5,0) and (0,4, —2) are both perpen-
dicular to the velocity vector (5,2,4). So the equations

((X,Y,Z) — (=28, -10,—14)) - (—2,5,0) = 0
((X,Y,Z) — (=28, -10,—14)) - (0,4, —2) =0

give a non-parametric system for this line, which is the solution to the third part
of the problem. These equations reduce to the system:

—2X 4+5Y =6 and 4Y — 27 = —12.

Problem 3: Draw a Picture of Parametric Constant Velocity Motion in 3D.

Draw a picture to describe the constant velocity motion that has position vector
(0,1,—1) at time t = 0 and (1,2,1) at time ¢t = 1.

The Solution:

We simply plot several points in a representation of a 3D coordinate system and
connect the dots in the obvious way. There are a couple of issues to be emphasized.
First, you should pick a scale on the axes so that the points you are plotting are well
separated. You might want to adjust the “point of view” from which you look at
the axes when you draw your picture to make this easier. Second, you should label
your points with times to indicate the direction of motion. Third, don’t expect
too much. Unless you can rotate the picture around and see your picture from
various angles the fact that you are attempting to represent three dimensions on a
two dimensional piece of paper means you will lose a lot of information. Computer
algebra systems are a HUGE benefit when graphing 3D pictures for that reason.

In our problem, the velocity vector is (1,1,2) so as time passes we add on
increasing multiples of that vector.
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F
2 —
-I —

10.1. Ezxercise. (i) Decompose (—4,1,6) into the sum of a vector which is a
multiple of (—1,8,1) and another perpendicular to (—1,8,1).

(i1) Decompose (0,1, —1) into the sum of a vector which is a multiple of (—1,1,2)
and another perpendicular to (—1,1,2).

(iii) Write a parametric vector equation for the position of a moving object
located at (0,5,1) at time 0 and with velocity vector (—1,7,7). Where will it be at
time 102 Where was it at time —5? Draw a picture of this motion.

(iv) The vectors (5,3,0) and (0,7, —5) are both perpendicular to (—3,5,7). Fol-
lowing that pattern, find two vectors perpendicular to {(a,b,c).

(v) Write a parametric vector equation for the position of a moving object whose
position vector is (—2,9,1) at time 5 and (12,16, 8) at time 12. Draw a picture of
this motion. When will it “hit a roof” at Z = 1207 Finally, eliminate the parameter
to form a system of two equations for this line.

10.2. Exercise. * (i) We suppose Q(t) = P + tV to be a parametric vector
equation with geometrical track which we denote L. Show that Q = P +tV has the
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same geometrical track as @, where

PV — Vv
P=P-——— d = — .
VVV and V V]

Note also that P-V =0 and V-V = 1.

(ii) The point on L nearest to the origin has position vector Q at which @ - Q
is a minimum. But Q - Q = P - P 4 t2 which obviously has a unique minimum for
t = 0. So the near spot has position vector

Q)=P= P—WV

This is the part of P perpendicular to V and is the one and only position vector
of a point on L which is perpendicular to the line.

(iii) Show that the point on L closest to the point with position vector A has
position vector
(P—A)-V
V.-V
B is the only position vector of a point on L for which B — A is perpendicular
to the line. Draw pictures to convince yourself of why this should be true.

B=P— V.

11. Angles in Higher Dimensions

We are going to do some calculations here to make it seem reasonable to use
the dot product to determine the angles between vectors in higher dimensions and
not just the 2 dimensional XY plane.

We will presume V and W are two vectors in some higher dimensional setting,
such as 3 dimensional space. We presume that neither is a multiple of the other.
The case where one is a multiple of the other is left as an exercise. We presume
that distances in this setting are defined by an extension of the old Pythagorean
distance formula. So the distance between the points (ai,as,...) and (b1,be,...)
is given by

V(@ =0+ (a2 —b2)? 4.

The three dots signify that you should keep on going in the same pattern till
you run out of coordinates.

So the dot product of the vectors V and W is V- W = vywy + vows + ... and
the magnitude of a vector such as V is

V] =/ v¥i+0v3+ =VV.V.

Our goal is to show that with these assumptions it makes sense to write
VW =|V||W]cos (0)
where 6 is the angle between V' and W.
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Let’s define the three vectors:

P = <I‘4//MM//>W and
V-P
= ——— and
Q VP an
w
T = —
144

It is an interesting exercise to show that @ - T = 0.
It is obvious that T- T =1 and Q - Q = 1.

We now define a function F' that takes ordered pairs in the plane to points in
the space where the vectors V' and W live.

We define F (r,s) = (rq1 + st1,rqa + sta,...), where the ¢; and ¢; come from
the coordinates of @) and T respectively.

The following messy calculation is the key result.
The square of the distance between two points F'(a,b) and F (r, s) is

(aqy +bt1 —rqq —St1)2+(aqz+bt2—TQQ —st2)2+...
=(a—rla+[b—s]t)* + (la— g2+ [b—s]t2)" + ...
=(a—1 (@ +a@+...)+2@—r)(b—s)(at1 +qts+...)
-8 (B +t3+...)
— (- 1)+ (b5’
(because @ -T =0, Q-Q=1land T -T=1.)

This is just the square of the distance between (a,b) and (r,s)! This means
that the distances between all pairs of points in the XY plane are unchanged when
transported by F'.

So any triangle in the XY plane, determined by three specific vertices in the
XY plane, is taken by F' to a triangle whose vertices are the same distance apart
from each other as those of the original triangle. So the two triangles have the same
interior angles.

Let A= (|V — P|,V-W/|W|) and B = (0, [W]).

The tips (when in standard position) of A and B are taken by F' to the standard-
position tips of V' and W respectively (check that out!)

So the angle between A and B is the same as the angle between V and W.

So A- B = |A||B|cos (0) where 0 is the angle between V and W.
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The result now follows from a little algebra:
V-W = A-B =|A||B]cos (0)

(VW)

W |W| cos ()

Il
Q
.
|
=
+

VW (V-w)? (V-w)?
V.V -2V.W W-W+-—— W 0

= VV-V [Wcos(0) = |V||W]|cos(0).

11.1. Ezercise. (i) Under what conditions, exactly, will the equation
VWP =V + W
be true? (hint: |V +W[2=(V+W)-(V+W).)
(i) If the angle between V and W is 0, what is the angle between —V and W ¢

(i) * Show that | |V| — |[W| | < |V +W| < |V|+|W|. This is called the
Triangle Inequality. What does this inequality have to do with triangles? When,
exactly, will you have equality on one side or the other?

11.2. Ezercise. Show that F takes any point on a line segment between (a,b)
and (r,$) to a point on the line segment between F(a,b) and F(r,s).

12. The Cross Product

The cross product is another way of multiplying vectors, like the dot product.
In this case, however, the “answer” is another vector rather than a number. We
define this product for vectors in 3D only—if you have 2D vectors involved you must
think of them as 3D vectors with zero third component to use the cross product.

If V = (v1,v9,v3) and W = (w1, wa, w3) we define
VxW= (’Ugwg — v3w2)5+ (’Ug’wl — ’Ul’wg)j—f— (’Ul’wg — Ugwl)g.
Notice that the first entry in the product does NOT involve the first entry of
either vector. The second entry in the product does NOT involve the second entry
of either vector. The third entry in the product does NOT involve the third entry

of either vector. Also, the positive term in the first and third entry in the product
has the V and W entries “in order” while the middle term has them backwards.

If V and W are in the XY plane note that V' x W is a multiple of k.

Another interesting and useful product is called the triple scalar product.
It is defined for triples of 3D vectors P,V and W by:

det (P,V,W)=P-(V xW).
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The triple scalar product is a number and can be calculated by dotting the first
vector against the cross product of the last two vectors. The det notation comes
from the fact that, for those among you who know about determinants, it is the
determinant, usually denoted det A, of the matrix A where

b1 p2 P3
A = U1 (%) V3
wyp w2 w3

12.1. Ezercise. (i) Show that V. x W =—- W x V.
(i1) Show that (EV) x W =k (V x W) =V x (kW) for any real number k.

(i1i) Show that (P+V )XW = PXxW +V xW and W x (P+V ) =
WxP+WxV.

(iv) Show that V- x W is perpendicular to both V and W.

(v) Show that if you switch any two of the vectors in a triple product, the sign
of its value switches. For example det (P, V, W) = —det (V, P,W).

(vi) * Suppose V. x W # 0 and N is a vector with N -V =0 and N -W = 0.
Show that N must be a multiple of V- x W.

This last fact is an algebraically messy exercise involving coordinates, but it is
quite important. Here is a hint.

Write out the components of C =V xW. Now consider the equations N-V =0
and N -W = 0. They give you two equations involving ni, ne and nsg. Use the
“elimination method” three times on these two equations to eliminate ny, ny and
ns, one at a time. Recognize the messy coefficients as c1, co and c3. This will yield
three equations:

cong = c3ne  and cs3ng =ciny  and  ciNg = Cang.

Since C # 0 at least one of the components of C' is nonzero. If ¢; # 0 then
N = LC.

The facts (i) — (z3¢) shown in the exercise above combined with the properties
of dot products make the triple scalar product another example of a tensor. Since
there are three vectors involved it is called a 3-tensor. The property from part (v)
in this context is called antisymmetry. The triple scalar product is an example
of an antisymmetric 3-tensor.

12.2. Ezercise. Recall Ezercise 5.3. If V. = (vi,v9) and W = (wy,ws) we
defined det(V, W) to be the number viws — vowy. Show that for any 2D wvectors
V, P and W and any constant a

det(aV 4+ P,W) = a det(V,W) +det(P,W) and det(V,WW) = —det(W,V).

These properties imply that det(V, W), defined for pairs of 2D wvectors, is an anti-
symmetric 2-tensor.
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You can show by doing a lot of multiplying and gathering of like terms that
VxW)- (VXW)+((V-W)(V-W)= (V. -V)(W-W).
We observe that the second and third terms above can rewritten as:
(VX W) (Vx W) +|VP[W[? cos® (0) = [V]*W],
where 0 is the angle between V and W . It follows that:
|V x W|=|V||W]| sin(0).

This is reminiscent of the similar fact about dot products and is just as useful,
though in different contexts.

Here we will examine four related geometrical uses for cross product.

Area of a Parallelogram

First we find the area of a parallelogram. By dividing the picture below
into two triangles we see that the area is just twice “one half the base times the
height” which is

|V x W|=|V||W]| sin(0).

Cross product can be used to find the area of this region.

The area of the

parallegram is

I¥11'%] sin{E)
= |¥ X ¥|

12.3. Ezercise. In the calculation above for the area of the parallelogram, we
drew a picture with the angle between V and W less than 90°. Is the formula still
valid if the angle exceeds 90°¢

‘Volume of a Parallelepiped

Second, we consider the parallelepiped below. In general, parallelepipeds are
3D objects bounded by three pairs of parallel parallelogram faces.

Our parallelepiped is a (possibly) bent box determined by the three vectors
T, V and W. You can think of it as a deck of parallelogram cards that has been
pushed so that the edge of the stack runs at an angle—along the vector 7.
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If you pushed the stack straight again, the shape of the cards is unchanged and
so is the volume of the stack.

If we want the volume of the stack we need to know the height of the stack.
Then the volume will be the height times the area of a card. We just found that
the area of a card is |V x W/.

The height of the stack is the length of the part of T' that is perpendicular to

the cards. The vector I“;igl is a unit vector perpendicular to the cards.

So the height of the stack is ‘T . % .

Finally, we have the volume of the parallelepiped as

V xW

B — :T- :dtT
T IV X W= 1T (VX W )| = [det (T, V,10)|

This gives us an interpretation for the triple scalar product as the volume of
the shape generated by the three vectors. This turns out to be more useful than
you might at first imagine.

The discussion from above might (or might not) constitute a compelling argu-
ment for you as to why we call this number the volume of a parallelepiped. In any
case, that is the definition of volume. It is our dog. We can call it Fido if we want
to.

At this point we digress to contemplate the meaning of procedures such as
this. We all have an intuitive concept of the word “volume” as having to do with
the extent of a “fat” object, and in the last paragraphs we aligned that concept for
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a certain type of fat object with a number. This number is calculated by vector
operations on edges. It is (at least) twice removed from our intuition about the
extent of any real physical object.

In the first place, we model the edges of some real object with which we have
experience by vectors. Then we perform operations to obtain a number.

At risk of boring you with an obvious point, this number is not the “extent” of
any object in the world. It is just a number. Its value may be relevant in comparison
to other numbers calculated with other vectors with their own imaginary link to
still other real objects. It is useful to a scientist or engineer only to the extent it
gives explanatory or predictive power over events in the world. Does the number
correspond to intuition built on other cases already understood? Does it invite
extension to cases not yet understood? Is it simple, or simpler than competing
alternatives? If the answers are affirmative, the scientist will carry on, thinking of
these numbers as a measure of “fat extent.” If not, the model is discarded, at least
in some circumstances. Every now and then some model violates a long-held, even
cherished, intuition that must, nevertheless, be abandoned based on the shocking
success of this model with its peculiar predictions. The creators of the model may
win Nobel Prizes.

Mathematicians, on the other hand, might be intrigued by the structure of a
model itself, and might not be bothered excessively if it didn’t match intuition ob-
tained from “looking out the window” at something real. Surprising or downright
weird behavior is not rare in these models. As a means of assigning numbers to vec-
tors, for example, our volume idea from above stands by itself. Trying to puzzle out
the details of this structure and the relationships among this and other structures—
such as “flat extent” and “straight extent”—could occupy a mathematician for a
very long time.

You might regard this as a “division of labor” or even “symbiosis.” The math-
ematicians stock the shelves with well understood and beautiful models, packaged
and ready-to-go. They seek to understand the patterns they see as they create
these ideas. They build related models, by analogy and lifetimes of effort and in-
spiration, hunting for unifying ideas and a “big picture” that will simplify needless
complexity. The scientists root around on the shelves looking for models that match
what they see out the window guided by their esthetic sensibilities and previously
acquired intuitions about the world. Experimenters create ever more subtle ways
of stealing a glimpse at some previously hidden part of the world. Every now and
then some scientist makes a great leap of intuition and builds a brand new model,
of a type never thought of by anyone, to try to understand what has been seen.
And in this way they inspire and repay their mathematical brothers and sisters.

12.4. FExercise. A tetrahedron is a four-sided three dimensional object with
equilateral triangular faces.

Show that the vectors

oo, (224) (32

oI5
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lie on three edges of unit length of a tetrahedron. Conclude that a tetrahedron of

d3V2

edge length d has volume 1

Area of a Shadow

As a third example we consider the area of a tilted parallelogram and how that
area is related to the area of a shadow of this parallelogram on a plane.

Let us presume that P, @, A and B are vectors and P x ) = N # 0 and
A=P+aN and B=Q + bN for certain numbers a and b. Let M = A x B. The
picture below describes the situation. A and B form a tilted parallelogram with
area | M| while P and @ form the shadow parallelogram with smaller area |N|.

The angle between two flat surfaces in 3D is defined to be the angle
between their normal vectors. In our case, the angle between the two parallelograms
(or the triangles in the picture) is the angle between M and N. If @ is this angle
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we have
|M||N|cos(§) = M-N = (Ax B)-N
= [(P+aN)x (Q+0bN)]-N
= (PxQ)-N+(PxbN)-N+(aN xQ)-N+ (aN xbN)-N
= N - N because the last three terms are 0

= [NJ”.

We have just shown that
|M]cos(0) = |N| or |Ax B|cos(0) = |P x Q]

where 6 is the angle between vectors M and N, which are normal to the tilted and
shadow parallelograms. In words this is:

(The Area of a Tilted Parallelogram) cos(f) = Area of the Shadow.

A Consequence of the Pythagorean Theorem‘

There is an interesting consequence of the Pythagorean Theorem applied to
this last calculation. Recall that any vector, M included, can be written as

M = |M]|{cos(01), cos(02), cos(63))

where the angles are those between M and the coordinate vectors i fand k. These
coordinate vectors are each normal vectors to one of the coordinate planes.

The equation
|M|?* = |M|*cos®(61) + | M |*cos?(02) + | M |*cos®(03)
is nothing more than the Pythagorean Theorem in 3D applied to M and hardly
a surprise. But we have just shown that the area of the shadow of the tilted
parallelogram onto the relevant coordinate plane is | M |cos(6;). So the last equation
has the following intriguing interpretation.
The Square of the Area of the Tilted Parallelogram
is the Sum of the Squares of the Areas
of the Shadow Parallelograms on the Coordinate Planes.

£
*
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13. Surfaces in Three Dimensions and Representations of Planes

Our goal in this section is to think about various ways of representing planes
and other surfaces in three dimensions. The pattern should be very reminiscent of
the process you went through when you learned how to graph lines in beginning
algebra.

If you were taught in the usual progression:

e You first learned about locating points in the plane (a piece of paper) and
about creating coordinates of points by choosing axes and a scale and so
on.

e Then you examined the relationship between a given first degree equation
in two variables and a collection of points plotted on a graph. You came
to believe that the solutions to first degree equations would form straight
line graphs and ruminated upon what made you think a picture was a
straight line. You learned about slope.

e Finally you learned how to go from “geometry” (that is, a graph) to an
equation. You used one of several forms for your equation depending on
the information readily at hand, such as the slope-intercept form or the
point-slope form.

The interplay between the picture (good for thinking about, visual intuition
can be used, can be a visually compelling map of things in the world) and the
equation (good for exact calculations) was fruitful.

That is exactly how we shall proceed here in three dimensions with our added
tools of vectors and/or parameters.

We can graph an equation in three variables, such as X —2Y + 37 = 5, in
three dimensions by plotting lots of points: pick an X and Y value, work out Z
from the equation, put a dot on your graph with those coordinates, repeat until
tired. Eventually you will have plotted so many points that they will be hard to
distinguish individually and your eye will perceive the points, all together, as a
shape of some kind. The process of plotting all the solutions may be tedious and
the utility of a picture of a 3D object on a piece of paper is somewhat compromised
by problems with “perspective.”

An equation like (X —1)? + (Y — 1)? + Z2? = 0 has a single solution: just one
point.

An equation like X2 + Y2 — 1 = v/—Z2 has solutions consisting of the unit
circle in the XY plane.

Others, like X2 +Y?2 + Z2? = 1, form an extended shape of the type we think
of as a surface, in this case the unit sphere in 3D.
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We will see that certain types of equations in three variables generate surfaces
and some of these reproduce our thinking about flatness while others do not. We
then explore what “flatness” means in terms of vector operations. We will call the
flat surfaces planes.

As the last step, we have in mind planes as geometrical creatures and wish to
represent them as equations in different ways, depending on the information that
is readily available about the plane.

This will allow us to do exact calculations.

You may recall being told that the graph of all the (X, Y, Z) triples that satisfy
a first degree (also called linear) equation involving three variables, such as X —
2Y +3Z =5, is a plane.

It is not completely obvious that the graph will be “flat.” If you examine
what happens when you cut through the graph at constant height—that is, pick a
particular Z—you will find that the graph at that height is the line X —2Y = 5-3Z7.

These lines are all of the same slope but cross the Y'Z plane (when X is 0) at
various places, depending on Z. If you plot several of these on a careful graph it
certainly seems that they are lining up to form a flat surface. But you can glue lines
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together in many ways to form surfaces. Such surfaces are called developable. For
example a wavy graph below is composed of parallel lines.

If you have access to Maple or Mathematica or some other computer math
utility you can easily plot these graphs and rotate them around and look at them
from various angles, illuminated as if from colored lights positioned at various
places, or colored according to height. You can get a real feel for quite complicated
surfaces. The “learning curve” to get up and running is very short, the cost is
modest and they run on virtually every desktop system. If you want to learn how
to use a computer algebra utility, now would be the time to begin. I have included
instructions about how to create some of the graphics you see in the text in endnotes
referenced by superscript here and there as they occur.

A cone is given by the equation X2 + Y2 = 72,

In the picture' above, at each constant Z you are looking at a circle of radius
|Z]. This cone is a collection of lines crossing at the origin. You can see them by
looking at the picture from a direction perpendicular to the Z axis. The crossed
lines are the edges of the stacked circles.
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A cylinder is given? by an equation such as
X?+y?=1

Since Z is not mentioned, it is not restricted.

This is a bunch of vertical lines arranged in a circle.
By looking down the axis from above you can see the
“line segment ends” form a circle.

Still another example is provided by
Y = XZ. This is called a helicoid. At
each constant Z slice, the graph? is a
line with a different slope.

For constant X and for constant Z
this equation generates lines. But the
graphs on constant Y slices are hyper-

bolas.

h 4

The two pictures above are seen from a vantage point looking straight along
the line at different heights along the Z axis.

Below we find* an “off-center bump” surface.

The equation is (X — 1) +2(Y +2)> = —Z + 1.
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Horizontal cuts are ellipses. Cuts parallel to the X Z or Y Z planes are parabo-
las. It is called a paraboloid.

1

The graph® you see above is called an ellipsoid. Taking a narrow slice through
the figure with any plane parallel to a coordinate plane yields an ellipse. The
formula is

X24+92Y24+32%2=1.

The figure® above is called a torus. Its formula is
(X2 4+ Y2+ 2% —425)" =16 (25 — 7?) .

If you slice through with any plane containing the Z axis you get two circles.
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This one” is called the Monkey Saddle, for reasons that will become clear if

you imagine the disposition of a monkey’s tail should it decide to ride a horse. Its
formula is

X3 -Xvy?=2.

I don’t think this one® has a name. It makes the coordinate axes, particularly
near the origin, fat. Its formula is

X2Y?2+ X222+ 7%y? = 1.

You will notice that all of these non-flat examples correspond to second degree
or higher—not first degree—equations.
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Then P- N =5. So (Q —P)- N = 0 ezactly when
() points at a solution to the equation. To reiterate,
(X,Y, Z) is a solution if and only if Q— P is perpendicular

The collection of all vectors in standard position per-
pendicular to a specified N captures the essence of “flat-
ness” in space. We have just shown that the collection
of all @ — P is just this kind of surface.

So the collection of all @ — P + P = @, which has
exactly the same shape but is shifted by P, is “flat” too.
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You should do enough graphing (of
these and one or two more first degree
equations) so that you become convinced
that first degree equations in three vari-
ables yield flat surfaces, while others do
not. Several, at least, should be done
by hand, from more than one perspec-
tive. Don’t shortcut this process. The
intuition you develop here will be needed
later. You will find that the calculations
we learn about, when done right, are all
amazingly easy. Figuring out which cal-
culation to do is the hard part, and de-
pends on this intuition.

Let’s go back now to the graph of X —
2Y +3Z =5.

(2,0,1) is a solution of this equation.
Let @ = (X,Y,Z) be a position vec-
tor for a generic point (X,Y,Z). Let
P = (2,0,1), a position vector for a
particular solution to the equation. Let
N = (1,-2,3), obtained from the coeffi-
cients in the equation.

The vector N determines the angle of the plane and plays the same role as the
slope for lines from beginning algebra.

Generalizing, if AX+BY +CZ = D is a first degree equation in three variables

and P is a vector that “points at” a particular solution (that is to say, Ap; + Bpa +
Cps = D) then an equation for a generic point @ that “points at” a solution is

(Q—P)-N=0

The Normal Form for a Plane

where N = (A, B,C) is normal to the surface consisting of all solutions. This
formula is analogous to the point-slope formula for lines from beginning algebra.
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Here is a table to guide you through the basic possibilities to generate equations

for planes in 3D:

If you know ...

The vector formula is ...

The formula for your plane is

’an —|— ’IIQY —|— TL3Z = D

Substitute numbers for two of the variables
(such as 0) and work out the third, to gener-
ate a particular solution P.

Let N = <7’Ll,’)’L2,’)’L3>.

Let Q = (X,Y, Z) point at a generic spot in
space.

@ is a position vector for a point in the plane
if and only if (Q — P)- N =0.

You have a particular point
(p1, p2, p3) that is on a plane.
You also have two nonzero vec-
tors V! and V? which lie in this
plane.

These two vectors cannot be
multiples of each other.

Let P = (p1,p2,p3) -

Let N be the cross product of V! and V2.
N cannot be 0: the conditions on V! and V2
guarantee and are implied by this.

@ is a position vector for a point in the plane
if and only if (Q — P)- N =0.

Position vectors P!, P? and P?
which point at different non-
collinear points on your plane.

Let V1 =P? — Pl and V? = pP3 — PL.

These vectors must not be multiples of each
other: noncollinearity guarantees and is im-
plied by this.

Let P be one of the three original vectors
given. Let N = V1 x V2,

@ is a position vector for a point in the plane
if and only if (Q — P)- N =0.
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14. Parametric Planes and Translating Among Coordinate Systems

A Parable About Coordinate Systems

We are all in a classroom and I have just drawn a coordinate system on the
front board with the X axis sticking out horizontally into the room and Y axis to
the right and Z axis up from an origin at about waist level in the middle of the
board. I am measuring units in feet along these axes.

I receive a cell phone call disrupting the class because I forgot to turn off my
phone. In great embarrassment, I reach for the phone to turn it off but recognize
the phone number from the phone calling me, displayed on the caller ID screen of
my phone.

It is from my friend who I know is also teaching at the exact same time. Not
only that, he is teaching in the class next door.

His | i

Room h Our Room

Unable to contain my curiosity, I violate all the rules of common sense and etiquette
and answer the phone.

He tells me that he has just been drawing a two dimensional graph next door in
his class. He tells me with enormous enthusiasm about this marvelous relationship
he and his students have discovered and I scribble down his instructions.

“Finally,” he says, “the sun came through the window and illuminated a certain
corner of my picture and well, you just won’t believe it! YOU HAVE TO SEE THIS!
Gotta go!”

I am intensely curious about his picture, but from things he said it is clear that
parts of the picture have to be oriented properly with respect to the outside world.
I realize he has not told me enough to recreate what he has done for my class.
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“Wait!” T cry, ¢ Wait!! Where is your coordinate system! How can I reproduce
your marvelous construction from the coordinates you have given me! These are
not my coordinates, which are centered in the front of my classroom! How can I
translate all the instructions you have told me involving your coordinate system?”

“I have NO TIME,” he replies hastily. “You will just have to muddle along
somehow by yourself. I see, however, a box of nails left by some workmen right
here by the board.”

Mail Points
Projecting into
our Room )

F’T“x

|

pT

Room h Our Room

At that moment I hear furious pounding coming from our common wall. The points
of three nails stick out through the wall and he returns to the phone.

“There” he picks up the phone “I have to go RIGHT NOW. But these nails
represent my origin and segments, one of my units long, along each of my two axes.
He then hangs up.”
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“Great Scott,” I shout! “My friend has given me just enough information to
create a very efficient translator for all his intricate directions!”

Carefully, I measure the coordinates of each nail hole (the wall, evidently, is
very thin.)

“AHA!” T reason. “His origin is very close to the place I call (15, —12,1). He
has set his origin about a foot higher on the wall than I did.”

Next I notice that his single units are each 3 of my units long. “I see, he
must have been using a yardstick to measure distances, not a footstick,” I opine.
“Whenever he refers to a displacement of one unit in the direction of his X axis,
he was talking about multiples of the vector V' = (3,0,0)! And whenever he refers
in his instructions to a displacement of one unit in the direction of his Y axis, he
was talking about multiples of the vector W = (0,0, 3)!”

Hail Points
Projecting into
our Room
= (15, -12, 4)

w
o ———

(8,12, 1) ¥ (15,212, 1)

“Since I can point to his origin using the vector P = (15,—12,1) I can point
at a place he calls (s,t) with my vector P+ sV +tW. This is how I translate from
his coordinates to mine.”

s, t) «— Q =P+ sV +tW
(s,8) «— Q

This looks a lot like the parametric vector equation for a line! Q@ = P+sV +tW
is called the parametric vector equation for a plane, in this case his XY plane.
s and t are the parameters. In this case they are the numbers he calls the X and
Y coordinates. Now I know how to follow his directions! If he says “Draw a line
between (2,6) and (—1,7)” I should draw the line between the tips of my standard
position vectors P + 2V + 6W = (21, -12,19) and P — V 4+ 7W = (13, —12,22).

And that, dear readers, is the end of this story. The marvelous invention of my
friend, and what it means for humankind, is for another time and place. All I can
say about that is that I always, yes ALWAYS, from that day to this, remember
to turn off my cell phone before class starts.

Leaving, sadly, our parable aside, (that was fun!) it is clear that there was
nothing special about P, V and W. If we have any plane, we can find a point P
and two noncollinear vectors V and W that lie in the plane.
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We use P to get out to a spot on the plane and then add multiples of V' and
W to move around on the plane once we are there. They give us a coordinate grid,
similar to the XY coordinate grid, but possibly bent a bit. The parameters s and ¢
are coordinates out on the plane. They refer to multiples of V' and multiples of W,
respectively. They represent displacements from some generic center point, rather
than similar displacements by multiples of i and ; from the origin.

To actually obtain the coordinates for a generic point Q = (X,Y, Z) on the
plane, examine the scalar projections of Q — P onto the V' and the W directions.
- PV -P)-W
s = 7(62 ) and t= 7(62 ) .
14 W
If you lived on the plane and were unaware of the third dimension, s and ¢ (and
your initial origin choice and axis directions V' and W in your plane) would be all
the coordinates you would need.

Taking this a step further, suppose the directions from my friend for the con-
struction in our parable had included three dimensions, not just the two on his
board.

What extra information would we need and how should we use it to form a
“3D translator?”

With the work we have done already it is simple. We need to know the vector
in our coordinates that corresponds to his third direction. In our example, that
might be (0,—3,0), three feet straight out of his blackboard into his room. He
might call this his Z axis. Let us call that vector U. When he refers to a position
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(s,t,7) we want to be able to locate the place he refers to in OUR coordinates. If
the number r refers to his idea of distance in the direction we think of as the vector
U, and s and ¢ refer to multiples of V' and W respectively, then our translator is

(s,t,7) «— Q =P+ sV +tW +rU

We have done two very important things in this section. First, we have learned
how to represent planes by using two parameters, just like the one parameter rep-
resentation of lines. Second, we have learned to translate among coordinate
systems with different origins and different “unit” coordinate vectors.

14.1. Exercise. With the U suggested above, find the standard position vector
in our coordinates that points to a place my friend thinks of as (—3,6,2).

14.2. Exercise. * With the same information as above, create a translator to
be used by my friend in the other room: that is, one that takes OUR coordinates
and converts them to vectors in HIS world.

14.3. Exercise. * We suppose Q(t) = P+ sV +tW with W # 0 # V and with
V' not a multiple of W. So Q is a parametric vector equation of a plane. Let
~ V.-w - VvV — W — — =
V=V-——-WadV=— andW=— and P=P-V-PV-W-PW.
w-w Vi W]
Now define Q(a,b) = P +aV + bW.
(i) Show that

V-V=W-W=1landP-V=P- W=W-V=0.

(ii) Show that the planes parameterized by Q and Q both contain the three points
Pand P+V and P+ W, so Q and Q parameterize the same plane.

(i11) The point on this plane nearest to the origin corresponds to a and b at which
Q(a,b) - Q(a,b) = P - P+ a®+b? is as small as possible. This obviously happens
when a = b= 0. So the near spot has position vector P=P -V -PV - W -P W.

Show that this is the one and only position vector of a point on the plane which
is perpendicular to the plane.

(iv) Show that the position vector of the point on the plane closest to the point
with position vector A has position vector

B=P-V.(P-A)V-T-(P-A) .

B is the one and only position vector of a point on the plane for which B — A
is perpendicular to the plane.
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15. Vector Functions

In this and later sections we will talk about vector valued functions. You
have already seen some of these. The parametric vector equations we worked with
in the first chapter are an example, but all of those represented straight line and
constant speed motion. The ones we consider here can exhibit more interesting
behavior.

We will presume that Q(t) is a vector for each t in the interval (a,b). That
is what is meant when we say that @ is a “vector valued function” or “vector
function.” This vocabulary distinguishes these functions from the real functions
you have been working with since early algebra. In these notes Q(t) will be in the
plane for all ¢ or in space for all ¢, although much of what we do is independent of
the dimension.

A curve or path is the set of points traced out by the tip of a vector function
such as ) thought of as a position vector as it runs through a subinterval of its
parameter interval. A curve is a purely geometrical object. The same curve might
come from various vector functions, but when you refer to a curve the implication is
that there is at least one @) around somewhere to trace it out. When we considered
constant velocity parametric motion we used the phrase “geometrical track” rather
than “curve” or “path.”

When it is convenient we will suppress ¢ and write @ = (X,Y) or go back to
subscripting the entries of @ and write Q = (¢1, g2, ¢3)-

2] Computer algebra sys-
1 tems, with their ability to
G draw graphs and rotate

them to show the curve from
various viewpoints are def-
initely the way to go when
you wish to draw a picture
of a curve, particularly in

3D.

Here is a picture? of the
curve Q(t) = (t,1%,¢%) on
the interval [—1,2] from a
typical perspective.

Here are three pictures'® from different perspectives of the same curve plotted
together with the helix H (t) = (cos(t), sin(t), t) with the parameter interval [—3, 8].
A helix is a regular spiral shape, in this case winding around the Z axis.
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4

Any single one of the pictures you see above could correspond to many different
curves. Even taken together, there is no way to guess from these pictures when
a parameterization is at a place on the curve. The sole purpose for spending the
time to draw any picture is so you can harness your visual intuition to better
understand relationships among changing quantities. You have an astoundingly
powerful processor in your head for this kind of thing, but it needs the right kind
of information to work for you. There are a couple of ways to make pictures of
this kind more useful for visualizing the motion, at least for parameterizations that
don’t behave too badly.

Let’s consider the curve parameterized by Q(t) = < 2ttt —1 > on the interval
—1.5 <t < 1.5. All the points on the curve are on the parabola Y = X2 —1 (check
this!) but knowing this does not help us much in understanding the motion.

Find below a table of X and Y values corresponding to regularly spaced times.
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4_
] 5
3]
t X Y
15 [1.25 | ~ 41 .
1] o 2]
-0 | .25 | =-9 |
0 0 -1
R5) 25 | ~-.9 1
1 1 0
1.5 |1.25 | =~ 4.1
] 2
t=p t=-2
n—=

t=-5

In the picture to the right of the table you will see a piece of the parabola with
points labelled with the times when the parameterization was at that point. At
time —1.5 we are at the upper right. Half of a second later we have moved to (1, 0).
Half a second after that we are in the vicinity of (.25, —.9). We seem to be slowing
down because the displacement in this half second appears to be shorter. During
the next half second this seems to be even more pronounced, a definite “slowdown”
of the motion. After t = 0 the motion reverses itself and retraces its steps, speeding
up as it moves up and right. Below you will find a picture which shows the features
of this discussion.

4]

When you draw a picture like that you should try to do the following: First,
plot and label points at evenly spaced times so you can compare apparent speeds.
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Second, use arrows attached to the curve to make plain the direction of the move-
ment. If the curve retraces part of itself try to show that important feature by
“doubling back” as was done in the picture. From a picture like that you can often
estimate the speed, estimate the direction of the movement and get a sense of how
the parameterization moves across the curve over time.

15.1. Exercise. Plot enough points so you understand the movement along the
curves given by parameterizations

Q) = < t?, cos G) > and  P(t)=(1-2t ")

on the interval 0 < t < 2. You should try to use the ideas from the last paragraphs
to make your graph more useful.

| Relative Motion |

Suppose we have two constant velocity objects moving with synchronized
times (same units of time, same time zero) whose positions are given by

QUt)=A+tV and W(t)=B+tU

Even if the two curves cross they need not collide. They must be at the crossing
place at the same time. This will happen when (and if) Q(¢t) — W (t) is ever
zero. For visualization purposes, let’s imagine that 1 (¢) represents the position of
a spaceship, while Q(t) is the position of an asteroid.

Q(t) — W (t) represents the relative position of the asteroid as seen from the
observer on the ship.

Path of the
Asteroid

ﬂhie;"verH
at Wit} wil
see the
asteroid at

QUt)-w(t)
Path of the Ship

After 1 second the asteroid has moved by one copy of its velocity vector V' while the
ship has moved by one copy of U so the relative velocity, the change in relative
position in one second, as witnessed by the observer on the ship, is V — U.

Setting Q(t) — W (t) = 0 we find that A— B = —¢(V —U) is the condition for a
collision. If this is to happen after time 0, we must have A — B a negative multiple
of the relative velocity. This means that at time 0 the observer looked up and saw
the asteroid coming straight at the ship.
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15.2. Exercise. Show that if the observer looks up and sees the asteroid coming
straight at the ship for any time, not just t = 0, then a collision will occur. On the
other hand, if the observer looks up and ever sees the asteroid not pointing straight
at the ship, then a collision will not occur. (These facts are due to the “constant
velocity” nature of the motion.)

If there is a collision, any damage to the ship will be caused by a large relative
velocity, not the velocities of ship or asteroid alone. The relative speed of the
impact, |V — U] is what generates the damage. The more “head on” the collision,
the more effective the velocities V and U will be in causing damage, while least
damage will occur (for given individual speeds of ship and asteroid) if U and V
point in the same direction. Anyone who has played on “bumper cars” at a fair
learns this idea early.

The relative angle between the motion of ship and asteroid is defined to be
the angle between their velocity vectors as perceived by an observer stationary with
respect to an agreed-upon coordinate system. In our case the angle 6 is defined
by V- U = |V||U]cos(0). This is the angle of the collision as seen by a stationary
witness looking down on the plane of the solar system and watching this action.

But what if the witness does not agree with our idea of “stationary?” We
hypothesize the existence of an Alien from Arcturus passing above the plane
of the solar system with constant velocity and sending a radio signal back home
describing what “it” sees.

If we see the alien as moving with constant velocity S then to it our whole
measurement structure is moving with velocity —S. When we see our asteroid
displaced by V' in one second it sees displacement V' —.S. When our ship moves by
a vector U over one second, it sees a movement of U — S.

To the alien the relative angle of the motion of ship and asteroid is the angle
between V' — S and U — S which can easily be different from the angle between V'
and U.

However the alien will still see the relative velocity, the item that is important
in calculating damage potential, to be (V — S) — (U — S) =V — U just as before.

15.3. Exercise. Show that if U # V and our alien from Arcturus is passing by
with velocity UL2V (to us) then it will perceive the asteroid and ship to be moving
in opposite directions with equal speed.

If V' is not a multiple of U and S = %V what is the relative angle of the
motions of ship and asteroid as perceived by the alien?
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15.4. Exercise. Consider the three constant velocity parametric motions with
times synchronized. Which pairs would collide? For those pairs that do, when do
they collide? What is the impact speed? With what velocity should you move so
that, to you, the impacts appear to be “head on” and the speeds of the two objects
seem to be equal?

(2t 5t+5) and (13—t —t+29) and (t+3 2t+14).

‘ Superposition of Linear and Circular Motion‘

Interesting 2D pictures are provided by combinations of linear and circular
motion, and using vector functions you can handle them intuitively and with a
minimum of fuss.

A vector function (cos(t), sin(t)) will trace out the unit circle in a counterclock-
wise direction when followed over a time interval of length 27. So if w is a number,
(cos(2mwt), sin(2mrwt)) will trace out the circle |w| times when followed over one time
unit. |w| is called the frequency of the circular motion. If w is positive, the motion
will be counterclockwise. If it is negative the motion will be clockwise. If R is a num-
ber, the behavior of R (cos(2mwt), sin(27wwt)) is similar to this, except the circle will
have radius |R|. Finally, if ¢ is a number, R (cos(2nw(t —to) ), sin(2rw(t — to)))
is “behind” the last motion by time ty or, if you prefer, by phase angle 27wwty.

This is pretty straightforward stuff, but what happens if you add two such
motions together? From a vector standpoint you can think of it as an arrow moving
in a circle with another arrow attached to its tip, swinging around in its own
circle, somewhat like the robot arm from Section 9. If you were to see only the
resultant motion of the second tip and not the vector parts the situation might look
complicated and mysterious indeed. Throw in a constant velocity motion on top of
the circular ones and it makes the motion even harder to recognize.

Here is a formula to create a parametric motion Q(t) using, of course, a com-
puter graphing utility.

(st,0) + Ry (cos(2mwnt), sin(2mwit)) + Ra (cos( 2mwa(t — to) ), sin( 2mws (t — tg) )) .

The number s is the speed of the moving “center” of the whirling assem-
blage of vectors, which is moving to the right for a positive s and at (st,0) for
each ¢t. Added to that linear motion is a circular motion given by an arrow
Ry (cos(2mwnt), sin(2mw1t)) extending from the moving center. Finally we add
on the circular motion Ry (cos(2mw(t — to) ), sin( 2nw(t — 1) )) with its own radius
and frequency and, possibly, time shifted relative to the first.

Find below a few pictures'' created by using various combinations of these

constants. These are called cycloids of various types.

On each picture you will find the list of constants: (s, Ry, w1, Ra, wa ).
Since we only look at a few examples we have chosen tp = 0 in each case. A
more thorough exploration of these pictures would consider the case where the two
component circular motions “start” out of phase.
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Let’s look at the situation now from a different perspective. Consider the
picture below.

A
Lialas

This graphic is coming to you not as the graph of any function but as a collection
of data points: you may think of them as observations which you and a team of
colleagues have collected of an object moving across the sky over time. Both time
and position coordinates are included with the data in an endnote.'? Observations
were taken every few days for one year. Graphics utilities can be told to plot a large
list of consecutive data points like that and connect them. The process of bridging
the gap between known values is called interpolation, and when you bridge them
with line segments it is called linear interpolation. That is what you see above.

Based on philosophical considerations or experience with cycloid-like graphs or
introspection you and your colleagues have a theory: namely that you are witnessing
a combination of linear and circular motions of the object.

Looking at the points, it certainly seems to be some kind of wiggly repetitive
movement trending, generally, to the right. Looking at the starting point (5,0) and
ending point one time unit later at (25,0), the whole business seems to be moving
right at 20 distance units per year. You should subtract (20¢, 0) from the observation
function, graph'?® the difference, and see if the result is more recognizable. Here is
what you get.

Aha! This looks a bit like three slightly distorted circles of radius 5. Once again you
subtract, but this time you should subtract something close to +5 (cos(+67t), sin(£67t)).
The circle 5 (cos(67t), sin(67t)) does the trick, and when you subtract it from the
modified data graph'# this is what you get:
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The distortion is now roughly circular, of radius .3. If you look closely, you can
count ten little circles. We are led to subtract .3 (cos(207t), sin(207t)) as well as
the first circle and the linear motion from the data graph'® and end up with the
following.

The formula for the motion is the sum of everything we subtracted off plus this
little wiggly function.

Are these wiggles caused by inaccuracies in our ability to measure? Are they
caused by non-optimal choices for the radii and frequencies of the subtracted cir-
cular motions, or the speed of the linear motion? Are they artifacts of the linear
interpolation we used? Real things, after all, don’t usually move on polygons.
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Could it be that there are problems with the theory that we were witnessing circu-
lar motions superimposed on a linear motion? The task at this point is to address
the data handling issues one after another. Then we identify the little deviations
as within what you would expect from errors generated by the data gathering and
handling scheme—or not. If they are, you are happy because your theory has been
supported by this data. If not, you would report this and go looking for a better
theory. Either way you write a paper and you and your coauthors all go out to
dinner!
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16. Limits and Continuity for Vector Functions

In this and later sections we will extend to vector functions some of the facts
about continuity, derivatives and integrals you probably learned in first year Cal-
culus!® for ordinary real functions.

We introduce a new notation for the real line, the plane and space. The real
line will be denoted R or R'. Our standard representation of “the plane” will be
denoted R? while R? denotes our representation of “the points in space.”

We will suppose @ is a vector valued function on an interval (a,b). If B is a
vector in the same world as ) we write, for ¢ in the interval (a, b),

%im Q(t) = B precisely when %im |Q(t) — B| = 0.

We say that the limit as ¢ goes to ¢ exists and equals B in that case. The
notation lim;_.. Q(t) = B is used both to assert the existence of the limit and to
name the limit as the vector B.

16.1. Exercise. There are conditions that are equivalent to the existence of the
limit as stated, and often easier to use. For example:

(i)  limi_.q;(t) = b; for all the coordinate functions ¢;(t).
(i) lim; . (Q(t) = B) - (Q(t) — B) = 0.

Satisfy yourself that each of these conditions are equivalent to lim;_,. Q(t) = B.

16.2. Exercise.
Show that if N is a vector and lim;_,. Q(t) = B then lim;_,.Q(t)- N = B - N.

On the other hand, if lim;_. Q(t)-N exists for EVERY vector N then lim;_,. Q(t)
exists. (hint: What happens if N is a coordinate vector?)

@ is called continuous at ¢ when %im Q(t) exists and equals Q(c).

We say that @ is continuous on a specific subinterval of (a,b) if it is
continuous at every point in the subinterval. If we assert, for example, that @ is
continuous on [¢, d] we are saying that every point of [¢,d] is in (a,b) and that Q is
continuous at every point in [e, d].

We will say that the number or vector A is a good approximation to a
number or vector B if |A — BJ is small. We specifically do not require |A — B
to be 0 for a good approximation, only small. “Good” in this context depends
entirely on what kinds of differences you care about. “Small” might be very small
indeed. However if @ is continuous'” at ¢ then no matter how small your concept
of “good” requires |Q(t) — Q(c)| to be, you can guarantee that Q(¢) will be a good
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approximation to Q(c¢) merely by requiring ¢ to be a “good enough” approximation
to c.

17. Derivatives of Vector Functions
Q is called differentiable at c if and only if

Qe+ At) — Q(c)
Alzlelllo At

exists.

When the limit does exist, it is commonly denoted Q’(c). If specificity is

d d
needed, the notation d—?(c) or aQ(c) can be used. This limit is called the
derivative of () at ¢ and the process of finding a derivative is called differentiating
or taking the derivative.

Note that when Q’(c) exists and if we use the handy notation AQ for
Q(c+ At) — Q(c) we have

o |Qe+ A -Qe)
L
A, 1AQ - Q(0)At
Amy | & ¢ <C>$ =Am T A |
We can derive two pertinent facts from this equation. First, % will be a good

approximation to Q’(c) provided At is small enough. Second, |[AQ — Q'(c)At| is
small even in comparison to At when At is small.

A function is said to be differentiable on a specific subinterval of (a,b) if
it is differentiable at every point in the subinterval.

The function defined on a subinterval of (a,b) by differentiating ¢ might itself
be continuous or differentiable, which leaves open the possibility of higher deriva-
tives. @, Q" and so on are defined, when they exist, in the obvious way. This

habit of adding on primes to indicate more derivatives has limits—in general Q")
.

or th will denote the n—th derivative for a positive integer n.
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If we assert that a function is differentiable on a closed interval [c,d] we are
implicitly assuming that the function is (or could be) defined on a larger open
interval containing [¢,d] and that the function is differentiable on this larger open
interval.

Q' is often called the velocity of @, its magnitude |Q’| is called the speed,
and Q)" is called the acceleration. This vocabulary is most commonly used when
the parameter represents time and the components of ) are all distances.

17.1. Exercise. Show that Q' exists exactly when all the coordinate functions
for Q have derivatives. When they do, Q' = (X', Y’ ...). (The dots imply that you
keep going till you run out of coordinates.)

17.2. Exercise. Show that the following familiar results are still true. We
assume that f and g are ordinary functions and QQ and H are vector functions and
all are differentiable and g # 0. For the last result we presume that t itself is a
differentiable function of u. We let r and s be constants and let N be a constant
vector. This exercise says that everything obvious that you would like to do with
vectors is OK. (hint: All of these are done using components and assuming basic
Calculus facts.)

(i) (Constant Multiple Rule) (N-Q)' =N -Q'.

(ii) (Sum and Constant Multiple Rule) (rQ + sH) =r(Q')+s(H').
(iii) (The Product Rule) (f Q) = f'Q+ f(Q").

(iv) (The Product Rule) (Q-H) =(Q')-H+Q-(H').

(v) (The Product Rule) (Q x H)' =(Q')x H+Q x (H').

(vi) (The Quotient Rule) (Q>/ = M

2

g g
(vii) (The Chain Rule: Precise Formulation) (Qot) (u) = Q'(t(u))t'(u).
) ) : ‘ dQ  dQ dt
(viii) (The Chain Rule: Common Alternative Notation) e = dt du

The equivalent of the Mean Value Theorem'® does not hold for vector func-
tions, though it does for each of the coordinate functions. Specifically, if @ is
continuous on the closed interval [r,s] and differentiable on (r,s) there need not
exist ¢ € (r, s) for which Q'(c) = M

s—r

A counterexample is provided by the helix we saw earlier. If s = r + 27 then
Qls) = Q) is vertical (parallel to the Z axis) but Q’(t) is never vertical.
s—r

Even when there is a ¢ for which Q’'(c¢) points in the right direction, the speed
could be wrong. The problem is that the values of ¢ which “work” for the coordinate

functions individually need not match.
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However, if N is any constant vector, then N - @ is a real function so there will

be acy € (r,s) for which N-Q'(en) = N - M Sometimes that is enough.
s—r

Here is an example. Suppose Q' = 0 on an interval. Then we can conclude
that @ is constant on that interval: otherwise, one of the coordinates of @) would
be different at two spots r and s on the interval. Suppose it is the X coordinate
that is not constant and X (r) # X (s). But then there must be ¢ between r and s

X(s)—X
with X' (c) = X(s) = X(r) # 0 and so @Q'(c) is not the zero vector, contrary to our
§S—r
assumption. So @’ = 0 on an interval requires that all the coordinate functions are
constant and so @ itself is constant. The N from the previous paragraph would, in
our example, be i.

Here is another example, that is actually pretty important for us. Recall that
any function f is called one-to-one if the only way that f(a) = f(b) is if a = b.
Suppose a vector function @ is continuously differentiable and @’(¢) # 0. Then
@ is one-to-one on some interval [r,s] with ¢ in (r,s). Justification: Continuity
of () implies that at least one of coordinate functions of ), say X, has derivative
with constant sign on an interval [r,s] containing ¢. So the mean value theorem
applied to X implies that X is either strictly increasing or strictly decreasing on
that interval: X is one-to-one. So @ is too. Once again we are looking at @ - N
where N = 7.

17.3. Exercise. Two vector functions whose derivatives exist and agree on an
interval differ by a constant vector on that interval.

17.4. Exercise. * Show that if the n 4 lst derivative Q™Y = 0 for all t
on an interval then there are constant vectors Cy, Ch,...,C, for which Q(t) =
t"C,, +---+tCq1 + Cy on the interval.

X \ C
D

Y A

It is possible to read quite a lot of useful information about derivatives, and
exercise your intuition about them at the same time, from an examination of a graph
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such as the one above. We will assume that the derivative of a parameterization
Q(t) = (X(¢t),Y(t)) for the 2D curve shown is continuous and never zero. The
curve is traversed in the direction of the arrow.

Let’s think about ‘f;t/, dd)f and % at the time and place indicated as A. Ast
increases and the parameterization passes through A we are ribing and moving to
the left. Y is getting bigger and X is getting smaller. So 4 W is positive and %
is negative. If you imagine the slope of a line tangent to the curve at A it is clear

that fg, should be negative, consistent with the fact that % = % % at A by

the chain rule.

The last statement requires a bit of ex-

planation, since Y is not given explicitly as Each X in
a function of X. We assume that the de- . hich ’t

tive 4X i d here comes
rivative is continuous and nonzero near H
dt grves from one t

A. So the function X (t) is one-to-one'? , at  gne ¥ \:7[ \‘1\\
least in some small time interval [c—e, c+¢]  jn

corresponding to a little piece of the curve peare

around A = Q(c).

Also, since X is continuous, it actually takes on every value between X (¢ — )
and X (c+ ¢).

We can now make Y a function of X on the little X interval by defining Y (X)
to be that unique Y'(s) for which X = X(s), where s is in [¢c —e,c+¢]. The Y
value is linked to X through the parameter.

Since ‘% and %X both exist at A they can be approximated by AA’; and AX

So if we look at a small change AX near A and the associated change AY near A

we see that ﬁ—}; =&Y A—X Where At is the time change that produced both AY

At
and AX. Since limAt_)o At / X = ”g ﬂ it must be that lima x_o ﬁx exists

and is same number.20

Before going to an exercise let’s go back to the big graphic and look at a different

. ] D . dY dx
point, D. It seems that the curve is going straight up there. So & >0, 7 =0

dYy . :
and ix does not exist.

17.5. Exercise.

Determine the signs (or 0 if that
makes most sense) o ‘%, il—)t( and %
at the points B and C in the diagram.
What should you do about E? U
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18. Integrals of Vector Functions

If @ is continuous on [r, s] we define

/:Q(t)dt to be (/:X(t)dt) i+ (/:Y(t)dt)j'+,,,,

This vector is called the integral of (Q with the specified limits.

If @ is continuously differentiable (that is, it is differentiable and its deriv-
ative is continuous) on [r, s] then

Q- = [ Q1.

So the usual methods of evaluating integrals work with vector integrands.

18.1. Exercise. Is it true that for any vector N and continuously differentiable

Q,
(Q(s) = Q(r)) - N = / Q'(t)- N dt?

Suppose 1 = to < t1 < --- < t,, = s is a partition of the interval [r, s] and let
At; = t; — t;—1 for each relevant 1.

When @ is continuous, Y Q(t;)At; will be an approximation to [ Q(t)dt.
i=1 T
The approximation?! will be a good one provided that the largest of the At;
(this is called the mesh of the partition) is small enough.

18.2. Exercise. Suppose G, @ and H are continuously differentiable vector
functions, u is an ordinary continuously differentiable function of t and H(u(t)) is
defined on [r,s]. In the statements below, notation such as dQ is intended to be

shorthand for Q'(t) dt.

Using ordinary facts from Calculus, show that the following are true.

(i) (Integration by Parts) H - Q’S —[H-dQ=[Q-dH.
(ii) (Integration by Parts) H x Q’s — [HxdQ=[Q xdH.
(iii) (Integration by Parts) wu Q‘S — JudQ=[Q du.

5 u(s)
(iv) (Integration by Substitution) [ H(u(t)) «'(t) dt= [ H(u) du
T u(r)
This last formula is also called a Change of Variables formula.
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19. When is a Curve Confined to a Line or a Plane?

Our earlier ruminations about normal forms for lines in 2D or lines and planes
in 3D provide the key to answering the section title question.

The reader should regard this section as one long exercise. In virtually every
sentence there is something to check. This section contains interesting results: it
would be useful to know if a curve representing something of interest is “really”
one or two dimensional, rather than three dimensional. It would greatly simplify
your visualization about what is happening with the curve. However the real point
of placing this section here is that it gives the reader a chance to see if he or she
understands the basic definitions of integrals and derivatives for vector functions.

If @ is a 2D vector function, and r is any particular parameter value and
P = Q(r) then @ will be confined to a line precisely when there is some nonzero
vector N with (Q — P)- N = 0. The choice of r is not relevant. The situation is
the same (and for the same possible vectors N too) no matter what choice of r you
pick.

If @ is a 3D vector function the situation is similar. @ will be confined to a
plane precisely when there is some nonzero vector N with (QQ — P)- N = 0. Q will
be confined to a line precisely when there are two nonzero vectors N1 and Ny with
(Q—P)-Ny =0and (Q— P)- Ny =0, where N; and Ny are not multiples of each
other. The line of confinement is the intersection of the two different planes. Once
again, the specific r picked is not relevant.

So in both 2D and 3D we are led to consider @ for which (Q — P)- N =0 for
some constant vector N and all values of the parameter ¢. Note, by the way, that
if (Q — P) - N is constant for all values of the parameter then that constant must
be zero.

In the following remarks we presume that @ is continuously differentiable.

‘ A Necessary Condition For (Q — P)- N = O‘

d
For such a @ and if (QQ — P)- N is always 0 we have a(Q—P)-N:Q“N:O.

In fact, Q™) . N = 0 for any higher n—th derivatives which might exist as well. We
have found a necessary condition for (Q — P)- N = 0.

| A Sufficient Condition For (Q — P)- N =0

We now change our point of view a bit and suppose we have a ) and N for
which Q' - N is always 0. Then

0= / Q/(s) - N ds = / Q'(s) ds- N = (Q(t) - Q(r) - N.

So (Q—P)- N is always 0. We have found a sufficient condition that guarantees
that a constant vector N is always perpendicular to @Q — P.

Finding an N or showing that none can exist for a particular @ is pretty easy
in practice. Let’s consider the 2D and 3D cases separately.

2D Confined to a Line|
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In 2D, pick any s for which Q(s) —Q(r) or any Q™ (s) is nonzero. (If this is not
possible, then @ is constant and the curve is a single point, not a very interesting
case.) If N is any nonzero vector perpendicular to this, then any possible vector
normal to a line confining the curve must be a multiple of this N. Now examine
(Q—P)- N or Q- N, whichever is handier. If either of these is always 0 you have
found the line of confinement. If either is ever nonzero you have shown that the
curve is not confined to any line.

‘ZD Confined to a Line: A Representation‘

If @ is confined to a line, it has an interesting representation. Let A be the unit

Q) = Q) where s has been chosen so that the difference Q(s) — Q(r)
|Q(s) — Q(r)]
is nonzero. (As before, if this is not possible then @ is the constant function, an
uninteresting case.) Then Q(¢t) = f(t)A+ P where f(t) = A-(Q(t) — Q(r)). That is
because Q — P can have no component in the direction of N, and A is perpendicular
to N. There are three points to make here. The multiples of A form a line through
the origin parallel to the one we want. ) has been represented as a multiple of a
constant vector A plus the vector P, which gets you away from the line through the
origin and out to the line of confinement. Second, f(t) is at least as differentiable as
Q, since it is made from sums of multiples of the coordinate functions of . Third,
because A is taken to be a unit vector, the speed is |f/(¢)| for every t.

vector

‘3D Confined to a Line: A Representation‘

Now suppose that @ lives in 3D. We will presume as before that @ is not
constant. So there must be s for which Q(s) — Q(r) # 0. Let A be the unit vector
Q(s) —Q(r)
Q(s) — Q(r)]

If (Q(t) —Q(r)) x A=0or Q'(t) x A =0 (whichever is easier to check) for all
t then the angle between @ — P or Q’(t) and A is always 0.

In the first case, Q(t) = f(t)A+ P just as above, with the same interpretation:
@ is confined to a line and |f/(t)| is the speed of the motion for every t.

In the second case, Q'(t) = g(t)A for continuous g(t) = Q'(t) - A so Q(t) —
Q(r) = (f: g(t)dt) A and, once again () is confined to a line and has representation

Q(t) = f(t)A + P where f(t) = [* g(t)dt.

| 3D Confined to a Plane

With A as above, we suppose there is at least one u for which (Q(u) — Q(r)) x
A#0or Q' (u) x A#0, whichever is easier to check.

Let NV be this nonzero cross product. If @ does live in a plane then the normal
to this plane must be perpendicular to all of the @’(¢) and also all differences
Q(t) — Q(r). Our vector N is perpendicular to two vectors which are not multiples
of each other and which are perpendicular to any possible normal vector for the
plane. So N must be a multiple of any possible normal to the plane: if the curve
does lie in a plane, N is normal to that plane.
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So (Q(t) —Q(r))- N =0or Q'(t) - N = 0 (whichever is easier to check) for all ¢
or not. If not, then @ is not confined to any plane. If either (and hence both) are
always 0 then @ is confined to a plane, and (Q — P)- N = 0.

‘3D Confined to a Plane: A Representation‘

When @ is confined to a plane there is a handy representation for ). Given
unit vector A as above let W be any vector in the plane which is not a multiple of
A. W might be Q(u) — Q(r) or Q'(u), for example. Now let V=W — (W - A)A

and define B = 7 A x B is normal to the plane (and so is a nonzero multiple of
N) and A- B = 0.1 claim that Q(¢t) = f(t)A + g(t)B + P, where f(t) = Q(t) - A
and g(t) = Q(t) - B. Also f and g are at least as differentiable as ). The speed is
V) + (g'(1))2

19.1. Exercise. Go through the discussion above for the following vector func-
tions and decide if they are confined to lines or planes. If they are, find the line or
plane and also create a representation of the vector function as described above.

Q(t) = (7 + cos(t),t — 3)

J(t) = (2t* —4t, (t — 1)?)

H(t) = (cos(t), sin(t),t)

K(t) = (cos*(t), sin(t), 3 + 3cos*(t))

L(t) = (3 — 12 + 1,3t + 6t* + 5,2t3 + 3t> + 9)

19.2. Exercise. Suppose P is any vector and A and B are nonzero constant
vectors which are not multiples of each other, but are not presumed to be unit
vectors and are not presumed to be perpendicular to each other. Suppose f and g
are differentiable functions.

(1)) Q)= f(t)A+ P. What is the speed of Q7
(i) H(t) = f(t)A+g(t)B+ P. What is the speed of H? Why is the formula

given in the text above simpler?

19.3. Exercise. Suppose Q" - N = 0 for all t on an interval and a nonzero
constant vector N. Then Q(t) = tA + B + H(t) on that interval, for constant
vectors A and B and a vector function H with H - N always 0. (hint: Make N a
unit vector. Then Q = (Q - N)N +[Q — (Q - N)NJ.)
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19.4. Exercise. * We have spent quite a bit of time thinking about 2D and
3D wectors, but what about 1D ? Suppose that the world consists of nothing but the
real line. Let i in this world stand for the vector (1), which represents an arrow
with tail at the origin and tip at the real number 1. Are there angles in this world?
Dot products? A formula for constant velocity motion? Work? Derivatives and
integrals of vector functions?

|3D Confined to a Plane: Another Sufficient Condition

Suppose that (Q(t) — P) x Q" (t) = 0 for all ¢. This situation happens a lot in
applications: when the acceleration is due to a so-called central force acting on
the moving point Q(¢) from the point P.

In that event (Q(t) — P) x Q'(t) = K, a constant vector. Suppose K # 0. So
(Q(t) — P)- K = 0. This means that @ is confined to a plane.

19.5. Exercise. Suppose (Q(t) — P) x Q'(t) = 0, the zero vector for all t in
an open interval (a,b). This means that for each t either Q(t) — P = 0 or Q'(¥)
is a multiple of Q(t) — P. This could happen, for example, in the case we did not
consider above when (Q(t) — P) x Q" (t) =0 for all t.

(i) * Show that if Q(t) — P is never 0 then the the curve for @ lies along
a line segment emanating from P. (Hint: By assumption Q'(t) = h(t)(Q(t) — P).
Now let Q(t) — P = |Q(¢) — P||887:£| = g(t)U(t) where U is a unit vector and
g is never 0. Note U-U =1 so &(U-U) = 2U - U’ = 0. Now h(t)g(t)U(t) =
L(g(t)U1) = g (U [)+g(t)U'(t). Dot the left and right terms against U’ yielding
hgU -U' = g¢'U-U'"+ gU’-U’. This yields 0 = gU" - U’ so U' =0.)

(i) ** Show that if Q(t) — P is ever O then the the curve for Q lies along
a collection of line segments emanating from P. At most two of these segments
contain an unbounded part of the curve.
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20. Tangent Lines

In this section all of our vector functions will be continuously differentiable.
Recall that if @ is a vector function which is differentiable at ¢ then |[AQ — Q'(c) At|
is small even in comparison to At when At is small, where AQ is shorthand for
Qe+ At) — Q(c).

Rephrasing this, we have:

small [t—c|

Loo(t) = Q)(t=0)+Q(c) ~ Q)

The left hand side is a linear motion with constant velocity vector Q'(c) and
shares the point Q(c) with our vector function @ at ¢t = ¢. @ will be near to Lg .
(in comparison to |t — ¢|) when |t —¢| is small, so Lg,. could be used to approximate
Q for t near to c. Lg, is called the linearization of @ at c.

Let’s think about this another way. If ) represents the track of a moving
particle and if )" is not constant then there must be forces present to disturb the
motion of the particle. Forces are the causes of a change in the motion, and a
change in the motion means there is a net force acting on the object. These forces
can be (and usually are) generated by something external, but you can think of the
forces as coming from a rocket motor attached to our particle and pushing it along
the curve of Q. Alternatively, we can imagine the curve of @ to be a rigid wire to
which our particle is bound by wheels. The forces come from the effect of brakes
or motors mounted on the moving particle. All the different parameterizations of
this curve come from different starting times and different ways of putting on the
“gas” or the “brakes.”

Lq,. represents the motion of our particle after time ¢ = c if the rocket motor
quit at ¢ = c. Using the other analogy, L¢ . represents the motion of the particle if
the “clamp” which binds the particle to the curve were released at t = c.

Problem: Hitting a Target Point

Suppose we have a moving particle clamped to a wire and scheduled to be at
position Q(t) = (2t*, —t + 1) at each time ¢. If the driver wishes to reach the point
(—6,0) when should she release the clamp? How long after release will she arrive
at this spot?
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The Solution:

When the clamp is released the particle will carry on with whatever velocity it
had at the moment of release. So it will hit the target at (—6,0) if we can find ¢
for which (—6,0) — Q(c) is a positive multiple of Q’(c).

(—6,0) — (2>, —t + 1) = (=6 — 2>, t — 1) = K (4t,—1).
This yields the two equations:
—6—2t? =4Kt and t—1=-K.

Solving for K in the second of these and substituting into the first yields t = —1
and t = 3. However ¢t = 3 yields a negative K (the particle is moving exactly away
from the target at that time) while t = —1 yields K = 2. So she should release the
clamp at time ¢ = —1. She will arrive at the target 2 seconds later.

A useful way of thinking of the changing velocity vector for @ is to visualize
for each ¢ the copy of Q’'(c) which has its tail at Q(c). The line along Q’(c) will
always graze the curve at Q(c) and show the direction a particle would fly away if
all the forces were turned off as it passed that spot. Its length is the speed of the
parameterization and gives a sense of how fast the curve is being traversed by @ at
Q(c) relative to its speed at other places on the curve.

—

The next idea we will consider here is the concept of the tangent line to a curve
at a point P on a curve. The concept of the linearization Lq . of @) is associated
with the specific parameterization of the curve upon which @ lives. If P = Q(c)
and Q'(c) # 0, the linearization of @) at ¢ gives us a parameterization of a line
which grazes the curve at P and it makes sense to call this line the tangent line to
the curve at P. However a given curve can have many different parameterizations.
Q, for example, can be tweaked to produce lots of them. If » and s are any real
numbers with r # 0 then W(t) = Q(r(t — s)), with ¢ between “=% and 2=%,
also traces out all the same points that @ does, and is as differentiable as Q. s is
related to a shift of center and r to a speed change for the motion along the
curve. Specifically, W(<2) = P and W'(t) = rQ'(r(t — s)). So when ¢ = <=
we have W(¢) = P and W/(¢) = rQ’(c¢). This means that the linearization Ly
traces out the same collection of points as does Lg,.. Even more, we have shown
that any vector that lies in this line is W/ (¢) for at least one differentiable
parameterization of the curve, where W(¢) = P.

20.1. Exercise. Prove the last sentence.
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20.2. Exercise. Suppose @ parameterizes a curve. We are interested in the
section of the curve corresponding to [, 8], a part of the domain of Q. Suppose A
s a position vector.

(i) * There is (at least one) point on the section of the curve which is nearest and
(at least one) point farthest from A. (hint: Let dist(t) = \/(Q(t) — A) - (Q(t) — A)
for t in the interval [a, B]. This function is continuous and so actually attains its
mazimum and minimum.)

(i1) ** The minimum distance is 0 only when A = Q(y) for some v in [, 3].
(hint: If the distance is O there is a sequence of times t,, in the interval [, 3] for
which dist(t,) converges to 0. So there is a subsequence u,, of t,, which converges to
some number v in [a, B]. The continuity of Q requires that \/(Q(v) — A) - (Q(v) — A) =
0 which means A = Q(v).)

20.3. Ezxercise. * If Q'(c) # 0 then there is an interval (¢ — e,c+ &) around
¢ upon which Q 1is one-to-one: that is to say, If r and s are in (c —e,c+¢) and
r #£ s then Q(r) # Q(s). (hint: If Q'(c) # 0 then continuity of Q' implies that
the derivative of at least one of the coordinate functions of Q is always positive or
always negative on some interval around c.)

20.4. Exercise. ** Suppose W and Q) are any two continuously differentiable
parameterizations of the same curve. Suppose that Q(c) = W (¢) = P and both Q'(c)
and W'(¢) are nonzero. Then there is a nonzero number r with Q'(c) = r W'(c).
To prove this show the following:

(i) In view of the discussion involving “shift of center” from above we may
assume that ¢ =¢ = 0.

(i1) Because of the last exercise we may assume that both Q and W are one-
to-one on intervals around 0. Conclude that there are such intervals Iy = [ay, by
and I, = [ay,by] with a; < 0 < by and a,, < 0 < b, and for each member t of I;
there is exactly one member u of I, with Q(t) = W (u) and also for each u in I,
there is exactly one t in the interval Iy with Q(t) = W(u). So u can be regarded as
a function of t on I;: for each t in I, let u(t) be the unique member of I, for which
Q(t) = W(u(t)).

(i11) Show limy_ou(t) = 0. (hint: If limy_ou(t) # 0 there would be a sequence
t, converging to 0 but for which u(t,) converges to a nonzero number v in I,.
Continuity of W would require W (u(t,)) to be near W(v) and not P for large n,
contradicting the fact that W (u(ty,)) = Q(t,) which converges to Q(0) = P.

(iv) From parts (i) and (ii) we find for any nonzero associated t and u that

Q) —P _ <W(u)—P> (4.

t u t

(v) From (iii) the fractions involving @ and W converge to Q'(0) and W'(0)
respectively as t goes to 0. At least one of the coordinate functions of Q'(0) is
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nonzero, and after thinking about that, conclude that %in(l)% exists and is nonzero.

. . . . d
This number is the r we were looking for and is, in fact, 5(0).

Because of this last exercise we know the following: Suppose P is a point on a
curve and there is any continuously differentiable parameterization @) of the curve
with Q(c¢) = P and Q’'(¢) # 0. Then a nonzero vector V lies in the geometrical
track of Lg . exactly when V' = W’(¢) for some continuously differentiable param-
eterization W of the curve with W (¢) = P. This line (the geometrical track of any
L. where Q(c) = P and Q'(c) # 0) is called the tangent line to the curve at
P. A tangent line will exist except at places on the curve where the derivative of
every continuously differentiable parameterization is 0. A place like that
on a curve is called a cusp. We will see an example of a cusp in the next section.

21. A Cycloid and Bezier Curves

Let’s take a look at a cycloid example with parameterization

Q(t) = (2wt + cos(.2nt), 1 — sin(.27t)) .

The derivative of @ is

Q'(t) = (27 — 2msin(.27t), —.2wcos(.27t)) .

We attach a few velocity vectors at the place where they are relevant on the
curve and plot the curve as t varies from 0 to 10 below.

E_

1.57 ’

Something interesting is going on near x = % (this corresponds to ¢t = 2.5) on
this graph. If y is thought of as a function of x something bad happens here—a
sharp point. It seems that the velocity vectors will switch direction instantly from
straight down to straight up as they pass through the point (3, 0). However nothing
dramatic seems to be happening with formula for Q" around ¢ = 2.5. What is going
on?
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The magnitude of Q’(t) is found to be (after a calculation) v/.8|cos(.2mt)|.
At ¢t = 2.5 the velocity is the zero vector. So continuous Q'(¢) manages to switch
instantly from pointing down to pointing up by passing through the zero vector—
everything slows to a stop for an instant.

21.1. Exercise. ** Could there be a parameterization for this cycloid with
nonzero velocity at “the point?”

The second topic in this section involves an interesting collection of functions
which have applications in computer graphics and engineering design—these are
called Bezier curves. They come into play when you want to smoothly patch
together curves to create a shape without sharp corners, and when computational
considerations are important to you. Computers are fast at adding and multiplying
and that is how polynomials are calculated. We would like to have a vector func-
tion whose coordinate functions are polynomials with lowest possible degree with
specified starting and ending positions and velocities.

The conditions on starting and ending positions and velocities specify four
equations involving the coefficients of each coordinate polynomial. We will see that
these four equations can be accommodated if we use a third (but not lower) degree
polynomial in the parameter at each coordinate.

B(t) = <a3t3 + a2t2 + a1t + ag, b3t3 + b2t2 + bit 4+ bo, ... >

21.2. Exercise. (i) Show that there is one and only one third degree polynomial
P(t) with P(0) = A, P(1) = B, P'(0) = C and P'(1) = D for each choice of
A, B, C and D. Letting A=1, B=1, C =1 and D = 1 we note that a second
degree polynomial won’t in general do the job. (This one is not too hard.)

(i1) * More generally show that there is one and only one third degree polynomial
with P(0) = A, P(b) = B, P'(0) = C and P'(b) = D for any nonzero b and any
choice of A, B, C and D. (hint: From (i) we know that there is a third degree
polynomial Q(t) with Q(0) = A, Q(1) = B, Q'(0) = bC and Q'(1) = bD. The

polynomial P(t) = Q(%) is the one we want.)

(iii) * Finally, show that there is one and only one third degree polynomial with
P(a) = A, P(b) =B, P'(a) =C and P'(b) = D for any a and b with a # b and
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any choice of A, B, C and D. (hint: From (ii) we know that there is one and only
one third degree polynomial Q(t) with Q(0) = A, Q(b—a) = B, Q'(0) = C and
Q'(b—a) = D. The polynomial P(t) = Q(t — a) is the one we want.)

In constructing our Bezier curves, let’s focus first on the parameter interval
[0,1] and then use our shifting and speed change ideas from above on the more
general cases.

21.3. Exercise. Suppose A, B, V4 and Vg are specified vectors.

(i) The function
1 1
Bezunit(t) = (1 —t)> A+ 3(1 — t)*t(A + gVA) +3(1—t)t*(B — gVB) +t*B
has the following values:
Bezunit(0) = A Bezunit(1) = B Bezunit'(0) = V4 Bezunit'(1) = V.
(ii)) 1 = (1—t+1)% = (1—)>+3(1 —t)%t+3(1 —t)t>+t3 and these four numbers
are nonnegative for t between 0 and 1. So Bezunit(t) is a weighted average of the
four vectors A, A—i—%VA, B and B—l—%VB. Among other things, this tells us that each
coordinate of Bezunit(t) for t between 0 and 1 is intermediary between the biggest

and smallest of the corresponding coordinates of these four vectors. Bezunit(t)
cannot get too big or too small.

(iii) Bezunit(t) has velocity vector
Bezunit'(t) = (1 — t)*Va +2(1 — )t(3B — 34 — V4 — V) + t*Vp.
Once again, this vector is a weighted average, since 1 = (1 —t+1t)? = (1 —1)? +
2(1 —t)t +t2. We have some control over how big our speed can get in terms of the
four initial vectors.
(iv) Bezunit(t) has acceleration vector

Bezunit"(t) = (1 —t)(6B — 6A — 2Vg) + t(6A — 6B + 2V4 + 4Vp).

This vector is a weighted average too. We have control over how big a rocket motor
we must have on our moving point to produce this motion.

Here is a picture?? of Bezunit when A = (2,7), B = (3,6), V4 = (6, —3) and
Vi = (~1,6).
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The next step is to do a shift and speed change, to allow for parameter intervals
other than [0, 1]. If we want the action to take place over the interval [c, d] instead
=5 ). That will get the
endpoints right. However there is a problem with the derivatives.

d t— 1 t—
aBezunit (d—cc> = EBezumt' (d _i) .

We have changed the length of the derivative by a factor dic. Left unmodified,
the derivatives at the endpoints will be off by that factor. We have to replace V4
and Vg in the original formula for Bezunit by (d —c¢)Va and (d —¢)Vp. After some
algebra and cleanup this is what we get:

of [0, 1] we could look at the composite function Bezunit

—oVd— )2 .

Bezspeed(t) = E;l ; A 3(t € 1(601)3 t) A+ (d - )VA]
3(t—c d— d—c —c 3
(t( )() t)[B_( 3 )VB]+((2—C))3

21.4. Ezercise. Verify that Bezspeed(c) = A, Bezspeed(d) = B , Bezspeed'(c) =
V4 and Bezspeed'(d) = Vp.

Here is a picture®® of Bezspeed when A = (2,7), B = (3,6), Va = (6,—3)
and Vg = (—1,6), just as in Bezunit above, but with time interval between 6 and
9 rather than between 0 and 1. Notice that the curve loops around more slowly.
That is because the acceleration is smaller than before, but the time during which
it acts is three times longer.
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We can now patch a couple of these curves together, with matching positions
and derivatives at the joining spot. Find below a picture?* of Bezpatch(t) with
parameter interval 6 to 11. From 6 to 9 it is just as above. The starting position
and velocity on the second piece, from time 9 to 11, matches the final position
and velocity of the first piece. The final position is the point C' = (5,2) with final
velocity Vo = (8, —1).

B | o =
R EEEEE RN

)

)

As a final illustration we can use the Bezier patching function to glue together
the 101 data points from the example in Section 14. We found a final wiggly
error function that we could not explain and wondered if our theory about how
the points should be connected was wrong or if they represented data acquisition
uncertainty or perhaps they were an artifact of the linear interpolation method we
used to “connect the dots.” We can patch these points together and interpolate
using Bezier functions. The velocity we use to round out the corner at data point Py
at time T}, is the average velocity over the neighboring time intervals: %.
When we do this for the middle 99 data points and subtract off the linear and both
circular motions as before?® we get the following.
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Bezier Interpolation

You will notice a substantial diminution of the Y coordinate wiggle but not
much obvious improvement in the X coordinate discrepancy from our “theory.”

21.5. Exercise. * The source of the discrepancy seen above and why the fit got
better on one axis and not another is an interesting puzzle. Why, in fact, is the
size of the discrepancy what it is? To discover what is going on it is necessary to
look at the data set itself (in the endnotes) and not just at the picture. It is possible
to make reasonable conjectures about where I probably got this data. (Hint: I did
not “make the data up” and I did not obtain the data from observations!) After
examining the structure of the data, you can then conclude that what we see in the
Bezier wiggles is in line with the best you could expect. Examining subcollections of
the data could provide evidence for your conjecture.

22. Line Integrals

In this section we are going to think of a curve as more than merely a collection
of points strung together, but as a physical object—a wire perhaps—with properties
such as weight, length and so forth. If you know about such things you could
also imagine positive and negative charges arrayed along the wire. We might be
interested in the total charge, length or mass on a piece of the curve.

We will presume that the piece, which we will denote €, of the curve which
has caught our attention is parameterized by a continuously differentiable
vector function @ on the interval [c, d]. We are going to use Calculus (derivatives
and integrals) to produce a number which we will interpret as the length of the
curve between the points C' = Q(c¢) and D = Q(d) on the curve. We will call this
number the arclength.

We presume that the curve does not cross itself by insisting that ¢ be one-
to-one on [c,d] or that @ be one-to-one on (¢,d] and Q(a) = Q(b). If the latter
condition holds we call € a loop.

We will further presume that () does not slow down to zero velocity
anywhere on [c,d].
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A parameterization of € with these three properties will be called a good
parameterization of C.

If € has a good parameterization, € is called a good curve.

If € has a good parameterization @) as above with Q(a) = Q(b) then € is also
called a good loop.

If a curve of interest contains a few cusps or crossing places we will have to
break it up into pieces with the cusps or crossing places on the ends and deal with
the pieces individually.

These assumptions are important. It is possible to cook up a curve (which lacks
the differentiability property we presume) that zig-zags so wildly that it doesn’t
make sense to ascribe any length to it—even what seems to be the smallest piece
has “infinite?® length.” The second and third conditions are more along the lines
of conveniences. If we let ) slow down to zero velocity it could reverse direction
and trace over a recently traversed part of the curve a second time “backwards”
and complicate our calculation. The third condition gets at this problem from a
larger perspective: we also don’t want @ to loop around and retrace some distant
part of the curve a second time.

pitys, Q{td At

A0
o{t+/At)

Let’s look at a small piece of good €. If you examine the picture it seems that
for small At the length along the curve from Q(t) to Q(¢t + At) should be nearly
|Q(t + At) — Q(t)| = |AQ|. But |AQ)] itself is nearly |Q'(t)At|. This is a “double
approximation.” The curve length seems to be about the straight line length which
is nearly |Q’(t)At| for small At.

We break the curve up into many little pieces corresponding to partitioning
[c,d] by selecting times ¢ = tg < t1 < - < ty = d. If we let At; =t; —t;-1
and AQ; = Q(t;) — Q(t;—1) for i between 1 and N then we would imagine that the
length along the curve would be close to Zﬁl |AQ;| which itself would be nearly
Zfil |Q'(ti)|At;. This is a Riemann sum, and because @ has continuous derivative

will be arbitrarily close to fcd |Q'(t)]dt if the mesh of the partition is small enough.
It is this integral which is defined to be the arclength along the curve from

C =Q(c) to D =Q(d).

There are two things we should be worried about here.

First, though the transition from the Riemann sum Ef\;l |Q'(t:)|At; to the
integral fcd |Q’(t)|dt is solid, the transition from Zfil |AQ;] to sz\il |Q'(t:)|At; is
problematic. In going from AQ; to |Q'(t;)|At; we will usually be making a small
error on each segment. Since the number of segments increases without bound,
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these small errors could amount to something. We deal with this little wrinkle?” in
the endnotes.

Second, and assuming the first problem to be dealt with, it seems that the
arclength depends on @. But if it means what we think it means it should depend
only on the relevant part of the curve between the points C and D. () was just a
tool to calculate this number. If there were some other parameterization W of that
part of the curve which satisfies our requirements on a time interval [e, f] we would
like to know that the arclength calculation with this new parameterization yields
the same result.

Each time ¢ in [¢,d] and each time u in [e, f] corresponds to exactly one point
on the curve. So u can be thought of as a function of ¢ by letting w(t) be that
member of [e, f] for which W (u(t)) = Q(t). We need the result from the following

exercise:

22.1. Exercise. * We assume that both W' and Q' are continuous and nonzero.
We conclude (after some work!) from Ezercise 20.4 (iii) that u is continuous. From
this and Exercise 20.4 (iv) and (v) we conclude that u'(t) exists. Now the equation
Q'(t) = W' (u(t)) ' (t) and, once again, the fact that both Q' and W' are nonzero
and continuous imply that u'(t) is continuous and nonzero. We conclude that the
“translation function” u(t) from one time measuring scheme along the curve to
another is continuously differentiable and, under our conditions, never slows to a

halt.

We can now conclude that arclength does not depend on the parameterization
through an application of integration by substitution.

t=d t=d u=f
/t Q1)) dt = / W (u(t))] o (8)] dt = / W ()] ds

=c t=c u=e

22.2. Exercise. *|u'(t)| dt was replaced in the integral from above by du. Why
was that correct?

To illustrate the ideas from above we suppose @ is a parameterization of the
type we have been discussing and that g is a real valued function defined for points
on the curve. (Actually, in many cases g will be defined for every point, not just
those on the curve, but that doesn’t matter here.) We also presume that g(Q(t))
is continuous for ¢ in [¢,d]. The function g can be thought of as a linear mass
density function if you wish. If it is nonnegative, you can think of its value at a
point on the curve as representing the mass per unit length along the curve at the
point. The mass of a little segment of the curve from Q(t) to Q(t + At) will be
approximately the linear density ¢g(Q(¢)) at the spot Q(t) times the length along
the curve. In our case that is nearly g(Q(¢)) |AQ| which, itself, is not too far from
9(Q(t)) 1Q'(t)At]. Adding up all these contributions and passing to the integral
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yields the total mass of a wire laid along the curve with this density function.

d
Mass of the Wire = / g9(Q(1)) |Q' ()] dt.

If g has both positive and negative values you could think of it as linear charge
density, with some positively and some negatively charged places on the wire. The
integral would represent the total charge on the wire.

22.3. Exercise. Show that the integral for the mass or charge on a wire does not
depend on the parameterization. Specifically, consider what happens to the integral
if a new parameterization traces over the same piece of the curve but in the opposite
direction.

Whatever the interpretation as mass or charge or something else from a different
application, an integral such as fcdg(Q(t)) |Q'(t)] dt is called the integral of g
weighted by arclength or simply the line integral of g on the curve and
in the last exercise you showed that line integrals depend on the piece of curve
traversed during the integration and the values of g on that piece but not the
specific parameterization of the curve.

The integral fcdg(Q(t)) |Q’(t)| dt may be written fCD 9(Q) 1dQ| oreven [, g(s) ds
to de-emphasize the apparent dependence on the parameterization. In a practical

sense, however, the parameterization is not irrelevant: in most cases some param-
eterization is needed to calculate a line integral.

22.4. Exercise. Consider the heliz Q(t) = (cos(t), sin(t),t) fort between 0 and
27, where all distances are in meters. Suppose that the linear density of a wire laid
along this curve increases with height above the XY plane according to the function
9(X,Y, Z) = 3Z kilograms per meter. What is the arclength of the curve between
(1,0,0) and (1,0,27)? What is the mass of this piece of wire?

Here is another example. We consider a curve parameterized by Q(t) =
(X(t), Z(t)) for ¢ in the interval [c,d] wandering around in the XZ plane. We
will presume that Y (Q(¢)) is nonnegative and continuous for ¢ in [¢,d]. The inte-
gral deY(Q(t)) |Q'(t)| dt can be interpreted as the area of a curtain hanging

from a bent “curtain rod” along the curve Q(t) = (X(t), Y(Q(t)), Z(t)). The
value Y (Q(t)) is the length of the curtain hanging from each spot on the curve to
the “floor” on the X Z plane. Although this scenario is nothing more than a rein-
terpretation of Y as “length of curtain” rather than “mass” it does bring a different
idea into the mix.
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23. Orientation of Curves and Line Integrals

In many applications it is important to distinguish a preferred direction along
a good curve C.

Suppose € is not a loop. In the last section you showed that if W and @ are
two good parameterizations of € and if u is defined for each ¢ by W(u) = Q(¢t)
then w is a differentiable function of ¢ with continuous nonzero derivative. So this
derivative must have constant sign in (¢, d).

This means that good parameterizations of € fall into two groups: those that
parameterize € in “one direction” and those that traverse € in “the other direction.”

23.1. Exercise. * If C is a good loop, show that the function u from above is
defined except for at most three values of t and that u' has constant sign elsewhere.
So parameterizations fall into two groups, just as above.

A selection of a preferred direction for a good curve corresponds to a choice of
one of these two groupings of good parameterizations, and is called an orientation
for the curve. The curve together with this orientation is called an oriented
curve.

An orientation is often specified, to downplay the significance of any partic-
ular parameterization, by giving a unit tangent vector pointing in the preferred
direction for all, or all but at most two, points on €. If @ is any particular good
parameterization that belongs to the specified orientation we can define the unit
tangent vector along the curve for the orientation as

Q'(t)
T =1o0)
for each ¢ in (¢,d). Had @ belonged to the other orientation, I would be defined as
the negative of the ratio shown above. We emphasize that, though the unit vector
J is calculated for the points along € by a formula involving a parameterization,
it does not depend on this parameterization but only on the geometry of € and a
choice of orientation.
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23.2. Exercise. * T(Q(t)) is a continuous vector valued function of t on
(¢,d). It will be possible to define it to be a continuous function of t on all of [c,d]
unless € is a loop and Q(c) is at a cusp of C.

Recall that a point K of € is called a cusp if, whenever P is any differentiable
parameterization defined on an interval (q,r) whose values are contained in €, and
if P(t) = K for some t, then P'(t) = 0.

We illustrate some of the ideas of this section by recalling from Section 9 that
mysterious “something” called work (trust me, you will see that it is important
later) for a linear displacement and a constant force vector. It is a number de-
fined to be the scalar projection of the force in the direction of displacement times
the magnitude of the displacement and calculated as the dot product of force by
displacement.

We can use the ideas here to define work for a curvy movement and where the
force might vary from place to place or from time to time.

Suppose Q(t) is any continuous parameterization of a good curve € on the
interval [c,d]. Suppose that for each time ¢ in [c,d] we are given a force vector
F(t) and suppose the vector valued function F' is continuous. Let ¢ =ty < t; <
-+ <ty = d be a partition of the interval and define AQ; = Q(t;) — Q(t;—1) for
i between 1 and N as before. AQ); is close to the movement along the curve if
At; = t; — t;—1 is small enough. F cannot vary much on a small interval [t;_1,%;].
So it makes sense to say that the work done moving along the curve in the time
interval [t;_1,;] is close to F(t;) - AQ; and the work done during the entire motion
is nearly Zfil F(t;) - AQ;. Under our conditions this is nearly fch(t) -Q'(t) dt
provided that the mesh of the partition is small. This integral is the work done in
traversing the curve with this parameterization subject to this force function.

Sometimes F’ is related to the velocity at various places of a fluid within which
the curve is immersed rather than a force. In this case the same integral is called
the flow or, if the curve is a loop, the circulation along the oriented curve.

In either case, this number is not a line integral on the curve: it definitely could
depend on the parameterization.

However, it often happens that the change in F' as you move along with a
parameterization of the curve is caused by the change in position, not really the
change in time: that is, if P(¢) is any other parameterization of the same curve
on the interval [a,b] then the force felt—or the velocity of the fluid, in the second
interpretation—at P(t) is the same as that at Q(s) whenever P(t) = Q(s).

In that event, we can define work done by the force as a line integral along the
curve, provided that we first specify an orientation J for the curve. We calculate
the work done under the influence of F' when you move along the curve € with
orientation J as

d
Work or Flow due to F along Oriented C: / FQ@®)-T(Q)) |Q'(t)| dt

where () is any good parameterization of the curve.
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This integral is frequently written in shorthand as [, F(s) - J(s) ds to de-
emphasize the parameterization.

However, except in unusual circumstances, a parameterization is required to
carry out the calculation, which becomes

d
/ FQ)T(QW) Q1) dt

d
—= [ FQu)-

=i/ch(Q)-dQ

with “plus” chosen if the orientation J agrees with the direction of @) and “minus”
otherwise.

23.3. Exercise. * In this exercise we think about how to define the integrals
above when the parameterizations are not quite so nice.

Suppose that Q is a continuous parameterization of a curve € with domain [c, d]
and that @ is one-to-one on [c,d] or Q is one-to-one on (c,d] and Q(c) = Q(d). We
suppose that the domain [c,d] can be broken into a finite number of pieces [t;—1,1;]
fori=1,...,n so that Q is continuously differentiable with nonzero derivative on
each interval (t;—1,t;). A parameterization of this kind is called a piecewise good
parameterization of €. The curve € is called a piecewise good curve by virtue
of the existence of any piecewise good parameterization of the curve. If there is any
piecewise good parameterization of € with Q(c) = Q(d) we call € a piecewise good
loop.

Now suppose that P and Q are any two piecewise good parameterizations of €
with domains [a,b] and [c,d].

We suppose that g is a real valued function defined along the curve and g o P
and g o @ are continuous. We suppose that F' is a vector valued function defined
along the curve and F o P and F o Q are continuous.

(i) Show that [ g(Q(t))|Q'(t)| dt = [ g(P(t))|P'(t)| dt.
/
(i1) Both Tg = and Tp = |£—/|

% are defined except for a finite number of
points in their respective domains.

Show that either

Tp(u) = Tg(t) whenever both vectors exist and Q(t) = P(u)

or
Tp(u) = — To(t) whenever both vectors exist and Q(t) = P(u).

With this fact in hand, we can break the piecewise good parameterizations into
two groups, just as before and define an oriented piecewise good curve to be a
piecewise good curve together with a selection of one of these two groups to provide a
preferred direction for traversing the curve. This selection is called an orientation
for the curve, and is often specified by giving a vector valued function T along
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the curve € defined by T(P(t)) = Tp(t) for a piecewise good parameterization P
belonging to the orientation.

The work or flow or circulation of F' along the oriented piecewise good
curve is then defined, just as before, to be

b b
/ F(P(t) - T(P()) |P'()] dt:/ F(P)-dP:/F(s)-T(s) ds.

c

Note that if you use a parameterization from the other orientation a minus sign is
introduced into the second integral in this formula.

23.4. Exercise. * Mr. Bacon’s Train®®  We have a train track set up

on the XY plane on the circle (X — 1)% +Y? = 4, where distances are measured
in kilometers. The entire track is covered by a solid loop of rail cars. Each car is
identical and each has a flat thin board sticking up to act as a sail, with normal
parallel to the length of the car. We presume the car body itself offers no resis-
tance to the wind, and there is no friction between wheels and track. Suppose that
a constant (over time) wind is blowing across the XY plane with velocity vector
W(X,Y) = (Y,—X) kilometers per hour at each point (X,Y) on the track. This
is an “inside out” tornado, where the wind far from the center is faster than that
near the center. When the brakes are released, the wind pushes on the sails, trying
to make some cars move clockwise and others counterclockwise, but since they are
all attached they must move together.

(i) When the train starts to move, will it turn clockwise or counterclockwise?
(Hint: Let Q be a differentiable parameterization of the track and let AQ be a vector
representing a short piece of the track, pointing in the direction of the parameteri-
zation. The force caused by the wind on the cars on this piece is kW - AQ, where k
is a constant of proportionality depending on the units we are using but not on the
position of AQ along the track. If this number is positive, the force on this piece
will try to move the train in the same direction as the parameterization.)

(ii) The train will continue to speed up as time passes. Is there an “equilibrium”
speed, at which it would have no tendency to move faster. What is this speed? What
do the integrals in this problem have to do with work? (Hint 1: The apparent wind
velocity to a passenger on a car moving with velocity V is W — V. Hint 2: When
the train is moving at constant speed, the velocity of a car at each point is a fized
multiple of the unit tangent vector at that point.)

(iii) Suppose we want to increase the equilibrium speed of the train, so we
put sensor devices and computers on each car that allow each sail to be rotated
independently any way we want. How fast could the train’s equilibrium speed get,
and how would you program the onboard computers to approach that speed most
efficiently? Could you make the train move in either direction?
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24. Flux Past a Curve in Two Dimensions

We now consider an application in two dimensions. Suppose you are given an
oriented good curve € in the plane with unit tangent selection J along €. Suppose
also that we are given a continuous vector field F' = (M, N) defined on an open set
containing the curve and a good parameterization @ = (X,Y) which agrees with
the orientation.

The vector (Y'(t),—X'(t)) is perpendicular to J(Q(t)) everywhere along the
curve. Let N(Q(¢)) denote the

(Y'(#), - X"(t))

Unit Normal for this Orientation: N(Q(t)) = IO

Unit normals corresponding to the opposite orientation point in the opposite
direction.

The unit normal for this orientation is a vector valued function defined on the
curve €. Though N is initially defined using a parameterization, it depends only
on @ itself and the chosen orientation.

We define:
t=b
Flux of F through C: . FQ()-N(Q(@1)) |Q'(t)| dt
_ [ Y@, X))
- [ r@u) - s @)
t=b
= MY’ — NX'dt

It is the last integral one uses to calculate the flux.

One frequently sees the notation

/ F(s)-N(s) ds
e
to denote the flux of F' past oriented €. The orientation is built into N.

Recall for comparison the flow integral along € with this orientation:
t=b t=b

/GF(S)-:T(S) dSZ/ FQM)-TQW) |00 dt= [ MX +NY dt.

t=a t=a

To understand the meaning of flux consider the following diagram.
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!
Tha magnitida of F

£
is th? flow per unit

time dewn a plpe with
unit diameter and
parallel to F

Here we imagine that F' represents the direction of a flow of a layer of fluid on
the surface of a plane. The magnitude of F' represents the flow rate per unit time
down a channel of unit width parallel to the field. We choose a piece of the curve
so tiny that it appears straight and the field appears constant in the vicinity. Let
@ be a parameterization consistent with the orientation.

In unit time, an amount |F'| AP will flow past AQ, where AP is the width of
a pipe parallel to F' which crosses the curve at AQ.

N-F
|F|
So the amount fluid moving past AQ per unit time is

N-.F
[F| AP = |F| cos(0) [AQ| = |F| T IAQ| =N - F |AQ).
Let At denote the change in parameter that causes AQ. Note: we often think of
t as representing time, but it is not the same as the “flow per unit time” we talk
about in the context of F. The parameter ¢ is simply a set of labels that serves to
identify the points on the curve. @ is differentiable with respect to t. With that in
mind

But |AQ)| cos(§) = AP where cos(f) =

Fluid Past AQ in unit time is N F |[AQ| = N F % At~N-F ‘%‘ At.

Adding these miniscule contributions over all the little pieces of the curve (i.e.
forming a Riemann sum and converting it to an integral) gives the flux integral

=0 N(r(t) - F(Q(¢)) |Q'(t)| dt, which we interpret to be the net amount of fluid

t=a
crossing the whole curve in the indicated direction per unit time.
The flux integral is a number created from a vector field, a curve and an ori-
entation. It is not the flow of any real fluid, just a calculation, a number. The
argument from above gives one plausible interpretation of this number which can
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be an aid to intuition and guide us to create one integral or another in an applica-
tion. The practitioner must take care not to confound intuition with calculation -
sometimes intuition will tell us that the calculation must be all wrong. Other times
a surprising calculation makes us suspect that our intuition is leading us astray.
Each illuminates the other. In this business you need both tools and you need to
be aware that they are different.

24.1. Ezercise. Convince yourself that the arguments given above for flux
across an oriented good curve make sense for an oriented piecewise good curve.

24.2. Exercise. Calculate the outward fluz across the unit circle for the field
given by F(X,Y) = (-Y, X).

25. Calculus in Polar Coordinates

The usual XY coordinates for a point in the plane
are a route description of how to get to a point from a
designated center using a path that is parallel to the
chosen coordinate axes. The coordinate pair (X,Y)
T1 is a list of directions: move from the origin along
the X axis and then vertically to the point. The

P Ly

ol ’ 1 Ll
- T 1 |7 rectangular coordinate grid is an aid to finding your
4 way to “the spot.” Once you have decided on an
origin and axes, each point has only one pair of XY
o coordinates.

You might recall from Section 14 that we discussed an alternative naming
scheme for points in the plane. If V' and W are nonzero 2D vectors and V is not a
multiple of W the function

Q(s,t) = sV +tW

takes ordered pairs of parameters s and ¢ to distinct points in the plane using the

vectors V and W.

For a pair (s,t) you get to Q(s,t) by going from the
origin to sV and then along a line containing W to sV +
tw.

You might call this example a “parallelogram grid”
coordinate system rather than a “rectangular grid” co-
ordinate system. There is exactly one ordered pair (s, t)
for each point in the plane.
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In this section we consider a different kind of parameterization of the plane
called polar coordinates. This parameterization also requires you to pick an
origin and axes first and also uses ordered pairs of real numbers to describe a route
to the points on the plane. The ordered pair is called polar coordinates for the
point.

If (r,0) is interpreted as the polar coordinates of a point, the point we mean is
found as follows.

Stand at the origin with your nose pointing in the direction of the positive X
axis. If 6 is positive, rotate toward the positive Y axis by angle 6. If 6 is negative
rotate the other way by an angle |0]. Your nose is now pointing in the required
direction. If r is positive walk forward a distance r and stop. You are there. If r is
negative walk backwards a distance |r| and stop. You are there.

In the coordinates from above each point in the plane corresponded to exactly
one ordered pair—mnot so in polar coordinates! In polar coordinates you can add
any integer multiple of 27 to the angle and you will wind up at the same place!
Also if you add an odd multiple of 7 to the angle and replace r by —r you will end
up at the same place. For some purposes this is useful, for others it is annoying.
In any case, it is a feature of polar coordinates.

The description of how to get to a spot using polar coordinates also is aided by
a coordinate grid, but this grid is different. The “constant r” grid consists of circles
centered at the origin, while the “constant 6” grid members are lines through the
origin at various angles.

— yd

1L
In our description of E

how to get to a point we /_
first located the correct
angle gridline and moved
along it till we crossed the

grid circle with the correct
radius.

Polar coordinates are : ’/ r=2 r=4
most useful when there is
circular symmetry in the
situation you are describ-
ing, or when considering
paths that retrace them-
selves repeatedly. Orbit-
ing satellites pop to mind -
as examples.

&

Using vectors, we can encapsulate most of the above discussion in:

(r,0) —— 1 {cos(8), sin(0)) = (r cos(f),r sin(0))

polar coordinates «— position vector
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This tells us how to convert from polar to rectangular coordinates. Con-
verting from rectangular to polar coordinates is pretty easy too. If (X,Y’) rep-
resents the rectangular coordinates of a point and X > 0 then r = v X2 +Y? and
0 = arctan (%) will do the trick.

25.1. Exercise. How should you choose polar coordinates r and 6 for the point
with rectangular coordinates (0,Y)? How should you choose polar coordinates r and
0 for the point with rectangular coordinates (X,Y) when X is negative?

25.2. Exercise. Give three different polar coordinate pairs for the point with
rectangular coordinates (2v/3 , 2). At least one should have positive r and one
negative r. At least one should have positive § and one negative 6.

Convert polar coordinates (—7,—135°) to (exact) rectangular coordinates.

Curves are often described in polar coordinates by giving r and 6 as functions
of another parameter t. Other times 6 itself is the parameter.

Find below sketches of several curves whose description involves polar coor-
dinates in various ways. You should plot as many r and 6 pairs as necessary to
convince yourself that the stated equation yields the graph beneath.

r =0 for 6 in [0, 87] r =4 and 6 =1/2 for ¢ in [0, 4]
This can also be written as This can also be written as
Q(0) = 0 {cos(0), sin(0)) . Q(t) =4(cos (%), (%)).
e
I . -

i'qn ." rﬁr ﬂ_q\: aﬁ;l III'-F- : .

- \ -z z 4
'n Hx\ k " " j," f

ll-"‘-. M . ,-"Il -

R |l = H 53 v
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T = Tooag for 0 in [1,5.5]. "= Tgasa for 0 in [1.3, 5].

r=2 \\ AR

r=+

r=4

"= gansgy for 0 in [0,7]. = ey for 0 in [~1.65,1.35].
/x &
. 1 '
The curve you see above corresponding to r = ———— looks a lot like a

1 — cos(0)
parabola. If you follow the calculation below you might recognize the last line as
the equation for a parabola with vertex at the point with rectangular coordinates

(=0).

1
T 1— cos(f)
r(1 —cos(f)) =1
r—X=1 because X = r cos(6)
= (X +1)?
X?+Y?=X*+2X +1 because X? +Y? =72

1
2 _ —
Y —2<X—|—2>

25.3. Exercise. * Satisfy yourself that the equations for the last three graphics
above yield equations in rectangular coordinates which are recognizable as what they
appear to be: equations for a hyperbola, an ellipse and a line.

There are a couple of vectors which will pop up repeatedly when working with
parametric equations of the form @ = r{cos(), sin(f)). One is the direction
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vector at angle 0, Uy = (cos(0), sin(f)). It points in the direction of increasing r
for constant 6. The other is the vector (—sin(f), cos(#)) which we denote Vj. It
points in the direction of increasing 6 for constant r, and is a unit tangent vector
to the circle at that radius centered at the origin. These vectors are not defined at
the origin. Note that:

d

d
@U@—% and @Vg——UQ and Up-Vy=0.

If 0 is a function of ¢, a rather common situation, we have:

d d
—Uy=2¢6 d —=V,=-0U,.
dtUe Vo an dtve Uy

Suppose that a curve Q(t) is given as
Q(t) = r(t) {cos(0(t)), sin(6(t))) = r(t)Us()-

Ug(¢) is called the radial direction vector at the point Q(t) on the curve and
V(1) is called the tangential direction vector at that point.

Taking derivatives with respect to ¢ we have:

Q =1"Ug+10'Vy
and Q" =1"Up +1'0'Vy +1'0' Vo + 10" Vo — r(0')* U
= (" —r(0")*Up + (r0" + 2070")Vj.

The two terms in each derivative are called the radial and tangential com-

ponents of the velocity and acceleration vectors.

In case 6 = t, so the curve is parameterized by angle as frequently happens, we
have the simpler looking equations:

Q =1"Ug +1Vy
and Q" = (r" — r)Up + 2r'Vj.

25.4. Exercise. Show that the speed of a parametric motion Q(t) as above is

given by \/(1")? + (r0")2. In case 0 =t the speed is simply 1/ (%)2 +r2.

In addition to the usual things you can do with derivatives and integrals in-
volving parameterizations, some calculations take advantage of the special nature
of polar coordinates.

For example in the picture below on the right we want to find a number which we
can interpret as the area of the pie shaped region inside the pie with “crust” at the
curve with continuous parameterization Q(0) = r(6)Uy where a < 0 < 3. We will
add up many “pie slices” corresponding to small increments Af of the parameter
#. For convenience we will consider positive r and insist that the minimum value of
r on [a, (] is greater than 0, as in the picture. We also presume that the interval is
not longer than 27 so the curve does not wind around the origin more than once.
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Q{e) Q{0+a0)

Let M denote the maximum value of r on the interval and suppose € is a positive
number. Since @ is continuous on [a, ] we can find 6 so small that whenever
Af < § and both 6 and 6 + Al are in [«, 3] then |r(0 + Af) — r(0)| < e.

For any such Af the pie slice (on the left above) from @ down to the origin is
entirely inside the circle sector of radius r+¢ and, when r —e > 0, entirely contains
the circle sector of radius r — ¢.

So if A is the area inside the curve on the left,

Af Af Ag A9
‘A—mﬂE <W(T+E)2§—W(T—g)2§:4ﬂ"rgg§2M5A9'
Terms like 7r7“2% = LQAQ can be used to form a Riemann sum Zi\il r? 301- for

the whole area on the right. For partitions with mesh less than ¢ this sum cannot
be more than Ei\il 2MeAl; = 2Me( — a) away from any sensible definition of
area for the whole pie shaped region, and since € can be chosen to be as small as
we like we have a representation for the area as:

A1
Area in the Pie Shape = / 57“2 db.

[e3

25.5. Ezercise. * How do you modify the discussion of area if r can be nega-
tive? If r can be 0?7 How does the integral look if both v and 0 are functions of a
parameter t?
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Finally we get to an exercise that will help us think about the signs of various
derivatives and how they are related to each other on a graphic found below. We
will presume that the parameterization of the curve moves in the direction of the
arrow differentiably and never slows to a stop.

At point A the curve seems to be going straight down. At this spot this is in
the direction of decreasing angle and passing through circles of diminishing radius.

dX _q dY d do
SOF—O7 W<O7 d—;<0andm<0

As you move on the curve through the point A in the direction of increasing
i,Xr is increasing, Y is decreasing and X is not changing. So % > 0, % < 0 and
‘a5 =0

As you pass through A on the curve in the direction of increasing r, which is

opposite to the direction of increasing ¢, # is increasing, Y is increasing and X is

not changing. So 2 >0, 2X > 0 and %X = 0.

Derivatives with respect to X will not exist as you pass through the point A
on the curve.

Obviously there is considerable redundancy in the sign pattern and an oppor-

: : : do _ do dy
tunity for consistency checks through the chain rule. For example 37 = 43 5.

25.6. Exercise. Making reasonable assumptions about the shape of the curve,
fill in the sign chart for the various derivatives at the other points on the graph.
Check for consistency via the chain rule. Why are there question marks in two of
the bozes?
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Point | G- | | G |5 | & | % | | W |5 | %
A |0 -~ - IDNET+] 0] +] 0] +
B 0

C 0

D

E 0 0 7

F

G 0

H | 0 0 ?
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26. Functions of Two Variables: Continuity

Suppose O is a set in R2. A set such as O is called open if for each P in O
there is some disk (possibly tiny) centered at P entirely inside O. In other words,
O does not contain any points on an “edge.” This concept generalizes the idea of
an open set of real numbers.?”

Points on the edge cannot be
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The complement of a set O in R? is the collection of all points in R? which
are not in O.

A set O is called closed if its complement is open: that is, the set of points in
the plane not in O constitute an open set.

In this section we will be interested in real valued functions defined for points in
the plane. These are called real functions of two variables. Many of the surfaces
we examined in Section 13 were the graphs of functions of this type. Usually the
domain of our functions will be an open set.

Suppose g is such a function and A = (Py, P») is a point in its domain, located
at the tip of the vector P = (P, P»). We will be moving around in the domain of
g using vector operations, naming the X and Y coordinates of domain members
and so forth. We want a notational convention that will make working with g less
cumbersome as we do this so we refer to the value of g at the point A by any of
the following: g(A) or g(P) or g(Pi, P2). We will prefer these to the more correct
but ugly g((P1, P2)) or to g({(P1, P»)). This usage will be extended in later sections
to functions of three or more variables.

If g is a function defined for points in an open set @ and P is in O we write
limg_.pg(Q) = L if and only if for each ¢ > 0 there is some § > 0 such that if
0<|Q— P| <4 then [g(Q) — L| < e.
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In words: You can force g(Q) to be as close to L as you wish by requiring @
to be close enough to P (P itself excluded.) L is called the limit of g at P.

Letting AP = Q — P we can see that limap_.o g(P + AP) = L is identical in
meaning to limg_.p g(Q) = L, and sometimes it is more useful to think of limits
using the second notation.

26.1. Ezercise. Let AP = (AX,AY) and define Sap to be |AX|+ |AY| and
let Map be the larger of |AX]| or |AY].

Show that:
Map < |AP| < Sap <2Map.

26.2. Exercise. We could rephrase the definition of limit found above to any
of the following equivalent conditions:

For any € > 0 there is a § > 0 so that

(i) if 0 < |AP| < ¢ then |g(P + AP) — L| < e.

(i) if 0 < Map < § then |g(P + AP) — L| < e.

(i11) if 0 < Sap < 0 then |g(P+ AP) — L| < e.

(iv) if 0 < r < § then for any angle 0, |g(P + rUy) — L| < e.

A function such as g is called continuous at P if limg_.p ¢(Q) exists and is
g(P). g is called continuous on O if it is continuous at every point in O.

From this point, when we use the word surface we will mean the graph of
a continuous function g defined on an open set in the plane. Most often we will
represent this surface as a collection of points (X,Y, Z) in space with Z = g(X,Y),
though from time to time surfaces formed as Y = ¢(X,Z) or X = g(Y, Z) will be
encountered.

Continuity is harder to understand in higher dimensions, and one reason to
introduce € — § proofs early is to ease the transition when you get to this setting,
where they (or something equivalent) are required.

Here is a function that provides an interesting example:

XY : .
g(xy)= T EEAY
0, if X =Y.

The vertical slice through the graph of this function by the plane Y = mX (with
m#lﬁﬁhhm@@j:<&m&ﬁ?X>ThﬂmqmmmmMMbeE

m
continuous and passes through (0,0,0). Also g is constantly zero on the X and Y’
axes and on the line Y = X in the XY plane: that is g is continuous when you

look only at its values on any particular line through the origin in its domain.

From this one might conclude that g is continuous at the origin, but it is not.
That is because no matter how tiny § might be, you can find a slope m near 1 for
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which 17§ > 1. In other words, if ¢ is a positive number less than 1 we can find
a point (X, mX) arbitrarily close to (0,0) for which g(X,mX) > €. So g is not
continuous at (0,0).

27. Functions of Two Variables: Differentiability

We suppose ¢ is a real valued function of two variables as in the last section
and defined on an open set O. We will use the notation of the last section with
Ag=g(P+AP) —g(P).

g is called differentiable at P in O if there is a vector A so that

. Ag—A-AP 0
im ——— =0.
AP—0 |AP|

When this limit exists and is 0 the vector A is unique: that is, there can be no
other such vector, for if lima p_.o 225222 also exists and equals 0 for A # B then

TAP]
we could let AP be a tiny positive multiple of A — B. So

(A— B)-AP
|AP|
 Ag—-B-AP—-Ag+A-AP
a |AP|
_ Ag—-B-AP Ag— A-AP
T |AP| B |AP|

The first line would be a positive constant while the last line must converge to 0 as
AP becomes smaller. This contradictory calculation shows that A = B.

When the vector A as above exists we call it the gradient of g at P. This vec-
tor is denoted (usually) in these notes Vg(P). It is also common to see grad g(P)
used to denote the gradient.

The function g is continuous wherever the gradient exists: the existence
of the gradient implies that the numerator in the limit from its definition must
converge to 0. Since limap_.gA - AP = 0 we must have limap_gAg = 0 also,
which is the requirement for continuity.

The entries of the gradient vector A, when it exists, have their own notation
and meaning. For A = (A;, A2) let’s calculate the limit using AP of the form
(AX,0). So

g(P+AX i) —g(P)— A AX

= A, AX]
. AX [gP+AX7)—g(P)
= AN < AX A
This means that
A = lim gP+AX i) — g(P)'

AX—0 AX
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This number is therefore an ordinary derivative of the real valued function
f(X) = g(X,P,) at X = P;. If you prefer, you can form the vector function
h(X) = (X, P2, g(X, Py)) parameterized by X in an interval around P;. h/(P;) =
(1,0, A1). The picture you should retain from this is the following: The graph of
g is a surface above or below the XY plane. If you slice through this surface with
a plane Y = P, the curve formed by the surface at the cut looks like an ordinary
function from first year calculus. A; is the derivative of this curve at X = P;.

h

You can cut through the graph of g with the plane X = P, to obtain a similar
interpretation of As as the “X constant, allow Y to vary” derivative.

These numbers are called the partial derivatives of g at P. There are several
notations in common use for A; and As. Among them are:

dg dg
Ay = D1g(P) = Dxg(P) = 7% (P) = ==
90X 90X (X,Y)=(P1,P2)
and
99 ipy_ 99

Az = Dag(P) = Dyg(P) = - (P) = '

oY aY (X,Y)=(Py,P3)
We will use D1g(P) and D2g(P) to denote the partial derivatives, which avoids
explicit mention of the idiosyncratic choice of axis names.

We have shown that, when it exists the gradient is

Vg(P) = (D1g(P), Dag(P)).

Now is the time for us to define vector valued functions in the plane.
Sometimes they are also called vector fields. They assign a vector to each point
in their domain, which will now be a subset of the plane. A vector valued function
defined on an open set such as O is called continuous at P if its coordinate
functions are continuous at P. It is called continuous on O if it is continuous at
each point of O. The reason to put this definition here is because we have just
created an example of a vector valued function.



108 IV. THE GRADIENT May 27, 2005

With ¢ as above we define Vg to be the function whose value is the gradient
of g at P for every P in O for which the gradient exists. Vg is an example of a
vector valued function defined for points in the plane, and is defined here for some
(or perhaps all) of the points in O. Vg = (D1g, Dag).

It is not true that the existence of the partial derivatives implies that the
gradient exists. The example from Section 26 provides a counterexample. We saw
that the function g defined there was not continuous at the origin, a requirement
for differentiability. But D;g(0) = D2g(0) = 0.

However, if g is a function defined around a point P and if both D¢ and Dyg
are defined and continuous on any open set containing P then g is differentiable at
P. This follows from the Mean Value Theorem, and the proof is found below.

Suppose that both D¢ and Dyg are defined and continuous on a disk of radius
d centered at P. Suppose AP = (AX,AY) and |AP| < § so P+ AP is in this
disk.

Note that
g(P+AP) —g(P)
=g(P+AXi)—g(P)
+g(P+AX i+AY j)—g(P+AX 7).

Since the partial derivatives exist and are continuous in this disk the Mean Value
Theorem says that there are numbers o between 0 and AX and [ between 0 and
AY so that

gP+AX i+AY j)—g(P+AX 1)

AY

g(P+AX i) —g(P)
AX

= Dyg(P+AXi +37)

and = Dig(P+ai ).

This implies that

l9(P + AP) — g(P) — D1g(P)AX — Dyg(P)AY|
AP

‘ (D1g(P +ai ) = Dig(P)) AX + (Dag(P + AXT + 5] ) = Dag(P)) AY ‘
|AP|
[D1g(P +ai ) = Dig(P)| + |D2g(P + AXi + 5] ) = D2g(P)|.

IN

Both of the last terms converge to 0 along with |AP| so g is differentiable at P.
We finish this section with a final definition.

When Dig or Dsg exist it is possible that these functions might, themselves,
be differentiable. The notation D; jg = D,(D;g) is used for these second partial
derivatives. When i # j they are called mixed partial derivatives. It often
happens that the mixed partials D; ;g and D, ;g are equal, and we note a condition
under which this happy state pertains in Exercise 33.4.
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One can keep going with this and, when the functions involved are nice enough,
calculate third and higher order partial derivatives such as

Dy 1219 = D1(D2(D1(D1g)))-
So, for example, if g(X,Y) = X3sin(Y) then D1 1219(X,Y) = 6cos(Y). The order

of a partial derivative is the number of “differentiations” required to calculate it.
So this partial derivative is mixed and of order 4.

Partial derivatives come up in many of the same situations that ordinary deriva-
tives do from beginning Calculus.

28. The Chain Rule and The Tangent Plane
When Vg(P) exists we define

Ly p(Q) = 9g(P)+Vyg(P)-(Q— P).

L, p is called the linearization of g at P. For such P we have

9@ Ly r(@
@-r QP

So when @ is close to P, not only is ¢(Q) near to L, p(Q) but the difference

between them is small even in comparison to | — P| = |[AP|. So the graph

of Z = L, p(Q) is glued to the graph of Z = ¢(Q) near P and provides a good

approximation to ¢ in that vicinity. The graph of L, p is a plane with normal form

((X,Y,2) - (Pi, Pa,g(P))) - (~D1g(P), ~Dag(P), 1) = 0.

This plane is called the tangent plane to this surface at (P;, Py, g(P)). The
vector (—D1g(P), —D2g(P), 1) is perpendicular to this plane, as is any nonzero mul-
tiple of this vector. Because the plane and the surface are so closely associated we
say that a nonzero multiple of this vector is normal to the surface at (Py, P», g(P))
as well.

Let’s suppose that the gradient exists in the vicinity of P and that Q(t) =
(X (t),Y(¢)) is a differentiable parameterization of a curve in the plane with nonzero
derivative and Q(c¢) = P. Then H(t) = (X(t),Y(t),g o Q(t)) is a parameterization
of a curve above or below the track of (X (¢),Y (¢),0) in the XY plane and wanders
around on the surface formed as the graph of g. We will say in a situation like this
that the curve is in the surface. Our curve shares the point (Py, P, g(P)) with
both the tangent plane and the graph of g.
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A Surface and its Tangent Plane
at One Point

Seen From Above

Seen From the Side

Seen From Below

What is the derivative of H at ¢? It is obvious that the first and second
components of the derivative are the same as for (). As for the third, we define
AP = Q(c+ h) — Q(c) = (AX,AY) and note that because @ is continuous at ¢
then limy,_,o AP = 0. Since g is differentiable, this implies that

g(P+ AP) —g(P)—Vg(P)- AP

pimy IAP| =0
Rewriting this we have
_ |AP| T [g(P + AP) — g(P) AX AY
i [ n - (D19<P>T +D29<P>T>} =0

By assumption, the factor on the left converges to a nonzero number and the
terms in the inner parentheses on the right converge to D1g(P)X’(c)+ D2g(P)Y'(c)
so we have discovered that lim;_.q w = %(g o Q)(c) exists and equals
Vg(Q(c))-Q'(c). We have also found that H'(c) = (X'(c),Y'(c), Vg(Q(c)) - Q'(c)).



28. THE CHAIN RULE AND THE TANGENT PLANE 111

s

28.1. Ezercise. With conditions as above except that Q'(c) = 0 show that
d
E(g o0 Q)(c) = Vg(Q(c)) - Q'(c) = 0 and also H is differentiable at ¢ and H'(c) =

0= (X'(c),Y'(¢),Vg(Q(c)) - Q'(c)) in this case too.

We have just proved a version of The Chain Rule:

2 (90Q)e) = Va(Q(e) - Q'(e).

28.2. Ezxercise. We can pull many interesting facts out of the calculations
found above. Suppose g is differentiable at P = (Py, P»)

(i) If H(t) = (X (t),Y(t), Z(t)) is any differentiable parameterization of a curve
in the surface which passes through (Py, Py, g(P)) at time ¢ then Q(t) = (X (t), Y (¢))
is a differentiable parameterization of a curve in the plane and Q(c) = P. Also,
Z(t) = g(X(t),Y(t)). So any differentiable curve in the surface is of exactly the
type we have just considered.

(i) If H is any differentiable parameterization of a curve in the surface and
passes through (Py, Py, g(P)) at time ¢ then H'(c) is a vector that lies in the tan-
gent plane to the surface at (Py, P2, g(P)). (hint: Dot H'(c) against the normal
(D1g(P), D2g(P),—1) to the tangent plane.)

(i11) If V.= (v1,v2,v3) is any vector that that lies in the tangent plane to the
surface at (Py, P2, g(P)) then there is a differentiable parameterization H of a curve
in the surface that passes through (Py, P2, g(P)) at time 0 and for which H'(0) = V.
(hint: Let Q(t) = (Py, P2) +t {v1,v2).)
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In the exercise above you proved that the vectors in the tangent plane at
a point consist of all tangent vectors to differentiable parameterizations
of curves in the surface through that point, and to no other vectors.

Here is another application of the chain rule. Recall that when the two vectors
Vg(Q(c)) and Q'(c) are nonzero

Vg(Q(0) - Q'(c) = [Vg(Q(e)[|Q' (¢)|cos(0)
where 6 is the angle between Vg(Q(c)) and Q’(c).

Examining this formula we see that among all differentiable curves @ in the
plane which pass through Q(c) with a given speed, the rate at which the function
g o @ is increasing or decreasing depends only on the angle 6. If @’(c) points in the
same direction as Vg(Q(c)) then (go@Q)(t) is increasing at maximum possible rate.
Up on the graph of g, if you head in this direction you are going straight up hill.
The opposite direction is straight down hill on the surface. If cos(f) = 0, so 6 is %,
you are heading straight across the side of the hill, neither rising nor falling.

We define the directional derivative for the vector V at a point P in
the domain of g to be Vg(P) - V. The notation Vyg(P) is used for this number.
It represents the rate at which you are rising or falling on the graph of g if you
are moving along any parameterized curve passing through P with velocity V. In
particular, if V' is a unit vector this is how fast you are rising or falling up on
the surface if your shadow in the XY plane is moving at unit speed in direction
corresponding to V as it passes through P in the XY plane.

28.3. Exercise. You are a Weird Alien swimming in a layer of scum on a
volcano and neutron star ravaged cess-pool, hereafter known as R?. The temperature
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at each point is given by T(X,Y) = %XQ — ‘/TiY, where distances are measured
in meters and temperatures in degrees Celsius.

Due to your need to pump nutrients past your dorsal cilia, you are doomed to
swim at exactly 20 meters per second so long as you live.

Also, you cannot stand temperature changes greater than 10 degrees per second,
but since you mindlessly crave heat you will try to go toward hotter scum up to that
limiting rate.

Find a velocity vector your primitive instincts prompt you to use as you pass
through the point (1,2).

28.4. Exercise. Susan’s Hill: Susan is hiking around on a smooth spherical
hill above the XY plane which is the graph of g(X,Y) = =75+ /1002 — X2 — Y2
where distances are in meters. She is trying to get to the top as fast as possible,
but doesn’t want to climb at an angle more than 30° above horizontal. When she
is at (60,0) she finds that going straight toward the top is too steep. Give a direc-
tion vector in the XY plane to describe her best heading. (There are two possible
answers. )

28.5. Exercise. Suppose you have a block of rubber bounded above by the graph
of a positive differentiable function g and below by XY plane. You have a “cookie
cutter” knife in the shape of a curve parameterized by one-to-one and differentiable
Q(t) = (X(t),Y(t)) in the domain of g for —1 <t < 1.

Slicing vertically, you punch through your block of rubber and, moving the knife
a tiny distance, punch through the block again to yield a very thin, curvy sheet of
rubber.

You gently unroll this sheet, flatten it out, and lay it on the XY plane with
bottom edge on the X axis, the edge corresponding to Q(—1) on the left and Q(1)
on the right.

What is the slope of the upper edge at the point cut by Q(0)?

28.6. Exercise. Suppose Q is a differentiable parameterization of a curve in
the domain of g. Then go @ is an ordinary real valued function. Show that if go Q
has a local extreme value at t then the velocity of @ at t is perpendicular to the
gradient of g at Q(t) if that gradient is nonzero: the motion is at right angles to
the direction of mazximum increase of g, if there is one.

Though this latter condition is necessary for a local extreme value of go @ att
it is not sufficient to require a local extreme value at t.
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28.7. Exercise. * g is said to have a local maximum value at P if there
is some circle centered at P for which g(P) > g(A) for all A inside this circle. A
similar definition is used to define a local minimum value at P. When one or
the other holds, g is said to have a local extreme value at P.

Prove that if Vg exists everywhere on the open set O then the only places where
g could attain a local extreme value in O are at points P for which Vg(P) = 0.
This condition, though necessary, is not sufficient for the existence of a local extreme
value.

28.8. Exercise. Suppose g is a differentiable real valued function on an open
set in R? and Dog is always 0. One might suspect that g does not depend on the
second coordinate: that g(x,y1) = g(x,y2) whenever (x,y1) and (x,y2) are in the
domain of g. This is false (produce a counterexample.)

Bent Flaps

Shadow

However it is true that if the entire line segment connecting (x,y1) and (x,y2) is in
the domain of g and Dag(P) = 0 all along the line segment then g(x,y1) = g(x, y2).

This could be rephrased in special cases as follows: If H is an open disk or an
open rectangle inside the domain of g and if Dag is always 0 in I then g does not
depend on the second coordinate inside JH.

In elementary Calculus the second derivative test can be used to decide if a
function has a local maximum or minimum at a critical point. A similar second
derivative test holds in higher dimensions.

If g is a twice continuously differentiable real valued function on an open set
and Vg(P) =0 we let A = D;19(P), B= D;29(P) and C = D3 2g(P).

The second derivative test depends on the sign of B? — AC. Note that if
B? — AC < 0 it must be that A and C are both nonzero and have the same sign.

If B2 — AC < 0 and A <0 then g has a local maximum at P.

If B2 — AC < 0 and A > 0 then g has a local minimum at P.

If B2 — AC > 0 there is definitively not a local extreme of g at P.
If B2 — AC = 0 the test is inconclusive.

This matter is discussed in considerable detail in the endnotes.3?
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28.9. Exercise. Pete’s World: Pete lives on a surface in a strange universe
with one lake trapped in a low spot and one hilltop. The surface is the graph of
9(X,Y) = TS - XTZ —2X + YTS —9Y where gravity pulls in the negative Z direction
and distances are in meters. What is the greatest depth of water (from lake bottom
to lake surface) that Pete’s lake could hold?

28.10. Exercise. Suppose P(t) = A+ tB and Q(t) = C +tD are parametric
vector equations for the position of two particles moving with constant velocity as
time t passes.

(i) How close will the particles get to each other?

(i1) Consider H(s,t) = (Q(s)—P(t))-(Q(s)—P(t)) and determine the minimum
distance between the geometrical tracks of the two particles.

We note, for reference, the result from Exercise 10.2 which did not use methods
of calculus.

28.11. Exercise. * Suppose you have a surface given as the graph of a twice
differentiable function g on the plane. Suppose that for every vector V in the plane
the function g(tV') has a local minimum at t = 0: that is, g has a local minimum
at the origin whenever we restrict attention to straight lines through the origin.

It is not true that g must have a local minimum at the origin, though it is
rather tricky to provide an evample of a formula for g which demonstrates this
counterintuitive behaviour.

Can you sketch a picture or describe in some other way a graph that behaves
like this?

You may recall from Calculus that sufficiently differentiable functions can be
used to form polynomials, called the Taylor Polynomials®! which can be used to
approximate the function. Specifically, if f can be differentiated n times at a then:

" pm) (g
ity =3 LD ey m.

The polynomial Y. _, f(z!(a) (t—a)™ is called the nth Taylor Polynomial at a and
frequently denoted P, (t). The term R, (t) = f(t) — P,(t) is called the remainder
and if this is small P, (t) is a good approximation to f(). In case f(") exists and is

continuous on an interval containing a and ¢ and f("+1) exists on (a,t) (or on (t,a)
(n+1)
should ¢ be less than a) there is a ¢ between a and ¢ with Ry, (t) = L —{& (t—q)n+1,

(n+1)!
If | (D] is bounded above by a number M on an interval containing a and ¢ this
tells us that |R,(t)] < %H — a|""1, an inequality used most commonly to get

an upper estimate for the mistake we make by using P, (¢) instead of f(t) itself.
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We will use this fact from Calculus to create a similar formula for functions
defined on the plane.

Suppose g is differentiable and all partial derivatives of g up to order n + 1
exist and are continuous on a rectangle containing points with position vectors A
and A + V inside (not on the edge) of the rectangle.

Define f(t) = g(A+tV). So f'(t) = (Z?:l v;D; g)(A+tV). Differentiating once
again gives f”(t) ( ij=1 ViV Di g g) (A + tV), where in a sum with multiple

indices (in this case ¢ and j) it is understood that each counter traverses its range
independently.

In general we have
2
F(0) = > v, Dy g | (A)

01,82,y in =1

Observe that f(1) = g(A + V) and denote R, (1) = RA(V), so that

n_e(m)(g
gA+V) =) f m'( ) + RA(V)
m=0 '
i (Zi,...,imzl Viy Vi, Diy i, 9) GV
- Z - + R (V).

3
]
o

The first part of the last line is an nth degree polynomial in the coordinates of V,
the difference vector between the place where the derivatives are calculated and
the place where we are approximating g. We will call it P2(V). The error in the
approximation, R2(V) = g(A + V) — PA(V), cannot exceed in magnitude the
number % where M is the maximum magnitude, over the interval 0 < ¢ < 1, of

2

Z Uil "'vin+1Di1-,"'-,in+1 g (A+tV)

11,02, 0n41=1

Obviously if n is bigger than 3 (or possibly 4) the calculations become in-
tractable and a person would have to be highly motivated to deal with all the
terms. But for small n it is not so bad. Let’s look at an example with n = 2 to see
how this all works.

Let g(X,Y) = %(SY) Let A = (3,0). We will find Ps*(V) and an estimate
for RS'(1) when —.1 < v; < .1 and —.1 < vy < .1. First we calculate the partial
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derivatives on the rectangle:

mmxn:ﬁ%gzmmxnzﬁ%ﬁlmmxﬂ:&%ﬁ
D12 g(X,)Y)=Ds; g(X,Y) = ?’SiXLELY) Dso g(X,Y) = %?EY)

D111 9(X,)Y) = %OS(Y) Dip2 g(X,Y) = SmX(??/)

D112 9(X,Y)=Di1219g(X,Y)=Do11 9(X,Y) = %Z(Y)

D122 g(X,Y)=Da129g(X,Y) = D221 g(X,Y) = 3“;51}/)

So for the possible vectors V' the formula for the remainder, in this case

1
30 (U§D1,1,1 g+ 3vivaDy 19 g+ 30103 D192 g+ v5Da o g)

evaluated somewhere between A and A + V cannot exceed in magnitude

3
6 +

13 /60 " 1.2 3
2.96 2.9°

1 .
ﬁ+ﬁ><4.2x10 .

If this is good enough for your purpose you can use the polynomial

PNV
= g(A) +v1 Dy g(A) +v2Ds g(A) +viD11 g(A) + 2v1v2D12 g(A) +v3D2 2 g(A)
1 U1 41}% v%

o w T Em
in place of g(A + V).

28.12. Exercise. (i) Show that the graph of Z = P{A((X,Y) — A) is the tangent
plane to the graph of g at A.

(ii) * Show also that if g has bounded second partials in the vicinity of A that

A
L]

Jm W exists.

Rephrasing, this means that when g has bounded second derivatives in the vicinily
of A (this would happen if g had continuous second partials, for example) then near
A the tangent plane at A is extremely close to the graph of g. The distance between
them is proportional to the square of the distance to A.

(i11) * Generalize (ii) to higher order remainders.
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29. Functions of Three or More Variables

In the discussion above we thought about real and vector functions of one
or two variables. In this section we will extend the discussion, usually by merely
making an observation, to functions of three variables. The reader is invited at each
step to refer back to the 2D versions of these statements, and consider any further
adaptation which would be needed to treat functions of four or more variables.
Though some important ideas are singled out as exercises, the section really should
be thought of as a long exercise, placed here to make sure that the earlier ideas are
solidified.

Suppose O is a set in the space. A set such as O is called open if for each P in
O there is a sphere centered at P entirely inside O. A set in space is called closed
if its complement in R? is open: that is, the set of points in space not in the set
constitute an open set.32

We will consider real functions of three variables. Usually the domain of
our functions will be an open set.

If g is a function defined for points in O and P is in O we write limg_.p g(Q) = L
if and only if for each £ > 0 there is some ¢ > 0 such that if 0 < |Q — P| < § then
9(Q) — L| <.

When the limit exists, you can force g(Q) to be as close to L as you wish by
requiring @ to be close enough to P (P itself excluded.) L is called the limit of g
at P.

Letting AP = Q — P we can see once again that limap_og(P + AP) = L is
identical in meaning to limg_.p ¢(Q) = L.

29.1. Exercise. Let AP = (AX,AY,AZ) and define Sap to be |AX|+|AY |+
|AZ| and let Map be the largest of |AX]| or |AY| or |AZ|.

Show that:
Map < |AP| < Sap < 3Map.

29.2. Exercise. We could rephrase the definition of limit found above to any
of the following equivalent conditions:

For any € > 0 there is a § > 0 so that

(1) if 0 < |AP| < § then |g(P + AP) — L| < e.

(i) if 0 < Map < § then |g(P + AP) — L| < e.

(i11) if 0 < Sap < 0 then |g(P+ AP) — L| < e.

() if 0 <r < 3§ and if U is any 3D unit vector then |g(P +rU) — L| < e.

A function such as g is called continuous at P if limg_.p ¢(Q) exists and is
g(P). g is called continuous on O if it is continuous at every point in Q.
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If P and AP are 3D vectors and both P and @ = P + AP are in the domain
of g we sometimes use the shorthand Ag for g(P + AP) — g(P) or, equivalently,
9(Q) = g(P).

g is called differentiable at P in O if there is a 3D vector A so that

Ag—A-AP

lim =0.

AP—0 |AP|
When this limit exists and is 0 the vector A is unique: that is, there can be no
other such vector.

When the vector A as above exists we call it the gradient of ¢ at P. This
vector is denoted Vg(P). In some books you will see grad g(P) used to denote the
gradient.

The function g is continuous wherever the gradient exists.

You can, as before, form the function h(X) = g(X, P, P3) parameterized by X
in an interval around P;. This function might be differentiable at P;. If it is, the
derivative is denoted D;g(P) and similar definitions allowing the other variables to
vary one at a time yields derivatives Dog(P) and D3g(P). These are called partial
derivatives of g at P. Higher, mixed and second partial derivatives are
defined just as in the 2D case.

The entries of Vg(P), when it exists, are D1g(P), D2g(P) and D3g(P).

The gradient Vg is an example of a vector valued function in space. Gen-
erally, such functions are also called vector fields.

Any vector valued function defined on an open set such as O is called continu-
ous at P if its coordinate functions are continuous at P, just as before. It is called
continuous on O if it is continuous at each point of O.

It is not true that the existence of D1g, Dag and Dsg imply that Vg(P) exists.
However, if g is a function defined around a point P and if Dyg, Dsg and Dsg are
defined and continuous on some open set containing P then g is differentiable at P.

When Vg(P) exists we define
Ly.p(Q) = 9(P) +Vy(P) - (Q = P).

L, p is called the linearization of g at P. For such P we have

9@ - Lp(Q)
e—r Q- Pl

So when @ is close to P, not only is g(Q) near to L, p(Q) but the difference between

them is small even in comparison to |Q — P| = |AP].

=0.

Let’s suppose that the gradient exists in the vicinity of P and that Q(t) =
(X (t),Y(¢), Z(t)) is a differentiable parameterization of a curve in space with nonzero
derivative and Q(¢) = P. Then H(t) = go Q(t) is an ordinary real valued function.

What is the derivative of H at ¢? We define AP = Q(c+ h) — Q(c) =
(AX,AY,AZ) and note that because @ is continuous at ¢ then limy_0 AP = 0.
Since g is differentiable, this implies that

. g(P+AP)—g(P)—Vg(P)-AP
lim
h—0 |AP|

=0.
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Rewriting this we have

~1
SR (D) S agtr) S+ Dag(m ) | <o
By assumption, the factor on the left converges to a nonzero number and the terms
in the inner parentheses on the right converge to Dyg(P)X'(c) + D2g(P)Y'(c) +
Dyg(P)Z'(c) so we have discovered that H'(c) = limp_¢ w =4(go
Q)(c) exists and equals Vg(Q(c)) - Q'(c).

lim
h—0

29.3. Exercise. With conditions as above except that Q'(c) =0 show that

L (90Q)e) = Vo(QLe)) - /() = 0.

So H is differentiable at ¢ and H'(c) = Vg(Q(c)) - Q' (c) in this case too.

We have just proved a 3D version of The Chain Rule:
d
7190 @)e) = Vy(Q(9)) - Q(¢)-
Recall that in space just as in the plane when the two vectors Vg(Q(c)) and
Q' (c) are nonzero

Vg(Q(e)) - Q'(c) = [Vg(Q(e))]|Q' (¢)|cos(6)
where 6 is the angle between Vg(Q(c)) and Q’(c).

So among all differentiable curves @ in space which pass through Q(c) with
a given speed, the rate at which the function g o @ is increasing or decreasing
depends only on the angle 6. If Q’(¢) points in the same direction as Vg(Q(c)) then
(g o Q)(t)) is increasing at maximum rate. If you move in the opposite direction
(g 0 Q)(t)) is decreasing at maximum rate. If cos(f) = 0, so 6 is 3,
d
dt
plane with normal Vg(Q(c)).

we have

(90 Q)(c) = 0. The collection of all vectors for which cos(f) = 0 constitute a

We define the directional derivative for the vector V at a point P in the
domain of g to be Vg(P) - V. The notation Vyg(P) is used for this number. It
represents the rate at which g o @ is increasing at c if you are moving along any
parameterized curve with Q(¢) = P and Q'(c) = V.

29.4. Exercise. Suppose Q is a differentiable parameterization of a curve in
the domain of differentiable g. Then go @ is an ordinary real valued function. Show
that if goQ has a local extreme value at t then the velocity of Q at t is perpendicular
to the gradient of g at Q(t) if that gradient is nonzero: the motion is at right angles
to the direction of maximum increase of g, if there is one.

Though this latter condition is necessary for a local extreme value of go @ att
it is not sufficient to require a local extreme value at t.

g is said to have a local mazimum value at P if there is some sphere centered
at P for which g(P) > g(A) for all A inside this sphere. A similar definition is
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used to define a local minimum value at P. When one or the other holds, g is
said to have a local extreme value at P.

Prove that if Vg exists everywhere on the open set O then the only places where
g could attain a local extreme value in O are at points P for which Vg(P) = 0.
This condition, though necessary, is not sufficient for the existence of a local extreme
value.

29.5. FExercise. Find any local extreme values of
9(X,Y,Z) = X? - 2XY +2Y? + Z? + 22.

29.6. Exercise. * Suppose g is a differentiable real valued function on an open
set O in R® and Vg is the zero vector on all of O. One might suspect that g is
constant. This is false (produce a counterexample.)

However it is true that if the entire line segment connecting P and Q s in the
domain of g and Vg = 0 all along the line segment then g(P) = g(Q).

This could be rephrased in special cases as follows: If H is an open ball or an
open rectangular solid inside the domain of g and if Vg is always 0 in I then g is
constant inside IH.

As a further extension, g will be constant when restricted to any set that can be
built as the union of sets like 3 where new sets are added one at a time and each
new set overlaps at least one set which was added previously.

29.7. Exercise. * Create Taylor Polynomials with error estimate for func-
tions defined in 3D. Then apply your ideas to form an approximating polynomial
P§* for the function ¢(X,Y,Z) = % on the cube with edge length .2 centered
at A =(3,0,0).

30. Implicit Functions

In this section we will discuss curves and surfaces defined “implicitly” rather
than “explicitly” as the graph of a function. Examples of such surfaces abound.
The collection of points defined by X? + Y? + Z2 = 1, the sphere of unit radius,
is an example. Z cannot be solved for explicitly as a function of X and Y because
there are multiple Z values for each X and Y pair inside the unit circle. The sphere
is, however, the graph of two functions: the upper and lower hemisphere. They are
patched together at the equator. In many cases the formula relating the variables
has them inextricably entangled and not even this explicit “patching” is possible.
Even so, it is often possible to do quite a bit with them.
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We will first work through the (rather extensive) setup in a special case.

Suppose g is a continuously differentiable real function of three variables defined
on an open set O containing the origin and ¢(0,0,0) = 0.

Suppose that D3g(0,0,0) = D > 0. We will first confine attention to the
interior of a sphere centered at the origin and so small that Dsg(Q) > % for all Q
in the sphere.

We will further require the ball to be small enough so that

19(Q) — Vg(0) - Q|
Q)

g for all @ in the ball.

We now confine our attention to a cylinder with axis parallel with k and cen-
tered at the origin with height above and below the XY plane equal to its radius,
r, and contained inside this ball.

For every point @ in this cylinder we have

D D
Lo <o@ - vo)-a < 2l

D D

This means that 57 <¢(0,0,7) — Dr < 57
D D

and 5T <¢(0,0,—7)+ Dr < 57
D 3D

S0 57 < g(0,0,r) < -7
D D

and —371" <¢g(0,0,—71) < —5T

We have shown that ¢(0,0,r) is positive and ¢(0,0,—r) is negative. Since g is
continuous, there is a smaller concentric cylinder 3 of the same height and radius
s so that g is positive on every point on the top of the cylinder and negative on
every point on the bottom.

If (X,Y,r) is any point on the top of H and (X,Y, —r) the corresponding point
on the bottom then Q(t) = g(X,Y,t) is continuous with Q(—r) < 0 < Q(r) so there
exists at least one ¢ with —r <t <r and Q(t) = g(X,Y,t) = 0.

We wish to rule out the possibility that there is more than one such ¢ for each
(X,Y) pair.
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Suppose g(X,Y,t1) = g(X,Y,t2) =0 for (X,Y,¢1) and (X,Y,¢1) in H. So
D
|g(X5Yat2) _g(XaYatl) _v.g(XaYatl) ! <0507t2_t1>| < 5| <070’t2 _t1>|

But then
D
|D3g(X,Y, t1)(t2 — t1)] < §|t2 —t1].

This is impossible unless t5 = t; in light of the fact that the original sphere was
chosen so that Dsg(Q) > % for all @ in the sphere.

So for each (X,Y) inside a disk D of radius s centered at (0,0) there is a
unique Z = Z(X,Y) for which (X,Y, Z) isin H and ¢(X,Y, Z(X,Y)) = 0. We will
let 8 be the collection of all these (X,Y,Z(X,Y)) in H. We will show that Z is
differentiable.

To that end we first look at the following calculation. Suppose (X,Y,Z) #
(0,0,0) is in 8. Then

D

Expanding this gives
D
and so
D D
This gives
D D

Dividing everywhere by nonzero | (X,Y’) | we have

D |Z| D X|
2 ;

D12 X
2 [(X,Y)] [ (X

= V)]

Y
+1D19(0.0.0) + D1(0,0.0)
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which yields

Z] 2
(X, Y) | D

This little calculation implies that whenever (X,Y, Z) # (0,0,0) is in 8 then the

(XY, Z)]
Yl

fraction e 8% is bounded by a fixed number which we will call K.

We are now ready to show that Z is differentiable at (0,0) and

_Dlg(oaovo) —DQQ(0,0,0)
Z(0,0) = .
v ( 7 ) < D3g(05070) ’ D3g(07050)

This is because

K [Vg(0,0,0)- (X,Y,Z) |
D (XY, Z)|

K |D1g(0,0,0)X + D2g(0,0,0) + DZ|
D (X.Y,2)|
_ 1 [(XY, )| [D1g(0,0,0)X + D2g(0,0,0)Y + DZ|
~D [{X,Y)] |(X.Y,Z) |
7|Dlg(l(;,0,O)X + Dgg(B,O,O)Y +Z|

(X, Y) ]

|Z - <_ Dlg(gvowo) ,— D2g([0)"070)> : <X7 Y> |
= XY '

Since the first line has limit 0 as (X,Y’) approaches 0 the last must converge to 0
too and the result is proved.

30.1. Exercise. ** Suppose g is as above and C = {c1, ca,c3) is a vector and
w is a constant. Let H = {P+C | P e H} and8 ={P+C | P € 8} and
D={P+C|PeD}. Defineh(Q)=g(Q—C)+w whenever Q € O.

(i) h is continuously differentiable and defined on an open set.
(ii)) Dsh(C) =D > 0.
(iii) S={QeH|h(Q)=w} and C € 8.

(iv) For each (X,Y) € D there is a unique Z so that (X,Y,Z) € 8. So Z is
a function defined for all points in the disk D.

(v) Z is continuously differentiable at (¢1,c2) and

_ /=Dih(C) —Dsh(C)
VZ(cl,Cz)—< Dglh(c) ’ Dgil(c) >

(vi) Z is continuously differentiable at every point

P = (p15p25p3) = <p17p27Z(p1;p2)> S :5

o VZ(php?)_<_Dlh(P) —Dgh(P)>'

Dsh(P) ' Dsh(P)
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(vit) The same final result (vi) is true if all conditions are the same except

that D3h(C) < 0.

If h is any function defined on a set O in the plane or in space and h(C) = w
the set { P € O | h(P) = w} is called a level set of h.

We have just discovered that if h is continuously differentiable on an open set
O in space and D3h(C') # 0 then locally (that is, on some small disk centered at
(c1,c¢2)) the level set is the graph of a differentiable function Z and we have an
explicit representation of the gradient of Z in terms of the entries in the gradient
of h.
The curves T1(X) = (X,C, Z(X,C3)) and To(Y) = (C1,Y,Z(C:1,Y)) are
curves in this surface passing through C. These curves have tangent vectors
T{(Cl) = <1, O, D1Z(Cl, 02)> and TQ/(OQ) = <O, 1, DQZ(Ol, 02)>
at C, which lie in the tangent plane to the surface at C.
The vector
Tl(Ol) X TQ(OQ)
=(=D1Z(C1,Cq),—D2Z(C1,C2), 1)
_/ Dih(C) Dyh(C) 1
~ \ D3h(C)’ D3h(C)’
1
=————(D1h(C),D2h(C), Dsh(C
D3h(C)< 17(C), D2h(C), Dsh(C))
is normal to the surface and is an explicit nonzero multiple of Vh(C') which is,
therefore, itself normal to the surface (that is, to the tangent plane) at C.

30.2. Exercise. Prove that the analogous results for functions h defined on an
open set O in the plane is also true:

Suppose C = (c1,¢2) is a point in O and h is continuously differentiable on O
and h(C) = w and Dyh # 0.

Y
C +lMd=
2 ‘\\
[:E_r' . . . %
[:1_5 [:.I [:.l"'S

Then there is a rectangle [c; — s,¢1 + 8] X [ca — 7,¢c2 + 7] so that for every x in
[c1 — s,¢1 + 8] there is a unique y in [ca — r,co + 1] with h(x,y) = w. So the part of
the level set inside the rectangle is the graph of a function.

The function y is differentiable and %(:c,y) = %&ﬂ) for each x in (1 —

s,c1+ ).



126 IV. THE GRADIENT May 27, 2005

Moreover, Vh(z,y) is normal to the tangent line at each (z,y) in that part of
the level set inside the rectangle.

Some level sets do not exactly fall into the pattern discussed above, but still
form what we would want to call surfaces. Consider, for example, the function
F(P) = P - P where P is a point in R? and the related function G(Q) = Q - Q
where @ is a point in R2. The level set F'(P) = 1 is the unit sphere, and we certainly
think of this as a surface. However D3F' = 0 on the equator (that is, on the XY
plane) so those points do not conform to the pattern we looked at above. Similarly,
the level set G(Q) = 1 is the unit circle, and any piece of this curve around (+1,0)
cannot be the graph of a function of the first coordinate.

We solve this problem by simply changing point of view. We note that VF' is
never the zero vector, so for every point in the sphere at least one of the partial
derivatives is nonzero. So the variable corresponding to this derivative can be solved
for in terms of the others as above. Locally, the sphere can be formed by glueing
together overlapping “patches” each of which is the graph of a function of two of
the three variables.

Similarly, the unit circle can be formed by piecing together overlapping graphs
of functions of either Y or X.

30.3. Exercise. How many patches, at least, would you need to cover the unit
circle? How many would you need to cover the unit sphere? How many would you
need to cover the torus from Section 187

Using the ideas from above we come to the following conclusion: If F' is a
continuously differentiable function defined on an open set in R? or R3 let M be a
level set of F. If VF(P) is never the zero vector for any point in M then M can
be formed as overlapping patches, each of which is the graph of one variable as a
continuously differentiable function of the other(s).

Sets with this last property are called (differentiable) one or two dimensional
manifolds. These manifolds, and their higher dimensional brethren, are very im-
portant in applications. After all, we seem to live in one and on one.

As a final remark, we note that every graph can be thought of as a level set.
Suppose O is an open set in the plain and F is a differentiable function defined on
O. Let U be the set of all ordered triples (X,Y,Z) for which (X,Y) is in O. The
set U is open.

Define the function H on Wby H(X,Y,Z) =7 — F(X,Y).

So VH = (—D1F,—D-F, 1) and the level set where H = 0 is the graph of F.

30.4. Exercise. (i) Prove that the set W defined above is open.

(ii) Go through an analogous discussion when F is a function of one variable
to prove that the graph of differentiable function of one variable is the level set of
a function H of two variables. What is the gradient of H in this case?
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31. Derivatives as Matrices

This section is devoted to a useful consolidation of notation and an extension
of the chain rule. It requires that you know how to multiply matrices of various
sizes and we remind the reader of the particulars here.

We will suppose that L, M and N are taken from the integers 1,2 or 3. An
M x N matrix (read as “M by N”) is a rectangular array of numbers with M
rows and N columns and matrices are usually surrounded by curved parentheses.
For example the six matrices

1 1 2 -3
1 2.0 2 —3),(;>, 2] . [6 1 5 (é g)
-3 -6 9 -3
are of sizes 1 x 2,1 x3,2x1,3x1,3x3,and 2 x 2 respectively.
If Aisan M x N matrix the entries of A will be denoted a; ; where i denotes
the row number counting from the top and j the column number counting from

the left. So if A is the last matrix above we have a; 1 =1, a21 =6, a1 2 = 2 and
a272 = 5

Not every pair of matrices can be multiplied. They must be of the correct
shape. In particular, the number of columns of the left matrix in a product must
equal the number of rows of the right one.

For example the products
1 2 =3 1

6 1 5|(2] ama (0 2)@

-6 9 =3 -3

are formed from matrices of the right shape (in that order) but

(D (é g) and (1 2 =3)(1 2 -3)

are not compatible for purposes of multiplication.
If Ais an M x L matrix and B is an L x N matrix the product matrix
C = AB is the M x N matrix with entries ¢; ; = Ei:l a; kb ;-
So
1 2 =3 1 14

6 1 5 2 | =(-7] and (1 2)(;)_(5)_5.
-6 9 -3/ \-3 21

Vectors look a lot like matrices. For reasons that will become more clear after
you take a Linear Algebra class, when vectors are thought of in this way they are
represented as single column vectors. For example
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A 1 x 1 matrix is usually not distinguished from a real number.

Matrices of the same shape can be added by adding corresponding entries.
There is an operation called scalar multiplication in which matrices are multi-
plied by real constants by multiplying every entry in the matrix by the constant.
This agrees with the operation of multiplication by a 1 x 1 matrix when that oper-
ation is defined.

There is an operation called transposition defined for matrices which acts to
tip a matrix on its side by switching row and column numbers of the entries. It is
denoted by a T exponent on a matrix. So, for example

1 2 3\" /16 —6 -6\ "
6 1 5| =[2 1 9 and 9] =(-6 9 -3).
6 9 -3 3 5 -3 -3

The second matrix is called the transpose of the first.

As an example of the notation in action, we can define the dot product of two
vectors using the associated column matrices by

(3.-7)- (4,2) =12 14 = —2(5) = (_37)T (‘21) .

Now we arrive at the reason for this notational reminder.
If f is a real valued differentiable function in the plane we define
f(XY) = (Dif(X,Y) D2f(X.Y)).

If f is a real valued differentiable function in space we define
f/(X,Y,Z):(le(X7KZ) DQf(vaz) D3f(X7Y5Z))

If Q(t) = (X (t),Y(t)) is a curve in the plane we define
X'(t)
1) —
0= (3(y)
and If Q(t) = (X (¢),Y (¢), Z(¢)) is a curve in space we define
X'(t)
Q'(t) = | Y'(t)
Z'(t)
With the convention of identifying vectors with column matrices, this definition

of @'(t) is the same as before and Vf = (f/)T.

These definitions are special cases of a more general formula for derivatives as
matrices. Suppose M and N are 1,2 or 3. Suppose for 1 < i < M the function g;
is differentiable and defined for points in RY.

In the case of @ above, M is 2 or 3 and N is 1. In the case of f above we have
M =1and N =2 or 3. When both N and M are 1 we have a single ordinary real
valued function.

Let us suppose g = (g1,...) where ... means that you keep going until the
subscript on the entries is M.

g is a function whose domain is an open set in RY and whose range is in R,
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We define g’ to be the matrix with entries g; ; = D;g; and where, if N =1 we
interpret Dy to be the ordinary derivative. In some texts this matrix is called the
Jacobian matrix of g.

As an illustration, if g operates on points in R? and has values in R? we have:

g/_<D191 Dogq D391)
Diga Daga D3zga)

31.1. Exercise. Show that this definition agrees with the previous one involving
Q and f as above.

31.2. Exercise. * Suppose h and g are differentiable functions as defined above
and the composite function (h o g)(P) exists for each P in the domain of g. There
are 27 different combinations of range and domain dimensions.

ha(P))

Prove The Chain Rule: (hog) (P) = h'(g(P))g'(P) for each P in the domain
of g.

Observe that this formulation subsumes all earlier versions of the chain rule
which you might have learned.

31.3. Exercise. * Show that if N =L = M and h and g are differentiable and
inverse functions (to each other) then (ho g) (P) = h'(g(P))g'(P) is the identity
matriz: that is, one of the following three, depending on dimension:

1 0 0
1 or <(1) (1)> or 0 1 0
0 0 1

(These are called identity matrices because whenever a matriz is of the right shape
to multiply by one of them, the act of multiplication does not change the matriz.)
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Observe that when N = L = M =1 this yields the usual formula relating the
derivatives of a function and ils inverse:

If you know what an inverse matrix is, it yields the corresponding formula for
the derivative of an inverse function:

IfQ=g(P) then (¢'(P)~" =(971)(Q).

31.4. Exercise. Suppose O is the set (0,00) x (0,2m). Define F for these points
by F(r,0) = (r cos(0),r sin(h)).

r and 6 are polar coordinates of the point F(r,0) and the domain of F has been
chosen so that F is one-to-one and the range of F is the open set W consisting of
all points in the plane except those on the positive X axis and the origin.

We define G(X,Y) to be:
( VX24+Y? | arccos (ﬁ) ) , If (X,Y) is above the X axis;

( VX24+Y?2 27 — arccos (ﬁ) ) . If (X,Y) is below the X axis;

(1X|, m), IfX <0andY =0.

G is defined on W and is the inverse function to F.

Evaluate G'(X,Y) and F'(r,0) and show that both (G o F) and (F o G)" are

the identity matrices.

31.5. Exercise. * Suppose that h and f are continuously differentiable func-
tions on an open set O and Z = Z(X,Y) is a function defined on open D in the
plane and arises as a piece of a level set of h, where (Dsh)(X,Y,Z(X,Y)) is never
0 on D.

Show that if the composite function f(X,Y,Z(X,Y)) has a local extreme value
at (X,Y) € D then there is a real number X so that (Vf)(X,Y,Z(X,Y)) =
MVh)(X,Y, Z(X,Y)). In other words, V[ must be the zero vector or V[ is per-
pendicular to the surface. The number X is called a Lagrange Multiplier.

hint: Let W(X,Y) = (X,Y, Z(X,Y)). So f oW is a differentiable real valued
function on an open set in the plane. It can only have extreme values at places

where V(f o W), and hence (foW)', is zero. Use the chain rule to conclude that if
P is a point on this level surface and is a local extrema of f among points on this

level surface then V f(P) = gzﬁi; Vh(P).
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31.6. Exercise. * Suppose that h and f are continuously differentiable func-
tions on an open set O where O is in the plane or in space. Let M be a level set of
h and suppose that Vh is never the zero vector on M.

If f has a local extreme value at P among points in N then there must be a
number X for which V f(P) = AVh(P).

The idea of Lagrange multipliers is as follows. Suppose we have a point P on
a level surface M of a function A defined for points in an open set in space. The
condition that P come from M is called a constraint for the problem. Suppose
we have another function f, sometimes called the objective function, defined on
this open set and we wish to consider the possibility that f has a local extreme
value at P when we confine attention to points in M.

If f has a local maximum value at P when confined to M then any direction
you can go when confined to M as you pass through P is a direction in which f
is not increasing. The whole tangent plane at P must be perpendicular to V f(P).
The same is true if f has a local minimum at P when confined to M.

Taking this a bit farther, suppose that we have a second constraint generated
as a level set of differentiable g, and P is also in this second level set. Suppose we
want a condition satisfied by points at which f has a local extreme value among
points subject to both constraints—that is, among points in the intersection of
the two level sets. One would expect a crossing of two level surfaces to be a curve,
though it might be hard or impossible to write a formula for this curve.

When it is a curve, the tangent line for the curve at each point will be the line
of crossing of the tangent planes of the two surfaces. So Vg(P) x Vh(P) will lie
in the tangent line. If f has a local extreme value here, the tangent line must be
perpendicular to the direction of increase of f.

So we come to the conclusion: If f has a local extreme value at P among points
in the intersection of a level surface for g and a level surface for h then

Vf(P) - Vg(P) x Vh(P) = 0.

But when will the intersection be a curve? Intuition says it should be, but
intuition can sometimes lead one astray. We discuss the matter in an endnote.??

Note that neither this condition for a point P nor the Lagrange multiplier
condition of the problem above suffice, by themselves, for us to conclude that P is
the location of a local extreme value. They are only necessary conditions.

However, we know that a continuous function on a closed and bounded domain
actually attains both a maximum and minimum value on that domain, and these
conditions can be used to reduce the search for extrema to fewer locations.

31.7. Exercise. (1) Use Lagrange Multipliers to help you determine how big
f(X,Y) =X —Y could get on the curve X% +Y? = 4.

(ii) Use Lagrange Multipliers to help you determine how big f(X,Y,Z) = XY +
YZ + XZ could get in the all-positive octant when X +2Y 4+ 37 = 10.
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31.8. Fxercise. Pete’s World Revisited: Pete lives on a surface in a strange

universe. The surface is the graph of g(X,Y) = T3 — XT2 —2X + YTB —9Y. Pete

moves around on or inside the cylinder X2 + Y2 = 100 on Pete’s world. This is
Pete’s property. What is the high point on Pete’s property? The low spot?

32. Potentials

We will consider here two related issues having to do with either differential
equations or line integrals, depending on point of view.

We suppose that F' = F; i+ F25+ ... is a continuous vector field defined on an
open set O.

We will be dealing with piecewise good parameterizations of piecewise
good curves inside O.

Recall from Exercise 23.3 that this means the curve € has a continuous param-
eterization () with domain [e, d] for which

e () is one-to-one on [c,d] or is one-to-one on (¢, d] and Q(c) = Q(d)

e [c,d] can be broken into a finite number of pieces [t;—1,%;] fori=1,...,n
so that @ is continuously differentiable with nonzero derivative on each
interval (tifl, tl)

e In case Q(c) = Q(d) the curve is called a piecewise good loop.

All of the curves and parameterizations under consideration in this section will
have these properties.

If P is another parameterization of € belonging to the same orientation as @
we have:

| @)@ i= [ Few)-Po

It [YFQ(t) - Q(t) dt = [*F(P(t)) - P'(t) dt whenever P(a) = Q(c) and
P(b) = Q(d) even if they parameterize different curves so long as both curves
remain in O, the field F' is called a conservative vector field.

This implies immediately that the circulation of F' around any loop in O is
zero. (Show this.)

If for any pair of points C' and D in O there is at least one curve entirely in O,
parameterizable by one of our piecewise good parameterizations @, for which Q(c) =
C and Q(d) = D the open set O is called path connected, and a parameterization
of a curve in O that starts at one of the points and ends at the other is called a
path connecting the two points in O. We won’t prove it, but it is a fact that
if open O is path connected then you can actually connect any two points with a
path consisting of a finite number of straight line segments, or by a path with a
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good parameterization. We could construct such a curve, in the end, by patching
together the Bezier curves we thought about in Section 21.

Suppose S is a particular point in path connected O and the field F' is conser-
vative. We will define for generic T in O the number ¢(T) = fcd F(Q(t)) - Q'(t) dt
when @ is any one of our piecewise good parameterizations chosen to start at S
and end at 7. Since the parameterization () used is irrelevant for each T', and any
T in O can be connected to S by one of our parameterizations, we have created a
function g defined on all of O.

If i is a function defined just as g was but by using a different starting point S

then h(T) = g(T) — g(S) for all T in O: that is, g and h differ by a constant. Also,
if T is another point in O then

We are going to show that g is continuously differentiable and Vg = F.

Since O is open for each T in O there is a (possibly tiny) disk or ball centered
at T" and entirely inside O. Choose e small enough so that T+ £i is inside this disk
or ball. So the parameterization Q(t) =T + ti is entirely inside O for —e <t < e
and for each ¢, Q'(t) = i.

Recall that D1g(T) = limp_0 w when this limit exists. If we let g
be the function defined just as g was but starting at T — e rather than S we have

g(T+hi)=g(T) = (T +hi)—g(T)

h 0

F@)- Q0 dt~ [ FQ)- Qo)

—€

—€

h h
:/F@mwa@ﬁ:/zummﬁ.
0 0

The continuity of F implies that Dig(T) = limp_o w = I (T).

Other partial derivatives are handled in the same way yielding Vg = F.

Any function g for which Vg = F' for any vector field F' defined on any open
set O is called a potential for F. We have just shown how to construct many
potentials when F' is continuous and conservative and O is path connected.

32.1. Ezercise. * Show that if the domain of F is path connected, any two
potentials for continuous conservative F' differ by a constant.

Looked at another way, let us suppose that ¢ is any continuously differentiable
real valued function defined on O. We will define the vector field F' to be Vg. Then
F is conservative. This is, essentially, the chain rule. If S and 7" are in O and @ is a
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differentiable path in O with Q(c) = S and Q(d) = T then the real valued function
g o Q is differentiable and (g o Q)'(t) = Vg(Q(¢)) - Q'(t) and so
)

o(T) — 9(S) = 9(Qd)) — g(Q(c))
d d
/ (g0Q) (1) dt = / (Vo) Q1) - Q'(t) dt

d
- [ rew Qo .

Since the left side depends only on the endpoints of the parameterization we can
conclude (after some thought and the next exercise) that F' is conservative.

32.2. Exercise. In the last paragraph we showed that F' is independent of the
path when the path is differentiable. What happens if the path is only “semi-nice”
as in the rest of this section?

So we have shown the following for open sets O:

e If g is a continuously differentiable real valued function on any open set
O then the field F' = Vg is a continuous conservative field.

e If F'is a continuous conservative field on path connected O then there is
a family of potentials for F', any two of which differ by a constant.

It remains to be seen how one might compute a potential if there is one, or
infer that a given field is not conservative. Here are a couple of examples.

First consider the field
F(X,Y,Z) = (F(X,Y, 2), Fx(X,Y, Z), F5(X,Y, Z)) = (2XY, Z°,0).

If F = Vg then we must have D1g(X,Y,Z) = 2XY and Dag(X,Y,Z) = Z%. But
these derivatives are themselves continuously differentiable so the mixed partials
created from them should be equal, and they are not in this case. This field has no
potential.

So when the components of F' are continuously differentiable we have
a necessary condition for the existence of a potential. We must have

D2F1 = D1F2 and D2F3 = D3F2 and D3F1 = Dng.

Another approach with this same example would be to exhibit a path
dependency of fcd F(Q(t)) - Q'(t) dt for Q connecting two specific points.
Almost any two paths will do. The path that moves on the coordinate axes from
(1,0,0) to (0, 1,0) yields 0, while the path that goes from (1,0,0) to (0, 1,0) along
the curve (cos(t), sin(t),0) yields the integral

™

/ * (cos(t)sin(t),0,0) - (—sin(t), cos(t),0) di — / " _cos(t)sin2(t) dt = .
0 0

As a second example we look at the field

F(X,KZ) = <F1(X7KZ)vFQ(X7KZ)7F3(X7KZ)> = <2XY5X252Z>
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DoFy(X,Y,Z) = 2X = D\ F3(X,Y, Z) and D3Fy(X,Y, Z) = D1 F3(X,Y, Z) =
0 = DyF5(X,Y,Z) = D3F>(X,Y,Z). So at least there is the possibility that a
potential exists.

If (X,Y,Z) is any point let Q(t) = t(X,Y,Z). So Q'(¢t) = (X,Y,Z). Also,
F(Q(t)) = t (263X Y, t*X?,2tZ) . Therefore

1 1
9(X,Y,2) = / F(Q)-Q'(t) dt = / 3t2X2Y +2t7% dt = XY + Z°.
0 0
We can check by differentiating that Vg = F.

To form the potential you create paths connecting a “center” point to a generic
point of O and integrate. Check that it actually is a potential for f by differenti-
ating.

Another approach to this example is to integrate as follows: If a potential
g exists then Dig(X,Y,Z) = 2XY so it must be that g(X,Y,Z) = X?Y + H
where H is an unknown function that depends on Y and Z but not X. Similarly
Dog(X,Y,Z) = X? s0 g(X,Y,Z) = X?Y + K where K is a function of X and
Z only. Comparing these implies that K must be a function of Z alone. Finally,
D3g(X,Y,Z) =2Z so g(X,Y,Z) = Z> + W where W is a function of X or Y but
not Z. Comparing these yields g(X,Y, Z) = X2Y + Z? + C for any constant C,
and the fact that Vg = F' can be verified. This argument depends explicitly on the
fact that the domain of F' contains all line segments parallel to the coordinate axes
connecting all points in the domain. (See Exercise 28.8.)

32.3. Exercise. * Suppose that O, the domain of F, contains all line segments
parallel to the coordinate axes whenever the endpoints of these segments are in O.
Suppose also that the components of F' are themselves continuously differentiable
and D2F1 = DlFQ and D2F3 = D3F2 and D3F1 = D1F3. Show that I has a
potential.

32.4. Exercise. Go over the details of the material of this section once more
in the case where F is a vector field on an open set O in R? rather than R3.

32.5. Exercise. An engineer is attempting to move a machine from one con-
figuration to another. The desired change is equivalent to moving from (0,0,0) to
(2,2,2) within the first octant of R3, where distances are in feet. The motion must
take place along straight line segments, and at most one change in direction is al-
lowed. During the motion various forces act in aid or opposition corresponding to a
vector force field F' = —Xi— 25’— 2k pounds. In addition to work done against this
force there is a work penalty of 1 foot pound for each foot traversed, making longer
routes less attractive by that amount. How should the engineer proceed to minimize
the work cost? How would the answer change if movement along any coordinate
azxis was “free?”
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33. Area and Integrals in the Plane

Suppose [a, b] and [c, d] are intervals. The closed rectangle formed from these
intervals in the plane will be denoted [a, b] X [¢, d], and consist of those ordered pairs
(r,s) with a <r <band ¢ <s <d.

A set O is called bounded when there is a rectangle which contains O.

We are going to describe how to define and calculate a number that is reasonable
to think of as the area of a bounded open set O in the plane. We will also define
integrals of bounded continuous functions defined on O and indicate how they might
be calculated. We will then consider integrals over certain closed sets.

Throughout these notes we have tried to outline justification for our results
carefully, leaving only issues dependent on a careful construction of the Real Num-
bers for later classes. In this chapter we will try to be clear and precise but the
detailed justification of a couple of our results is better left for later classes.?*
These include, in particular, common generalizations of the results we do prove.
The student will need to revisit these issues several times. As mathematical matu-
rity increases, he or she will become confused about increasingly deeper points. It
is, however, quite possible to understand the main results of the section and apply
them to practical problems without “dotting each i.” We will provide numerous
practical tools and survey the terrain in preparation for the more thorough second
pass some readers will require.

Suppose a = Xo < -+ < X, = b is a partition of the interval [a,b] and
c=Yy <--- <Y, = disa partition of the interval [c, d]. The collection P of closed
rectangles formed from all the subintervals from consecutive partition members of
[a,b] and [c,d] form what is called a partition of the rectangle [a,b] x [c,d].
There are mn of these smaller rectangles. The mesh of this partition is the length
of the longest edge of any rectangle in the partition.

v ¥, 'r% Y ¥,

A set of points C' with members C;; for i = 1...n and j = 1...m in the
plane is called subordinate to the partition P if C;; is in the subrectangle
[Xi—1,X;] x [Yj_1,Y;] for each ¢ and j.

We suppose h is a bounded continuous real valued function defined on

O.
Consider the sum Y h(C; ;) AX;AY; where this notation indicates that the sum
(v}

is over those subscripts corresponding to rectangles in P which are entirely inside
O. A sum of this kind, which depends on h, C and P, is called a Riemann sum.
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It is a fact that under these conditions there is a number denoted
/ MX,Y)dX dY
(V]

to which every Riemann sum is arbitrarily close provided only that the mesh of P
is small enough. This number is called the the double integral of h over O.

If you are willing to accept this, or check the endnotes®® for more, you are free
to use a regular grid to form a partition and a uniform choice of points subordinate
to the partition to calculate integrals.

For a positive integer n let B,, be the collection of all rectangles of the form

ﬂ] X [zj—n, j;ll} where i and j are any integers. Let C7'; denote the point

[#7 2n
(2w 37). So

on
lim g f(T:J) :/ MX,Y) dX dY
n—oo O

n

where the sum is over all ¢ and j for which the rectangle [i o

2’7l b) 2’7l
entirely in O.

,_.
-
X
—

|u
.
F
AR
[
—
07]

The following are now fairly easy to show:

33.1. Exercise. If f and g are continuous and bounded on bounded open O
and c is a real number then

/f(X,Y) dX dY + ¢ /g(X,Y) dX dy = /f(X,Y)+cg(X,Y) dX dY.
o o o
Ifm < f(P) < M for all P in O for constants m and M then

/dedyg/f(X,Y) dXdYg/MdXdY.
O O (V)

Also, if f > g and f(P) > g(P) for even one point P in O then

/ f(X,Y) dX dY>/ g(X,Y) dX dY.
(v} o

** If f is nonnegative and the sets O and W are both open and contained in
the domain of f then the union of these two sets, O UW, is an open set and

/ FX,Y) dX dY g/ FIX,Y) dX dY+/ F(X,Y) dX dY.
ouu (V] u

If, further, ONWU = @, equality holds in the last line.

Quite often the region O from above arises as the bounded part of the plane
surrounded by a piecewise good loop €. To make this precise we need the concept
of “boundary.”

A point P is said to be on the boundary of a set A of points in the plane
provided that every disk centered at P contains at least one point in A and a point
not in A.
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In our case we are saying that O is a bounded open set and € consists precisely
of the points on the boundary of O.

When O arises in this way we let O be the union of O and €. O is a closed set.
(Can you show this?)

The Bounding Curwe

= inzide

inside plus
curve plus strip
width £

We define the set €. to be those points in the plane less than a distance ¢ away
from some point on the bounding curve € and let O, be those points in the union
of @ and C..

€ has a finite length L and an easy estimate shows that the open set €. can
be covered by (roughly) % squares each of area 2. So any reasonable measure of
the area of G, cannot exceed 4Le.

So if h is continuous on some O, and |h| is bounded by M then no matter how
tiny € might be,

‘/ WX,Y) dX dY—/ WX,Y) dX dY‘ < 4MlLe.
O, O

Since O consists of exactly those points in the plane in every O, it makes sense
to define:

/ h(X,Y) dX dY = 111% h(X,Y) dX dY:/ h(X,Y) dX dY.

) e~vJo. o

So we have defined integrals on certain types of closed sets too: namely, closed
sets which are the bounded region inside a piecewise good loop and for bounded

functions continuous on some open set containing this closed set.
We now come to the issue of how one might actually calculate an integral.

For each Y in [c,d] define Sy to be the set of those X in [a,b] for which
(X,Y) is in O. Each Sy is an open set and the function Ay defined on Sy by
Ay (X) = h(X,Y) is bounded and continuous.
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In most of the integrals you will run across, each set Sy is empty (nothing in it)
or a finite union of open intervals, and if you wish you can throw in the endpoints
of these intervals without changing any of the integrals [, g, Ay (X) dX. If Ay (X)
is not actually defined at an endpoint, you could still define the integral on these
closed intervals as an improper integral, using a limiting procedure. This is not
usually necessary.

Define B(Y) = [q Ay (X) dX for each Y in [c,d], where if Sy is empty this
number is 0.

Let T be the set of those Y in [¢,d] for which (X,Y) is in O for any X. T is
open.

:} B
Y e 1]
= e ——
5
—5 Lt
‘l'ﬂ 5‘.'5

The function B is continuous and bounded on T'. It is a fact that under these
conditions

/Oh(X,Y) ax dY:/TB(Y) dY:/T< Ay (X) dX) dy.

Sy

The last integral is called the iterated integral of h on O, and is the main tool
used to actually calculate a double integral on an open set in the plane, or a closed
set surrounded by a piecewise good loop. Under the conditions of this section,
iterated integrals can be calculated in either order, by modifying the definition
slightly to integrate first with respect to one or the other variable. The theorem
which identifies the double integral with the iterated integral in either order is called
Fubini’s Theorem, and is very important. You can find a discussion of the proof
of this theorem in an endnote.3

When h = 1, the constant function, this integral is to be interpreted as the
area of O. If h is nonnegative, one could interpret the integral as the volume
between the surface formed as the graph of h and the set corresponding to O in the
XY plane, or the mass of a plate in the shape of O with density function h. For
a general h the integral could represent total charge on a plate in the shape of O
with charge density h.

33.2. Exercise. Suppose we have a plate in the shape of the region O in the
first quadrant of the XY plane bounded by X =1, X =2, Y =2 and Y = X% +1
where X and 'Y are measured in meters. This plate has variable density given by
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hX,Y) =Y + X2 kilograms per square meter on this region. We calculate the
mass of this plate to be:

/ h(X,Y) dX dY
) &
X=2 Y=X?+1
_ / / Y + X2 ay | dx 4
X=1 v=2
X=2 [y Y=X*+1 &
_ / I xy X
x=1 \ 2 y=2 =7
X=2 qy4
- / 3 ax 17
x—1 2 2
5 X=2 T T
= 3X7 83X = 7.8 kilograms. 0 1 =
10 2|,

Calculate this iterated integral in the “other order,” first with respect to X and
then with respect to Y .

33.3. Exercise. Calculate the volume of the part of the unit sphere in the first
octant. This surface is the graph of g(X,Y) = V1 — X2 —Y? where X and Y are
both positive. (hint: Consider [ g(X,Y) dX dY. Calculate the iterated integral
first with respect to X integrating from X = 0 to X = v1 —Y?2. Then use the
substitution X = 1 —Y?2sin(u). )

33.4. Exercise. * Suppose [ is defined on a bounded open set O in the plane
and the mized partial derivatives Dy of and Do f of f exist and are continuous in
O. Use Fubini’s Theorem to show that Dy of = Do f in O. (Hint: If they differ
at a point P, say D1aof(P) > Da1f(P), then by continuity there is some little
rectangle and € > 0 for which Dy of > D21 f + € everywhere on the rectangle.)

34. Area of a Curved Surface and Surface Integrals

We will discuss an application of these results to define surface area on the
surface formed as the graph of differentiable g with continuous gradient and also
integrals of functions defined on such a surface.

We will start out with the part of the graph consisting of points (X, Y, g(X,Y))
for (X,Y") in the open set O contained in the rectangle [a,b] X [¢,d]. We will often
visualize the set O as being in the XY plane in 3D beneath the graph of g though,
of course, that last set, the “shadow” of the graph, consists of points with three
components with 0 third component while the points in O have only two.
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Vg will appear in many formulas in this chapter, so we will often denote Dig
by g1 and Dag by g2. So Vg = (g1, g2).

At each (o, 8) in O the functions B, and Ag defined by B, (Y) = (o, Y, g(a, Y))
and Ag(X) = (X, 08, 9(X,0)) are differentiable parameterizations (over possibly
small intervals) of curves through («, 3, g(a, 5)) and these curves are in the surface.

B, (B) = (0,1,92(a, B)) and Aj(a) = (1,0, g1(c, B)) are in the tangent plane
to the surface at («, 3, g(«, §)).

The vector K(a,3) = Aj(a) x B,(8) = (=g1(a, B), —g2(a, §),1) is normal
to the surface at (o, 8, g(«, 8)). The vector N(«, 5) = K(«, 3)/|K (e, 5)| is the
(upward) unit normal to the surface at that spot.

Suppose P is a partition of the rectangle [a, b] X [¢, d] containing O and [X;_1, X;]x
[Y;_1,Y;] is a rectangle from this partition inside O. The number AX;AY] is the
area of this (presumably tiny) rectangle in the XY plane which can be thought of
as beneath or above a roughly polygonal patch on the surface.

The line segments (X, s) fori =0...nandu < s <wv,and (¢,Y;)forj=0...m
and a <t < b in the XY plane break up the big rectangle into the little ones. If
you imagine a light casting a shadow vertically past these segments thought of as in
the XY plane onto the underside of the surface of interest, the shadows will break
the surface into patches which look like little parallelograms.

T

When [X;_1, X;] x [Yj-1,Y]] is contained in O, parameterizations for the shad-
ows on the surface from the four edges of this rectangle are given by By, (s) for
k=1i—1andiand Ay, (¢t) for k = j — 1 and j and where the parameters s and ¢
extend (at least a little) beyond the intervals [Y;_1,Y;] and [X;_1, X;] respectively.

The tangent vectors to the two curves which cross at the corner
(Xiz1,Yj1,9(Xi—1,Yj-1) ) are

TX = Ay (Xio1) and T); = By, | (Y;-1).
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The two vectors AXZng and AYjTZ—% lie on the shadows of the edges of a
parallelogram on the tangent plane at the corner point (X;_1,Y;-1,9(X;-1,Y;-1) ).
To the extent that the tangent plane is glued tightly to the surface the area of this
parallelogram would be a good candidate for an approximation to the area of the
nearby surface patch.

The area of the parallelogram is the magnitude of
AXTY x AY;TY, = AXGAY; (g1 (Xiz1,Yjo1), —g2(Xio1, Yi-1), 1) .

This magnitude is

AX;AY; \/(gl(Xi—l,Yj—l))2 +(g2(Xi—1,Yj-1))2 + 1.

Because the gradient of g is continuous, the area of the sum of all these patches
is nearly (if the mesh of P is small enough):

/0\/(gl(X,Y))2+(gQ(X,Y))2+1 dX dYy .

Another way of getting at this is through the normal vector. The upward unit
normal vector to the surface at (X;—1,Y;_1,¢(X;-1,Y;_1) ) is

(91(Xi—1,Yj-1),92(Xi—1, Y1), —1)

Nij = 2 2
V(g1 (Xic1,Y521))? 4 (92(Xi-1,Y5-1))2 + 1

and the normal vector to the XY plane is k. We saw in Section 12 that the areas
of the slanted and shadow parallelograms were related by

1
Slanted Area (On the Tangent Plane) = —eShadow Area (On the XY Plane).

cos(0)

where 6 is the angle between the surface normal and k.
We have
Nij- k= |Ni7j||E|COS(9) = cos(0)
which gives

1
V(g (Xis1, Y202 + (92(Xim1, Y1))2 + 1

The area of the rectangular bit in the XY plane is AX;AY] so the slant area is,
once again,

cos(0) =

AX;AY; \/(gl(Xi,l, Yi-1))? + (92(Xi1,Yj-1))2 +1

which generates the same integral as before.
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The discussion above constitutes justification for why we think of that integral
as the area of the curved surface. In the end, we simply define area of a piece of
surface to be that integral. It is up to the user to decide if it reproduces intuition
about what surface area should be. In particular, if you have multiple methods for
calculating or estimating numbers each of which should be the area, you would
want them all, at minimum, to agree.

Finally, suppose h is a continuous function defined on Q. Each point on the
surface is associated with a value of the function h. With this interpretation we
call the integral

[ Va1 dx ay
O

the surface integral of h on this surface. By analogy with line integrals, we
could call this the integral of h weighted by surface area.

We could think of h as representing, for example, mass density (mass per unit
area) or charge density up on the surface. In those cases the surface integral would
correspond to total mass or charge on the piece of surface above O.

Frequently a density is initially given as a function k of the three coordinates
(X,Y,Z) on the surface. Since Z = ¢(X,Y) this gives the density h(X,Y) =
k(X,Y,g(X,Y)) as a function of two variables. Also, given h you can define k by
the same formula. The same integral is also called the surface integral of k on
this surface or the integral of k weighted by surface area. There is only a
slight philosophical difference between h and k: in the first case you are thinking
of density as a function on the domain of g, while in the second k gives the density
as an explicit function of the three coordinates of the point on the surface.

One often sees various shorthand forms for integrals of this kind, whose purpose
is to suppress the specific variable names and make the formulas quicker to write.
Laudable as a goal, this has the effect of separating the user from the calculation,
or confusing the user as to which symbols are variables. Be cautious.

For example if you denote Vg(X,Y) - Vg(X,Y) by (Vg)? the integral formula
from above becomes:
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/ h/(Vg)2+1 dX dY.
O

34.1. Exercise. Use a surface integral to calculate the surface area of the part
of the unit sphere in the first octant. This surface is the graph of g(X,Y) =
V1—X2—-Y? where X and Y are both positive. (hint: Use the same substitu-
tion as in Ezxercise 33.2. )

Suppose that this piece of surface has densily which varies with height: the
density of a part of the surface at height Z is 3Z kilograms per unit area. What is
the mass of this surface?

(hint: Consider [o39(X,Y)\/(91(X,Y))? 4 (g2(X,Y))2+1 dX dY. )

34.2. Ezercise. Use a graphing utility such as Maple to examine the surface
which is the graph of g(X,Y) = cos(X)cos(Y')+3 on the square [0,47] x [0, 47]. Set
up an integral for the surface area of this surface, think about it until you can get
a rough estimate of what the area should be (within 50 percent) and then integrate
numerically (once again using Maple or Mathematica) to obtain the area integral
to greater accuracy.’”

34.3. Ezxercise.

Consider an open set O in the XY plane and a
positive function Z defined on O depending only
on X: that is, Z(X,Y1) = Z(X,Y2) whenever
(X,Y1) and (X,Y2) are in O.

Prove the following statements:

(i) The (upward) unit normal to the surface formed as the graph of Z is
<1507D1Z> X <05170> <_D1Z7051>

1+ (D1 2)? V1+(D12)?

.. . . . . 1
(i) The cosine of the angle this vector makes with the XY plane is WAtk

(i)  The surface area of this graph is [o \/1+ (D1Z)% dY dX.

Suppose that the region O is that trapped inside X = a, X =0, Y > 0 and
Y <Y (X) where Y(X) is a positive continuous function on [a,b].
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Y
So the integral from (iii) becomes:
a b 3
X=b Y=Y(X) X=b
/ / VI (D2 dY dX — Y(X)V/I+ (DiZ)2 dX.
X=a JY=0 X=a

(v) Note that the upper limit of the region is the graph of Q(X) = (X, Y (X)).
Compare this result to the one on page 87.

35. Parametric Descriptions of a Plane Set

We will presume that ‘W is an open set in the plane and f is a vector valued
function with domain W, f(s,t) = (X (s,t),Y(s,t)). Wherever it is convenient we
will write X;(s,t) in place of D; X (s,t) and Y;(s,t) in place of D;Y (s,t). The only
other places in this chapter where subscripts are encountered on X or Y is in the
definition of the Riemann sums used to form integrals, and context will make the
distinction obvious.

We adopt the notation A;(s) = f(s,t) = Bs(t).

We will make a number of “niceness” presumptions about f and leave for later

classes the extent to which some of these assumptions are redundant or unneces-

sarily restrictive.38

(i) We presume that f is one-to-one and that the collection of values f(s,t) for
(s,t) in W constitute an open subset U in the plane.

(ii) The functions A; for each ¢ and By for each s are continuously differentiable.

(iii) The vectors Aj}(s) and BZ(t) are never 0, nor is one a multiple of the other

for any fixed (s,t).

L{ER )

5,2)

1.t
f(1,t) fs.1)

fi(2,t)

We will refer to an f like this as a good parameterization of the open plane
set U.
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The curves parameterized by A; and By constitute a coordinate grid on U,
and each point in U can be located uniquely as the crossing place of two of these
curves. These curves act as alternative coordinate lines on U, and a mesh of closely
spaced grid curves helps one navigate around on U just as the ordinary rectangular
grid would. Small pieces of U bounded by the grid curves will not be rectangles
necessarily but will, when small enough, look like parallelograms.

The condition (iii) ensures that the parallelograms in the grid do not get too
“skinny” or, at least, never go entirely “flat.”

35.1. Exercise. Verify:
Condition (ii) implies that f is continuously differentiable.
In fact
Al(s) = <X1(s,t),Y1(s,t)>
and Bl(t) = (Xa(s,t), Ya(s, 1)).
The area of the parallelogram formed by AL(s) and BL(t) is
| X1(s,t)Ya(s,t) — Xa(s,t)Y1(s,t)]
and this magnitude is a continuous function on W.

Condition (i) and continuity of the derivatives ensures that the sign of X1Ys—
XoY7 is constant on W, a fact that will be useful in calculations.

For those of you who know about determinants,
levg — X2Y1 = det fl,

a fact that shortens notation here and there.

35.2. Exercise. * Show that if f is a good parameterization of W then g = f~1
is a good parameterization of 'W.

36. Change of Variable in the Plane

We will use the earlier ideas about integrals together with the notation from the
last section on parametric descriptions of plane sets to create an integral formula
involving the parameterization. This is called a change of variables formula.

We presume that f is a good parameterization of U defined on W. We will
presume that the domain W of f is inside the rectangle [a,b] X [¢,d] in the plane.
Suppose P is a partition of this rectangle composed of subrectangles [s;_1, $;] X
[tj—1,tj] fori=1...nand j=1...m.

Suppose [s;—1,si] X [tj—1,t;] is entirely contained in W.

At;Bg,  (tj—1) and As; A} (si—1) are both vectors in the plane.
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If the mesh of the partition is small enough, the parallelogram formed by these
two vectors in the plane will be very close to the small part of U covered by f on
the rectangle [s;—1, s;] X [tj_1,¢;]. This parallelogram has area

AsiAtj| X1 (si—1,t5-1)Ya(si—1,tj—1) — Xa(si—1,tj—1)Y1(si—1,tj—1)|-

Suppose h is a continuous and bounded function defined on U. We can imagine
that h represents charge (or mass) density, for example, at each point in U. h will
be nearly constant on this tiny piece of U, so the total charge on this piece will be
nearly the area of the parallelogram multiplied by h(X (si—1,%j-1), Y (si—1,tj-1)).

Adding together these numbers for all the partition rectangles entirely con-
tained in ‘W generates a Riemann sum which is an approximation to the total
charge on W and yields the integral

/w h(X(s,t),Y (s,6))|X1(s,t)Ya(s, t) — Xa(s,t)Y1(s,t)| ds dt

which should, if our thinking is correct, be the same as the double integral

/ WX,Y) dX dY.
u

In this context, this integral on W is called a parametric form for the
integral of h on U.

Though the discussion above makes the equality of these two integrals very
plausible, we have not proved that the two integrals agree. That must be, alas,
reserved for a more advanced treatment elsewhere.

When h = 1, the constant function, we have a representation of the area of U
as [y | X1(s,t)Ya(s,t) — Xo(s,t)Y1(s,t)| ds dt.

It is common to see the collapsed notation



150 V. INTEGRATION INVOLVING SURFACES AND VOLUMES May 27, 2005

/ hof |det f'| ds dt = /thdY
w u

to express the equality of these two integrals. This notation is fine as long as you
don’t lose track of which functions involve which variables.

36.1. Exercise. Consider the function f(r,0) = (rcos(),rsin()) with domain

W = (0,1) x (0,F) and with range equal to W, the “all positive” quadrant of the
unit disk. f is called polar coordinates on U.

Show that f is a “good parameterization” of U.

Show that the coordinate grid curves cross at right angles to each other. Coor-
dinate systems like this are called orthogonal.

Calculate the area of the quarter disk in two ways: directly as an integral over
the set W and by changing coordinates as an integral over the set W.

Try to calculate
/ e Y ax dy
u
directly and then change variables to polar coordinates and try again.
Finally, suppose that your goal is to calculate an itmproper integral where U
is not the quarter disk but the entire positive quadrant of the plane. How would you
define polar coordinates on this new W? How might you define an improper integral

for this unbounded domain?

What is fu e X*=Y* 4X dY over this unbounded region?

36.2. Exercise. Recall our discussion of area using polar coordinates from page
99. In that section we had a curve Q(0) = (r(0)cos(8),r(0)sin(0)) defined on an
interval [a, B]. To simplify things we presume that r(0) >0 and —7 < a < f < 7.
We wanted to calculate the area W inside the curve and bounded by lines of constant
angle. After breaking the region into many narrow triangles, we concluded that the

area should be ff 1r? de.
Define polar coordinates by f(r,0) = (rcos(9),rsin(0)). If W is the region
under the graph of r then f is a “good parameterization” taking points in W to

points in W.

So the pie shaped area should be fW |det f'| dr df.
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~:" Qi{a)

U}}H

b

of g e

(i) Show that this gives the same number (the area) as before.
(i) Can this setup be modified to allow negative values for r?

(i)  Modify the problem (that is, reformulate the question) to deal with curves
that wind around the origin more than once.

36.3. Ezercise. Consider the function f(s,t) = (X,Y) = (st,t* — s*) with
domain W = (0, 00) x (0, 00).

f is a type of parabolic coordinates.

(i) Show that f is one-to-one with range equal to W, the X > 0 half of the
plane.

(ii) Draw a sketch containing three constant-t and three constant-s grid curves.
Show that these parabolic coordinates form a good coordinate system and an orthog-
onal coordinate system. Why are these called “parabolic” coordinates?

(iii) Set up a double integral for the area of the region Uy in the plane beneath
Y = —X?+1 and above Y = X? — 1 and with X > 0. Calculate the area of
this region. Then identify the region W1 taken by parabolic coordinates to Uy
and calculate the area a second time using parabolic coordinates and the change of
variable integration formula.

You will notice in the last exercise that the difficulty in the integrals (minor
though they were) changed: in one form the integrand was simple while the limits
of integration were more complicated; in the other the limits of integration were
trivial at the price of a more complicated integrand. In any case, the calculations
were different. That is the point of changing variables. In some problems there is
a huge advantage to be had by considering symmetries in integrand or region and
finding or inventing coordinates to match.
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36.4. Exercise. Consider the function
f(s,t) = (X,Y) = (cosh(s)cos(t), sinh(s)sin(t))

with domain W = (0,00) x (0,7). You will recall that cosh?(t) — sinh®(t) = 1 for
all t. Also note that for any specific f(s,t) = (X,Y) in the range of [ with X #0
that ¥ 2 X2 2

- — =1 and + — =1

cos?(t)  sin?(t) cosh?(s)  sinh?(s)

We will refer to f as hyperbolic-elliptic coordinates.’® Why is that a rea-
sonable name for these coordinates?

(i) Show that f is one-to-one with range equal to W, the half of the plane
corresponding to'Y > 0.

(hint: Show first that if (X,Y) is in the range of f with X # 0 and both

X? Yy? X2 y?

— =1 and — =1
cos?(t1) 1 — cos?(t1) cos?(ta) 1 — cos?(t2)

then tl = tg.)

(ii) Show that these coordinates form a good coordinate system and an orthog-
onal coordinate system.

(i1i) Note that the upper half-ellipse

() (3) -

corresponds to the gridline s = In(4). Set up a double integral for the area of
the region Wy in the upper half-plane inside this ellipse in terms of the X and Y
coordinates. Calculate the area of this region. Then identify the region W1 taken
by hyperbolic-elliptic coordinates to Wy and calculate the area a second time using
hyperbolic-elliptic coordinates and the change of variable integration formula.4°

37. Parametric Descriptions of a Surface

We are going to extend the discussion somewhat to treat surfaces given as the
graph of a differentiable function g of two variables as in Section 34. In that section
the X and Y coordinates of a point on the graph determine the point uniquely
and explicitly - the X and Y coordinates were the parameters. We can (and did)
visualize this surface as being above or below its domain, the open set O, thought
of as the shadow of the surface on the XY plane in 3D.

Often surfaces are parameterized by alternative means.

We will presume that W is an open set in the plane and f is a vector valued
function with domain W, f(s,t) = (X (s,t),Y (s,t), Z(s,t)). [ is a vector valued
function on a plane set but whose values are 3D vectors.

We adopt the notation Bs(t) = f(s,t) = Ai(s) just as before.

We make, as before, a number of “niceness” presumptions*! about f.
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(i) We presume that f is one-to-one and that the values f(s,t) for (s,¢) in
‘W constitute part of the graph of a differentiable function g restricted to an open
subset U of its domain O. This means Z(s,t) = g(X (s,t),Y (s,t)).

(ii) The functions A, for each s and By for each ¢ are continuously differentiable.
(iii) The vector A’ (t) x Bj(s) is never 0.

We will refer to an f like this as a good parameterization of the piece of
the surface defined by g above U.

The curves parameterized by A and B; constitute a coordinate grid on the
surface above U, and each point on the surface above U can be located uniquely
as the crossing place of two of these. These curves act as coordinate lines on the
surface, and a mesh of closely spaced grid curves helps one navigate around up
on the surface just as they do on the XY plane with the rectangular or polar
grid. Small pieces of surface bounded by the grid curves will not be rectangles
necessarily but will, when small enough so that the tangent plane is still very close
to the surface, look like tilted parallelograms. The shadow of this piece will also
look like a parallelogram down in the XY plane.

T

z 7 7

The condition that AL(t) x Bj(s) # 0 together with the fact that the surface
is the graph of g on U ensures that neither the parallelograms in the grid near the
surface nor the shadow parallelograms in the XY plane get too “skinny” or, at
least, never go completely “flat.”



154 V. INTEGRATION INVOLVING SURFACES AND VOLUMES May 27, 2005

We extend our “subscript for derivative” notation and write X;, Y; or Z; in
place of D; X, D;Y or D;Z. Also, since Z = g(X,Y’) the chain rule gives

a fact which can simplify formulas in case you have g as an explicit function of X
and Y.

37.1. Exercise. Condition (ii) implies that the function f is continuously dif-
ferentiable.

In fact AL(t) = (Xa(s, 1), Ya(s,t), Za(s,t))
and Bj(s) = (X1(s,t),Y1(s,t), Z1(s,t)).

A’ (t) and Bj(s) are both vectors in the tangent plane to the surface at f(s,t).
The vector AL(t) x Bi(s) is normal to the tangent plane there.

The magnitude of A’ (t) x Bj(s) is

V21 = i22) + (XaZy — X1 22)° + (XaY1 — X112)?

where all derivatives are evaluated at (s,t), and this magnitude is a continuous
function on W and never 0.

38. Change of Variable on a Surface

We presume that f = (XY, Z) is a good parameterization of the piece of the
surface defined by g above U. We will presume that the domain W of f is inside
the rectangle [a, b] X [¢, d] in the plane. Our goal is to create a change of variables
formula for surface integrals for surfaces given parametrically.

Suppose P is a partition of this rectangle composed of subrectangles [s;_1, s;] X
[tji—1,tj]fori=1...nand j=1...m.

If [si—1,8:i] x [tj_1,t;] is entirely contained in W then At;A{  (t;—1) and
As;B; | (si—1) are both vectors in the tangent plane to the surface at f(si—1,t;-1).

If the mesh of the partition is small enough, the parallelogram formed by these
two vectors in the tangent plane will be very close to the part of the surface covered
by f on the rectangle [s;_1, s;] X [tj_1,1;].

This parallelogram has area At;As;|AL, | (tj—1) x By, (si—1)|. Suppose h is
a continuous and bounded function defined on U. As before, we can imagine that
h(X,Y) represents charge density, this time at the spot (X,Y,¢(X,Y)) on the
surface. h will be nearly constant on the part of U corresponding to the shadow
of the tiny parallelogram formed by At; A, (t;-1) and As;B;,_ (s;—1) up on the
tangent plane at f(s;—1,t;—1), so the total charge on this piece will be nearly

h(X(Sifl,tjfl),Y(Sifl,tjfl)) |A/ (tjfl) X B£j71(5i71)| ASi Atj.

Si—1

Adding together these numbers for all the partition rectangles entirely con-
tained in ‘W generates an integral
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/W B(X (,1), Y (s,1)) | AL (t) x BL(s)| ds dt

:/ R(X,Y )\ (Y221 —Y122)2 +(X2Z1—X1Z2)* +(X2 Y1 — X1 Y2)? ds dt
w

where in the last integral X,Y and Z and their derivatives are to be evaluated at
(s,t).

This integral should, if our thinking is correct, be the same as the surface
integral

/ (X, Y)V (g1 (X, V)2 + (g2(X,Y))2 +1 dX dY
u

and provide an alternate way of calculating that integral as an integral over 'W
instead of an integral over U. In this context the integral is called a parametric
form of the surface integral of h on this piece of the surface.

As before, a density is sometimes given as a function k of the three coordinates
(X,Y,Z) on the surface. Since Z = ¢(X,Y) this gives the density h(X,Y) =
E(X,Y,g(X,Y)) as a function of two variables which is how we have expressed our
surface integral. In this case, the same integral is also called the parametric form
of the surface integral of k£ on this piece of the surface.

In applications one often (even usually) knows the function g, which defines
the surface, explicitly rather than simply inferring that such a g exists somehow.
In that case the integral formula can above can be modified to include g and with
g some more geometric content.

Substitute Z; = (g1, g2) - (X;,Y;) into the formula
(YaZi — Y120)" + (X221 — X122)" + (XaV1 — X1Y2)?

(which appears under the radical in the integration formula above) and expand and
combine like terms.

Then expand (g7 + g5 + 1)(X1Ya — Y1 X2)?. You will find the result to be
the same. This means that the parametric form of this surface integral can be
calculated as

| )G TET I @+ T XY - Yial ds dt.
w

where in each case the functions X, Y, X; and Y; are to be evaluated at (r, s) in the
integral.

In calculations it is convenient to note that the sign of X;Y5 — Y7 X5 does not
vary on W.

Finally, we come to a notation issue. It is common to see the equality of the
surface integral and the parametric form of that integral expressed as:

/ h/(Vg2+1 dX dY = / WX, Y) \/(Vg)2o f+1 |det | ds dt.
u w
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Sometimes the explicit composition with the functions f and (X,Y’) on the
right is suppressed and you see

/ h (Vg +1 |det f'| ds dt.
w

It is assumed that the user will simply know to do the right thing in context. Its
only virtue is brevity.

38.1. Exercise. Verify the following statements:

The area of the shadow in the XY plane of the parallelogram formed by AtAL(t)
and AsBj(s) in the tangent plane at f(s,t) on the surface is | X1Ys — Y1 Xo|.

If 0 is the angle between the tangent plane at f(s,t) and the XY plane then

L 2 2
— = =\/gi +g+1
(9) 1 2

cos

Use these geometrical facts to justify the last integration formula.

38.2. Exercise. Suppose that the surface Z = g(X,Y) in the parametric form
of the surface integral found above arises as a part of a level set M(X,Y,Z) = w of
continuously differentiable M with DsM(P) # 0 whenever P = (X,Y, Z) is in the
level set.

Show that the angle 0 between the surface at P and the XY plane satisfies

VM(P) -
cos() = ——— -k
[VM(P)|
This generates in this case an alternative expression for the surface integral:
[VM(P)|
hX,Y) ———1X 1Y, — Y1 Xo| ds dt.
J 1) gy v = il s

Every now and then, symmetry or other considerations will allow you to deter-
mine cos(0) on the surface at each (s,t). But apart from these special circumstances
and the picture provided by this representation, the advantage of the formula is lim-
ited due to the fact that to calculate % usually requires that you know

Z =g(X,Y) so you could just as well have used the earlier formula.

38.3. Exercise. What do the formulas discussed in Ezercises 38.1 and 38.2
look like when Z = g(X,Y) = w, a constant?

What do these formulas look like when f(s,t) = (s,t,0): that is, when f does,
essentially, nothing?

What do these formulas look like when f(s,t) = sV +tW where V and W are

two nonzero constant vectors in R® which are not multiples of each other?
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38.4. Ezercise. Consider the function f(r,0) = (rcos(f),rsin(6), V1 —1r?)
with domain W = (0,1) x (0, %) and with range equal to W, that part of the unit
sphere that sticks into the “all positive” octant of space, the graph of g(X,Y) =
V1-X2-Y2,

Show that f is a “good parameterization” of U.

Calculate the area of this piece of the sphere by thinking of it in three ways.

First do the calculation as

/ \/(YQZl7Y1Z2)2+(X2Z17X1Z2)2+(X2Y17X1Y2)2 dr df.
w

Second, use the formula

/W VO X T XYL |X\Ys - ViXa| dr db.

Third, determine the angle that the normal to the sphere makes with the XY plane
as a function of r and use Fzxercise 38.2.

At this point we will tie up a loose end and demonstrate the formulas in action
at the same time.

It is quite possible that the same piece of surface might be the graph of a
function Z = g(X,Y’) over an open set Uy in the XY plane or Y = h(X, Z) over
an open set U in the X Z plane. It would be pleasant if the area of this surface
(and other surface integrals too) calculated as an integral over U; was the same as
the area calculated as an integral over Us.

This is the graph of Z=g(X,¥)
< and alsothe graph of Y=h(X,Z).
o = «
U, =(% ,h(X,2),2)

: . 1=, ¥, 2)=(%,¥)
! f=w="T]
Ty ?

_______________ U,




158 V. INTEGRATION INVOLVING SURFACES AND VOLUMES May 27, 2005
Note that Y = h(X, g(X,Y)). Let the function Y(X,Y") denote h(X, g(X,Y)).
Differentiating and then evaluating at a specific (X,Y, Z) on the surface yields
DiY(X,Y) =0 = D1h(X, Z) + Doh(X, Z)D1g(X,Y)
DY(X.,Y) =1 = Dyh(X, Z)Doag(X,Y).
Let W be the function from U; to the surface defined by W (X, Z) = (X, h(X, Z), Z)
and let 7 be the function from R? to R? defined by 7(X,Y, Z) = (X,Y).

The function f = 7o W takes points from U; and sends them to points in Us.
The function f is one-to-one because both W and 7 are one-to-one, and every point
in Uz is f(X, Z) for some point (X, Z) in Uy. Note that f(X,Z) = (X, h(X, Z)).

The grid curves Ax (Z) and Bz(X) are differentiable and A (Z) = (1, D1h(X, Z))
and B%(X) = (0, Dah(X, Z)).

f will be a good parameterization of Uy provided that Dsh is never 0. But the
calculation above shows that 1 = Doh(X, Z)D2g(X,Y) so Dah can never be 0 in
this situation.

Note also that

1 0

f’(X,Z)_<D1h(X,Z) Dgh(X,Z)) and (det f')(X,Z) = D3h(X, Z).

‘We would like to show that

/ V(VR)?2 +1 dX dZ :/ V(Vg)?2 +1 dX ay.
U, Uz

The change of variable formula says that

/ VVEFTL dXx dY = | /(Ng)2of+1 |det f'| dX dZ.
UQ ul

So we would like to show that the two integrands of the integrals over U, are iden-
tical. Since they are positive integrands we can square both yielding the sufficient
condition for equality:

(Vh)2+1 = ((Vg)?of+1)|det f)°.
Expanding this yields
(Dih(X,Z) )? + (Dh(X,Z) )* + 1
= (D1g(X,Y)Doh(X, Z) ) + ( Dag(X,Y)Dsh(X, 2) )* + ( D2h(X,2) )*
where (X,Y, Z) corresponds to a specific point on the surface.
From the earlier calculation we know that
Dyg(X,Y)Dyh(X,Z)=1 and Dyh(X,Z)D1g(X,Y)=—Dih(X,Z)

and the result follows.
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38.5. Exercise. Suppose we have a piece of a surface parameterized by
f(s,t) =(X,Y, Z) = (sin(t), €'s, tIn(s))
for0 <t <1landl <t < 2. Verify that this is a good parameterization. Create

an integral for the area and use a utility such as Maple to find an approximation to
that area.4?

39. Surface Integrals Over Composite Surfaces

Often we are concerned with surface integrals over sets which do not obey our
rather restrictive criterion: surfaces which can be parameterized by a single function
in terms of two variables. The sphere, the torus, and the cube are common shapes
which fail this criterion and we need to be able to work with them.

Another interesting shape is the Mdbius strip, which you most likely have en-
countered at one time or another. It can be created by taking a narrow strip of
paper and putting a half-twist along its long direction and then taping the opposite
short sides together. It has the peculiar property of possessing only one side and
one edge. It is not the graph of a function of two variables.

Each of these examples can be broken into a finite number of pieces bounded by
piecewise good curves where each piece only touches another along these curves and
where each piece, minus its bounding curve, is a surface according to our definition.

We will then define the surface integral over the aggregate object to be
the sum of the integrals of all these non-overlapping pieces. This decomposition is
not too hard to accomplish in many common cases.

We will now make this a little more precise, although the process is quite messy
from a notational standpoint. Just keep in mind what we are trying to do. We
make the following suppositions.

e Suppose 8 is a bounded set in space, the union of sets §; fori =1,...,n.

e For each 7 there is a piecewise good loop €; in the s;t; plane surrounding
an open set Q;, so that €; is the boundary of O;, and for which there is
given an open set U; containing both €; and O;. Define O, to be the set
of points from O; together with its bounding loop €;.

e For each ¢ there is a vector valued function function f; = (X;,Y;, Z;)
defined on WU; which is a good parameterization of a surface in space.
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e 8, is exactly the object formed as the set of all f;(s;,t;) where the points
(s4,t;) are taken from O;.

e When i # j any point P in the overlap 8; (1 8; of two of the pieces must
be of the form P = f;(s;,t;) = f;(s;,t;) where (s;,t;) is in €; and (s;,t;)
is in €;. In other words, 8; and 8; can only touch on their bounding
curves.

e § is a bounded real valued function defined, for every i, on all points
fi(si,t;) whenever (s;,t;) is in O; and for which fo ho f; |det f!| ds; dt;
exists for each .

We will call any collection of sets and functions satisfying the first five items
on the list an admissible decomposition of 8.

The part of 8; consisting of points f;(s;,t;) where (s;,t;) is taken from O; is
called a member of the decomposition. It consists of §; “minus” its bounding
curve.

If 8 has an admissible decomposition we will refer to it as a composite surface.

With all this setup and all these suppositions, we now define the surface
integral of h over 8§ to be

/hd.S:Z/ ho f; |det f/| ds; dt;.
8 i=17/0i

39.1. Exercise. A box is constructed in the shape of the surface of the standard
unit cube in the all-positive octant in space with distances measured in meters. The
density of the surface of this cube varies according to the function h(X,Y,Z) =
X +Y + Z kilograms per square meter. What is the mass of this cube?

39.2. Exercise. Calculate the mass of the surface of the sphere centered at the
origin of radius 1 meter if its density is 2Z kilograms per square meter at a point
(X,Y, Z) with Z > 0 and —3Z kilograms per square meter at a point (X,Y, Z) with
Z < 0.

39.3. Exercise. ** Suppose 8 has two admissible decompositions. Whenever
h is a function defined on all members of both decompositions and for which the
surface integral can be calculated using one decomposition then it can be calculated
using the other too. The value obtained using the second decomposition process will
agree with that obtained from the first decomposition.
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40. Orientation of Surfaces and Integrals Involving Vector Fields

We saw in Section 24 that certain line integrals involving vector fields, such as
those representing flow or work or flux, required specification of a continuous choice
of unit tangent vector along the curve. We called a choice like that an orientation
for the curve, and we made restrictions on our curves so that there were two possible
orientations.

In this section we will do something similar for surfaces in space.

Let us start by describing our surface 8 as the graph of a continuously differ-
entiable function g of two variables defined on an open set O in the plane.

At any point on this surface, there are exactly two unit normal vectors, and
these two vectors depend on the geometry of the surface and not the parameteri-
zation.

For each point P of 8 let N(P) denote a choice of one of the two unit normals
to 8 at P.

Such a selection constitutes a vector valued function N, called a unit normal
vector field, on 8.

We will call N consistent if N is a continuous vector valued function on O.
An orientation for 8 is a choice of consistent unit normal vector field for 8.
An oriented surface is a surface 8§ together with a choice N of an orientation.

Every surface obtained as the graph of differentiable g has an orientation. In
fact,
<_glv —92, 1> and <gla 92, _1>
(=91, —g2, 1) (g1, 92, —1)
are two different orientations for 8. The first is usually called the upward unit
normal and the second the downward unit normal for g.

40.1. Exercise. For certain domains O there can be more than two orientations
of 8. Describe an example of this. (*) How many orientations might there be?

40.2. Exercise. For a good parameterization f with f(s,t) = (X (s,t),Y (s,t), Z(s,t))
of the surface 8 you can create a consistent unit normal as
N (F(s8)) = (X1(8,1),Y1(s,1), Z1(s,1)) x (Xa(s,t),Ya(s,t), Za(s,t)) .
' |<X1 (Sa t)v H(Sa t)v Z (Sa t)> X <X2(Sa t)v }/2(57 t)a ZQ(Sa t)>|
(*) Show that any consistent unit normal N for 8 can be obtained as N = Ny for
some good parameterization [ of the surface. Any such f is called consistent with

N.

We will now use this concept to calculate the flux of a vector field through a
surface.
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Suppose you are given an oriented surface 8 in space with unit normal selection
N. Suppose also that we are given a continuous vector field F' = (M, N, P) defined
on an open set containing the 8 and a good parameterization f = (X, Y, Z) defined
on an open set W which is consistent with the orientation.

The flux of F through the oriented surface with orientation N is de-
fined to be the surface integral of the function F' - N over the surface. Using the
consistent parameterization f and letting f; denote (X;,Y7,Z;) and fo denote
(Xo,Ys, Zs) we find that the integrand is

F-N|fi x fo| =F - f1 x f2
=(M,N,P)-(Y1Zy — Z1Ya, Z1 Xy — X175, X1Ys — Y1X9).

This gives the flux as:

Flux: / M (YiZg - Zlyvg) + N (Zng — X1Z2) + P (levg - Yng) ds dt.
w

In case Z = g(X,Y) the integrand becomes (M, N, P) - (—g1, —g2, 1)(X1Y2 —
XoY7) so

Flux: / (M,N,P)-(—g1,—g2, 1)(X1Ys — XoY7) ds dt.
w

One frequently sees a notation similar to

/ F(S)-N(S) dS
8

to denote the flux of F' past the oriented surface 8. The orientation is built into
N. The purpose of this notation is to focus attention on the surface and normal
and away from the parameterization. Sometimes you can even use this formula to
calculate in simple flux situations.

We can interpret the flux to denote the net flow of a fluid past the surface
in the direction indicated by N. In that interpretation, a given vector value of F'
represents the velocity of a fluid. Its magnitude is the amount of fluid which would
flow past a given place in a pipe of unit cross-sectional area placed parallel to F' in
the fluid. The discussion of Section 24 now applies with just a little modification.

Finally, we extend the idea of flux to composite surfaces.

An oriented composite surface is a composite surface together with an ad-
missible decomposition and an orientation for each of the members of the decom-
position. The orientation itself is denoted N and the orientation for the member of
the decomposition corresponding to subscript ¢ will be denoted, naturally, N;.

Suppose 8 is an oriented composite surface with n members and F' is a vector
field continuous on an open set containing 8. The flux of F through the oriented
composite surface 8 is

Flux Past Composite 8 : / F(8) -N(8) dS = Z/ F(8;) - Ni(8;) dS;.
8 i=178i

There may be many ways to decompose a given composite surface
and many orientations for each decomposition. If there are n members
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of a decomposition, there are 2" different orientations. Different orien-
tations are likely to give different results. It is up to the user to decide
how these choices should be made in a particular case.*3

40.3. Exercise. Let 8 denote the standard unit cube in the all-positive octant
of space. Let F be the vector field F = (Z,Y? XY). Calculate the flur “out” of
this composite surface: that is, choose unit normals pointing away from the interior
of the cube at each point.

41. Volume

Suppose [a1,b1], [a2,b2] and [as, bs] are intervals. A closed rectangular solid
formed from these intervals in R will be denoted [a1,b1] X [ag,b2] x [ag,bs], and
consist of those ordered triples (X,Y, Z) with a; < X < b; and as <Y < by and
as < Z < b3.

A set O in space is called bounded when there is a closed rectangular solid
which contains O.

We are going to describe how to define and calculate a number which we will
interpret as the volume of a bounded open set in space. We will also define integrals
of bounded continuous functions defined on such sets and indicate how they might
be calculated.

Suppose a1 = Xp < --- < X,, = by is a partition of the interval [a1,b;] and
ag =Yy < --- <Y, = by is a partition of the interval [az,bs] and and a3 = Zp <
-+ < Zp = bs is a partition of the interval [as, bs]. The collection P of rectangular
solids formed from all the subintervals from consecutive partition members of these
three intervals form what is called a partition of the rectangular solid [ay, b;] x
[az,ba] X [a3,bs]. There are mnp of these smaller rectangles. The mesh of this
partition is the length of the longest edge of any rectangular solid in the partition.

A set of points C' with members C; ;; for ¢ = 1...n and j = 1...m and
k = 1...p in the rectangular solid is called subordinate to the partition P if
Ci.jk is in the subrectangle [X,; 1, X;] X [Y;_1,Y]] X [Zx—_1, Zi] for each i, j and k.

We suppose h is a bounded continuous real valued function defined on

O.
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Consider the sum > h(C; ;1) AX;AY;AZ), where this notation indicates that
O

the sum is over those subscripts corresponding to rectangular solids in P which are
entirely inside @. Sums formed in this way are called Riemann sums, and depend
on h, C' and P.

It is a fact** that under these conditions there is a number denoted
/ MX,Y,Z)dX dY dZ
o

to which this sum is arbitrarily close provided only that the mesh of P is small
enough. This number is called the the triple integral of h over O. It could also
be called a volume integral or the integral of h weighted by volume.

For a positive integer n let B,, be the collection of all rectangular solids of the
form [o&, 5L [;—n, 32%1} x [£, 2FL] where 4, j and k are any integers. Let Clik

denote the point (2%, o 2%) So

cn.
lim § % :/ hX,Y) dX dY dZ
n—oo ]Bn O

where the sum is over all 4, j and k for which the rectangle [2%, Z;r—nl] X [2%, ]2%1] X

ko k417 s . .
[Qn, o ] is entirely in O.

If f and ¢ are continuous and bounded on bounded open O and c is a real
number then

/f(X,Y,Z) dX dY + ¢ / 9(X,Y,Z)dX dY dZ
(V) o
:/ f(X,Y,Z)+cg(X,Y,Z) dX dY dZ.
O

If m < f(P) < M for all P in O for constants m and M then

/dedeZ S/f(X,Y,Z)dXdeZ S/MdXdeZ.
o o O

Also, if f > g and f(Q) > g(Q) for even one point @ in O then

/ f(X.Y,Z)dX dY dZ > / 9(X,Y,Z) dX dY dZ.
(V] (V]

If f is nonnegative and the open sets O and U are both contained in the domain
of f then the union of these two sets, @ UU, is an open set and

/ F(X,Y,Z)dX dY dZ < / F(X,Y,Z)dX dY dZ +/ F(X,Y,Z)dX dY dZ.
ouu (V] u

If O NU = T equality holds above, as in the case of integrals in the plane.

41.1. Ezercise. ** Try to prove the statements in the last paragraph.
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If J is a sequence of open sets in space and J,, C J,,41 for each n then the union
of all these nested open sets is itself open. Let’s call this set O. It is a fact that if f
is a bounded continuous function on O then lim, .o [, f(X,Y,Z) dX dY dZ =

Jo F(X,Y,Z) dX dY dZ.

We would also like to think about integrals over some closed sets. You will
recall that in the 2D case we considered a skinny set €. around a bounding curve
€ and saw that fes h(X,Y) dX dY < 4MLe for constants M and L. We need a

replacement for this condition in 3D.

Sometimes a bounded closed set I in 3D is trapped between sequences of
bounded open sets

J,. anJrl CfKCOnJrl c 9,

for positive integers n and with

lim ldXdeZ—/ 1dX dY dZ = 0.

n—oo fg 9.

This implies that for any function f bounded and continuous on at least one
0,

lim | f(X,Y,Z2)dX dY dZ = lim | f(X,Y,Z)dX dY dZ

n

:/ f(X,Y,Z)dX dY dZ
(V)

and we define [, f(X,Y,Z) dX dY dZ to be this common limit.

So we have defined integrals on certain types of closed sets too: namely, closed
sets which can be “approximated” by open sets from inside and outside and for
bounded continuous functions defined on some open set containing this closed set.
We will leave for later classes the precise characterization of which closed sets we
might be talking about here.

However the closed set consisting of those points in space from the XY plane
up to the graph of a nonnegative continuous function defined on the closed set in
the plane surrounded by a good loop is a closed set of this type. Also, any set
which can be broken up into a finite number of pieces of this type is, itself, of this
type. This gives the most commonly found examples.

41.2. Ezxercise. ** Try to prove the statements in the last paragraph. If that
seems too hard work on special cases, such as the upper unit hemisphere.
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Yolume in the

slab iz nearly

B(Z) L Z for

h=1.

We now come to the issue of how one might
actually calculate an integral of a bounded and
continuous function on a bounded open set O.

For each Z in [ag, b3] define Sz to be the set of
those ordered pairs (X,Y) in [a1,b1] X [ag, bs] for
which (X,Y,Z) is in O. Each Sz is an open set
and when it is nonempty the function Az defined
on Sz by Az(X,Y) = h(X,Y, Z) is bounded and
continuous.

Define B(Z) = [; Az(X,Y) dX dY for each
Z in [as, bs], where if Sz is empty this number is
0.

Let T be the set of those Z in [ag, b3] for which
(X,Y,Z) is in O for any (X,Y). T is open and
the function B is continuous and bounded on T'.

It is a fact*® that under these conditions

/Oh(X,Y,Z) dX dy dZ:/TfB(Z) dZ_/T< ) Az(X,Y) dX dY) dz.

The last integral is called the iterated integral of h on O, and is the main
tool used to actually calculate an integral on an open set in space, or a closed
set which can be approximated by open ones as above. Under the conditions of
this section, iterated integrals can be calculated in any order, by modifying the
definition slightly to integrate first with respect to different pairs of variables. The
theorem which identifies the triple integral with the various iterated integrals is

called Fubini’s Theorem and, as in two dimensions, is very important.

When h = 1, the constant function, this integral is to be interpreted as the
volume of O. If & is nonnegative, one could interpret the integral as the mass of
a lump of material in the shape of O with density function h. For a general h the

integral could represent total charge on the lump with charge density h.

41.3. Exercise. Consider the region in the all-positive octant under the plane

Z=20—X-Y.
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z

£=0
X X=20-Y
Satisfy yourself that the region has volume given by

Y=20 ;X=20-Y [Z=20-X-Y
/ 1dZ dX dY.

y=0 Jx=o0 Z=0
Evaluate this integral. Then change the order of integration in five different ways
(there are six possible orders in which the integration can be performed) and calcu-

late the volume of this region again.

41.4. Exercise. * Suppose [ is defined on a bounded open set O in space and
the third order partial derivatives D; j . f and Dy ; ;f of f exist and are continuous
in Q. What can you conclude about these partial derivatives?

41.5. Exercise. Consider the region in the all-positive octant under the surface
Z = sin(X) + 3 and with Y coordinate bounded above by Y = X?> + Z +1 and X
bounded above by X = 27.

Satisfy yourself that the region has volume given by

X=27 ,Z=sin(X)+3 pY=X2>4+Z+1
/ / 1dZ dX dY.
X=0 Z=0 Y=0

Evaluate this integral.

It is possible to change the order of integration without much trouble in several
ways, but others require that you break the region into several pieces and integrate
over each piece separately. Investigate this issue.

The graphs found below might help visualize the region. The picture on the left
is a piece of the maximum-Z surface. The two pictures on the right are ten curves
on the maximum-Y surface from X = 0 to X = 2w with the topmost curve in the
mazimum-Z surface too. The viewpoint of the top perspective is from the larger-X
side, while the viewpoint of the lower one is from the larger-Y side.
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42. Change of Variable for 3D Integrals

At this point we will explore parametric representations of open sets in space
and the corresponding change of variables integration formula.

We will presume that ‘W is an open set in space and f is a vector valued
function with domain W, f(s,t,u) = (X (s,t,u),Y (s, t,u), Z(s,t,u)).

As before, we use the notation X;, Y; and Z; in place of D; X, D;Y and D;Z,
this time for ¢ = 1,2 or 3.

We adopt the notation Ay, (s) = Bsu(t) = Cs(u) = f(s,t,u).
We will make a number of “niceness” presumptions*® about f.

(i) We presume that f is one-to-one and that the collection of values f(s,t,u)
for (s,t,u) in W constitute an open subset U in space.

(ii) The functions A, Bs. and Cs; are continuously differentiable.
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(iii) The number Aj ,(s) - B () x Cf ;(u) is never 0.

s ,t,u)

We will refer to an f like this as a good parameterization of the open set

u.

The curves parameterized by A; ,,, Bs ., and Cs; constitute a coordinate grid
on U, and each point in U can be located uniquely as the crossing place of three of
these curves. These curves act as alternative coordinate lines on U, and a mesh of
closely spaced grid curves helps one navigate around on U just as the ordinary 3D
rectangular grid would. Small pieces of U bounded by the grid curves will not be
rectangular solids necessarily but will, when small enough, look like parallelepipeds.

The condition that A; ,(s) By, (t)xCy ,(u) # 0 ensures that the parallelepipeds
in the grid do not get too “skinny” or, at least, never go entirely “flat.”

42.1. Exercise. Verify:
The condition from (i) implies that f is continuously differentiable.

In fact
A () = (Xa(s,t,u), Ya(s, t,u), Zi(s, t,u))
and Bl (s) = (Xa(s, t,u),Ya(s, t,u), Za(s, t,u))
and Cg 4 (u) = <X3(s,t,u),Y3(s,t,u),Zg(s,t,u)>.

The volume of the parallelepiped formed by Aj ,(s), B, (t) and C (u) is
| AL (8) - Bg () x CF (u)| and this magnitude is a continuous function on W and
is never 0. So the sign of Al (8) - Bg,(t) x CF 4 (u) is constant on W, a fact that
will be useful in calculations.

For those of you who know about determinants,
Apu(s) - Bi o (t) x CF 4 (u) = det f'(s, t,u),

a fact that shortens notation considerably.

42.2. Exercise. * Show that if f is a good parameterization of W then g = f~1
is a good parameterization of 'W.

By analogy with the earlier section on parametric descriptions of plane sets we
will create an integral formula for volume involving the parameterization.
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We presume that f is a good parameterization of U defined on W. We will
presume that the domain W of f is inside the rectangular solid [ay, b1] X [az, ba] X
[as,bs] in space. Suppose P is a partition of this rectangular solid composed of
subrectangular solids [s;—1, ;] X [tj—1,t;] X [ug—1,ux] fori=1...nand j=1...m
and k=1...p.

Suppose [s;—1, ;] X [tj—1,t;] X [ug—1,us] is entirely contained in W.

Asi AQ-,I,uk,l(Si—l) and Ati BI

3 Si—1,Uk—1
vectors 1n space.

(tj—1) and Auy O, |, (up—1) are all

If the mesh of the partition is small enough, the parallelepiped formed by these
three vectors will be very close to the small part of U covered by f on the rectangular
solid [Si—17 Si] X [tj_l, tj] X [uk_l, uk]

This parallelepiped has volume
AS'LAtJAuk |A2‘711’UJ¢71 (5171) ’ B;ifl,uk,l (tjfl) X C;ifl,tjfl (uk71)|

J

:ASZAtJA’U,k | det f/(Sifl, tjfl, uk,1)|.

Suppose h is a continuous and bounded function defined on U. We can imagine
that h represents charge or mass density, for example, at each point in U. A will be
nearly constant on this tiny piece of U, so the total charge or mass on this piece
will be nearly the volume of the parallelepiped multiplied by A(f(si—1,tj—1,uk—1)).

Adding together these numbers for all the partition rectangular solids entirely
contained in W generates a Riemann sum which is an approximation to the total
charge or mass on U and yields the integral

/ h(f(s,t,u)) |det f'(s,t,u)| ds dt du
w

which should, if our thinking is correct, be the same as

/ hX,Y) dX dY dZ.
u

In this context, this integral on ‘W is called a parametric form for the
integral of h on U.

Though plausible, proof that the two integrals agree must be found elsewhere.

It is common to see the collapsed notation

/ hof|det f/| ds dt du = /thdeZ
w u

to denote the equality of these two integrals.

When h = 1, the constant function, we have a representation of the volume
of U as

/ 1 dX dY dZ = / |det f'(s,t,u)| ds dt du.
u w
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42.3. Ezxercise. Cylindrical Coordinates are an alternative coordinate sys-
tem defined as follows: Let W denote the set of triples (r,0,z) with r > 0 and
0 < 0 <27 and z any real number. Let W denote those points in space excluding
that part of the X Z plane where X > 0.

Define the function C' from W to U by
C(r,0,z) = (r cos(8), r sin(h), z).

C is, essentially, ordinary polar coordinates with the third dimension tacked on.
Cylindrical Coordinates
(r,0,z) 4—p {rcos(B8), r sini(v), z)

Z

—Y
}{Hr

(i) Prove that this is an orthogonal coordinate system.
(i1) Show that det C'(r,0,z) = r.

(iii) Identify the part of W that corresponds to the portion of the right circular
cylinder with base on the XY plane whose axis is the Z axis with radius 2 and
height 7 which is in W.

(iv) Find the volume of the cylinder described above in two ways by integrating
with respect to each coordinate system.

(v) Suppose the cylinder above is filled with a gas whose density decreases ex-
ponentially with height: the density at point (X,Y,Z) is € Z. Calculate the mass
in two ways as in ().

42.4. Exercise. Spherical Coordinates are an alternative coordinate system
defined as follows: Let W denote the set of triples (p,0,¢) with p >0 and 0 < 0 <
21 and 0 < ¢ < w. Let W denote those points in space excluding that part of the
X7 plane where X > 0.

Define the function S from W to U by
S(p,6,8) = { p sin(9) cos(8), p sin() sin(0), p cos(@) ).

The r from cylindrical coordinates is p sin(¢) here, and p is the distance from the
image point in W to the origin.
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Spherical Coordinates

(p.0 Hr4w(p sincycos(8), p sin(sin(8),p cos ()

X

psin(

(i) Prove that spherical coordinates are an orthogonal coordinate system.
(ii) Show that det S'(p,0,¢) = —p* sin(p).

(#11) Identify the part of W that corresponds to the portion of the sphere centered
at the origin with radius 5 which is in W.

(iv) Find the volume of the sphere described above in two ways by integrating
with respect to the spherical coordinate system and then the ordinary rectangular
coordinate system.

(v) Suppose the sphere above is filled with a gas whose density decreases expo-
nentially with height: the density at point (X,Y, Z) is € 2. Calculate the mass in
two ways as in (iv).

42.5. Ezercise. In this problem we investigate a change of variables formula
for arclength and line integrals which is a little different in flavor from the one
implied by Exercise 18.2. We delayed the discussion of this topic until coordinate
changes in space had been considered.

Let W and W be open sets, both in the plane or both in space. Let f be a good
parameterization of W with domain W. Finally, suppose P is a good parameteriza-
tion of a curve in W with domain [c,d] and Q = f o P is the corresponding good
parameterization of a curve in W. Then the arclength as calculated using Q is

/ ) = / |7 (PP (0] di = / '

f(P(®)) P:E” ‘ P/(1)] dt.

[P (1)
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CUrves:
Q=foP W U
density:

along ()
g g f >

note:
h=qeof

More generally, suppose g is a function defined for points along Q. g represents,
perhaps, a linear charge densily present on the wire in W parameterized by Q. If
g o Q is continuous then h = g o f is defined for points along P and h o P is
continuous. So

d d
[ sty @l di= [ wew) 15 @or o)
d
- / W(P(1))

Let’s consider this integral from the standpoint of a witness in W who can see
the three factors in the integrand and who knows that this integral corresponds to a
line integral in W.

F'(P()

) |
|P,(t)|’ |P'(t)] dt.

The witness recognizes the number h(P) = g(Q) to be the linear density as
perceived by an observer in U.

The factor |P’| is the standard arclength weighting as measured along P in W.

The factor f’(P(t))% is the interesting one. It’s function is to change
the density on the curve P so that corresponding pieces AP and AQ for the same
short time increment At “weigh” the same. If AP points in a direction which f
magnifies greatly then AQ will be much longer than AP. The density on AP must
be magnified by this same factor if AP is to weigh the same as AQ. Note that this
magnification factor depends only on the direction of P’ and not its magnitude. It

is the “stretch factor” imparted by [ to any vector pointing in the same direction
as P'(t) at P.

If we approximate both integrals with Riemann sums using the same partition of
[c,d], the necessity for this specific factor to change density becomes more obvious.

n

> 0(@) 1A~ 3 we) | 1) 3 | 1870
i=1 '

i=1

42.6. Exercise. ** In this problem we investigate for surface integrals a situ-
ation analogous to the one given above for line integrals.
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Let f be a good parameterization between open sets in space. Suppose P is a
good parameterization of a surface in space with domain D in the plane and with
values in the domain of f.

Define @ = foP =(X,Y,Z). So Q is a good parameterization of a surface
too, with the same domain as P.

Define Q1 = (X1,Y1,71) and Q2 = (Xo,Y2,Z5) and let k(X,Y,Z) denote a
density on the surface given by Q.

As we saw, the surface integral of k on this surface is
/ k |Q1 X Q2| ds dt.
D

Create a surface integral on the surface given by P with the same value and
interpret the meaning of the modified density function in the manner of the last
ezercise.

43. Divergence Theorem and Stokes’ Theorem

Every book must end and you have arrived at the end of this one. In this
section you will see definitions for a few of the cast of characters you will encounter
should you decide to go further in mathematics. They are easy definitions, but we
had no reason to look at them before now. We will do some calculations of the kind
you already have seen in this and earlier chapters. We will observe that several of
these calculations give the same answer, even though they seem at the outset to
refer to very different integrals.

Elsewhere in this chapter we proved as many of the key results as possible
given the knowledge base assumed of the readership. Here there will be very few
proofs and quite a few vague appeals to intuition and philosophical ruminations.
Nevertheless, I hope the patterns we look at strike some as intriguing and prompt
further investigation.

In thinking about this section consider the following fact from basic Calculus.

If f is a continuous function defined on an interval [a,b] and differentiable on
(a,b) then

b n
f0) - f@) = [ fa) dex Y i) A
a i=1
(The approximation is good when the mesh of the partition is small enough.)

When the integral was defined there was an orientation involved. First, f’
measures how fast f is changing when you move in a particular direction on the
interval. Second, the number a is the boundary on the “downward end” of the
interval, while b is the boundary on the “upward end” of the interval. That is why
f(b) is added while f(a) is subtracted in the combination on the left.

Note that the interval itself is one dimensional, while the boundary is just a
couple of points. You might call the boundary zero dimensional.
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What we have, essentially, is two different types of oriented sums. One is an
oriented combination of the values of f over the zero dimensional boundary of the
interval. The other is a sum, over the one dimensional interval itself, of the oriented
rate of change of the function.

The accumulated oriented changes over the interval combine to give an oriented
combination of values on the boundary.

We emphasize that the orientation is critical here. f(a) — f(b) would be the
wrong choices for combining the values of f on the boundary. This combination

must be matched with the orientation along the interval with respect to which f’
is defined.

The mantra for this section, the thing to remember, is this: the accumula-
tion of an oriented rate of change over a region can equal the (proper) oriented
accumulation of the function itself on the boundary of the region.

There is another “one-zero” dimensional example of this which we saw in the
context of potentials.

Suppose ¢ is a differentiable function in the plane or in space and P is a
piecewise good parameterization of a curve € on the interval [a,b] in the domain
of g. Let A = P(a) and B = P(b). Let J denote the unit tangent to the curve
corresponding to the orientation of P. Let F' denote the vector field Vg.

The curve € is one dimensional, oriented by P in a specific direction. The
boundary of € consists of the points A and B. This boundary is oriented, with A
at “the start” and B at “the end.”

F' can be used to find the rate of change of g in various directions.
We saw that
o(B) = g(4) = [ Fls)-70s) s

Once again, the oriented combination of the values of g on the boundary of € is an
integral involving the oriented rate of change of g over €.

Our next step will be to increase the dimension a bit. But first we need to
define a new player.

If F = (M,N) or (M,N,P) is a differentiable vector field in the plane or in
space we define V - F to be

VF:DlM—FDQN or VF:D1M+D2N+D3P

whichever is appropriate. This is called the divergence of F and the notation
div F is a rather common alternative notation for the divergence of F'.

This looks a lot like one of the notations for the gradient, but the gradient
takes a function and gives you a vector field, while the divergence takes a vector
field and generates a function. The “” distinguishes the two notationally.

At this point it is traditional to introduce the mnemonically useful “Del Op-
erator” written, depending on dimension, V = (D1, D3) or (D1, Dy, D3). We will
not dwell on the potential meaning of V standing alone, but instead think of it as
a notational tool, helping us to remember that (in three dimensions)

div F =V - F = (Dy, Dy, D3) - (M, N, P) = DyM + DyN + DsP
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and

grad g =Vg = (D1,Ds,D3) g = (D19, Da2g, Dsg).

Now let’s consider the two dimensional case for a minute and try to understand
the meaning of V- F' for continuously differentiable F', and what it means for it to
be positive, negative, large or small.

We will think of F' as a velocity field in the plane, representing the direction
and rate of flow of a layer of some substance swirling around on the plane. It is
quite possible for locations in the plane to be “sources” or “sinks” of whatever this
material is: more of this material can leave a small region than enters that region,
or conversely.

There are a couple of easy physical models for this. In one model, there is a
chemical reaction going on which takes place at different rates and even goes in
different directions due to variations in temperature or the presence of catalysts,
reactants and so on distributed anisotropically around on the surface. F' can be
tracking one of the chemical participants.

In a second model you could imagine that we are dealing with a single substance
but that the plane is perforated by millions of microscopic pinholes. Each one is

attached on the other side of the plane to a microscopic pump or suction device,
pulling material off the surface or pumping more on at various places.

Let’s parameterize a very tiny rectangle in the plane with corners at
(X, 7), (X+AX,Y), (X, Y+AY) and (X + AX, Y + AY)
as shown in the diagram.

When F is continuously differentiable the flux of F' = (M, N) past this piecewise
good loop in the outward direction is

1
/ (M(X +AX, Y+t AY) = M(X, Y +¢ AY) ) AY dt
0
1
+/ (N(X +tAX, Y +AY) — N(X +¢ AX, Y) ) AX dt
0

= AXAY dt

/1 M(X+AX, Y +tAY) - M(X, Y +tAY)

1 —
+AXAY/ NX+tAX, Y+AY) - NX+tAX, Y)
0

AY
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M{x+t x,y+Ay) Ax
[
XY TAY? CXHAX, Y HAY?

L —h

_i i%

- M(x,yHtAy) Ay Mix+tAx, y+tAy) AY
<X,y> \l/ = CXHAXy?
~J

- N{x+tAx,y) Ax

For each ¢ the integrand
MX+AX, Y+tAY)—-M(X, Y +tAY)
AX
for some X between X and X + AX by the Mean Value Theorem.
Similarly, for each t there is Y between Y and Y 4+ AY with

N(X 4+t AX, Y +AY) = N(X +t AX, Y)
AY

=D M(X,Y +t AY)

DyN(Y) =

We have, therefore, shown that
Flux Out of Rectangle

Min D1M + Min DyN <
i P A Ba Vs Area of Rectangle

< Max DiM + Max DaN

where “Min” and “Max” denote the minimum and maximum vales of the indicated
derivatives on the rectangle.

The continuity of these derivatives guarantees that the ratio converges to the
divergence D1 M (X,Y) + DaN(X,Y) as the edge sizes both go to zero.

So the value of the divergence at a point in the plane can be interpreted as
the “outward flux production rate per unit area” over very small areas near the
point. Where it is positive, material is being produced or introduced. Where it is
negative, material is being removed or destroyed.

Now suppose we find the double integral of D1 M(X,Y) + DoN(X,Y) over a
bounded plane region 8 bounded by a piecewise good loop €. We are calculating
the total outward flux production over the region. If our thinking is correct, this

must be the flux leaving the region. So if N is the outward normal vector for € we
should have

/SV~FdXdY:/GF(s)~N(s) ds.

Our speculation is that integral of an oriented rate of change of a function
over a two dimensional set should equal an oriented integral of the function itself
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over the boundary—in this case an oriented one dimensional curve. This is another
instance of the “theme” idea of this section. The statement specifying the condition
under which the argument for equality suggested above can be solidified constitutes
the Normal Form of Green’s Theorem or the Divergence Theorem in the
Plane.

43.1. Exercise. Let 8 denote the standard unit square in first quadrant of the
XY plane with boundary € and outward normal N. Let F(X,Y) = (X? XY).
Show that

/SV-FdXdY:/eF(s)-fN(s) ds.

43.2. FExercise. Suppose we have a continuously differentiable vector field F
over a solid region in space W completely surrounded by (that is, bounded by)
an oriented composite surface 8 with outward normal N. Using small rectangular
solids, mimic the argument in 2D found above to conclude that V - F' represents the
rate of outward flux production per unit volume. Conclude that

/ V.FdX dY dZ:/F(S)-:N(S) ds.
w 8

The staement which identifies a collection of conditions under which this formula
is valid is called the Divergence Theorem.

43.3. Exercise. Let W denote the solid standard unit cube in the all-positive
octant of space. Let F be the vector field F = (Z,Y?,XY). Calculate the integral
of V- F over this cube. Compare your result to your calculation from Exercise 40.35.

In the next example we need to define the curl of a differentiable vector field
F = (M, N, P) defined on an open set in space. This is a new vector field defined
to be
V x F =(DyP — D3N, DsM — D1P, DyN — DsM).
The reason for the “V x” notation is to extend the mnemonic device we saw before:
if you treat the symbol V as if it were a vector (Dy, D2, D3) then the curl of F
“is” the cross product indicated by V x F.

You will sometimes see the notation curl F or rot F to denote the curl of F.

The curl involves sums of derivatives as did the divergence. We have an in-
terpretation of divergence as representing a local rate of production of outward
flux per unit volume. Prompted by the discussions above we should be inclined to
regard curl as representing the local rate of production of something too ... but
what?

Let’s consider a small rectangle in space with one edge along the segment
between (X,Y,Z) and (X + AX,Y,Z) and a second edge between (X,Y,Z) and
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(X,Y + AY, Z) and let’s presume that the increments AX and AY are greater
than 0. Suppose also that F' is continuously differentiable on this rectangle.

The boundary is a piecewise good curve which we orient by a parameterization
which traverses the segment from (X,Y,Z) to (X + AX,Y, Z), in that order, first.

Let’s calculate the circulation of F' around the boundary of this rectangle.

X +tAX)Y, Z), ifo0<t<1;
X+AX, Y+ (t—-1AY,Z), ifl1<t<2;
X+ @B-t)AX,) Y +AY,Z), if2<t<3;
X, Y + (4 —-1)AY, Z), if3<t<4.

Qt) =

o~ o~~~

Form the integral f14 F(Q(t)) - Q'(t) dt as the sum of four integrals and change
variables yielding

1
AY/ N(X + AX,Y +tAY, Z) — N(X,Y +tAY, Z) dt
0

1
—AX/ M(X +tAX,Y + AY, Z) — M(X + tAX,Y, Z) dt.
0

By the Mean Value Theorem, for each ¢ there is a value X between X and X +AX
and Y between Y and Y + AY with
N(X +AX)Y +tAY,Z) — N(X,Y + tAY, Z)

DiN(X,Y +tAY, Z) = IS

and
M(X +tAX,)Y +AY, Z) - M(X +tAX,Y, Z)
AY

DoM(X +tAX,Y,7) =

By continuity of these derivatives as before we conclude that when both AX
and AY are small

LFQ) - Q'(t) dt
AXAY
This is the Z component of the curl of F. We conclude that, at least when measured
with rectangles with sides parallel to the X and Y axes and boundary oriented prop-
erly, the Z component of the curl of F' can be interpreted as the rate of circulation
production per unit area.

~ D1N(X,Y,Z) — DyM(X,Y, Z).

A similar interpretation holds for rectangles perpendicular to the other two
axes. In fact, far more generally, if NV is any unit vector VF - N can be interpreted
as the rate of circulation production per unit area over any surface (with a piecewise
good boundary curve) perpendicular to N, which leads to the following speculation.

Suppose 8 is an oriented surface with a unit normal N and a piecewise good
boundary curve € with unit tangent J. Under what conditions, if any, will the
following formula prove to be correct?

/ VE(S) - N(S) dS = / F(s) - T(s) ds.
8 c
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This equation does hold in many cases, and the precise statement of the result is
called Stokes’ Theorem. Once again, it says that an integral over a surface of
an oriented change rate can be found by calculating an oriented integral over the
boundary curve.

43.4. Ezercise. Suppose F' = (XY, Y, XZ). Calculate the surface integral
of V.x F' - N where N is the upward unit normal to the upper hemisphere of the
standard unit sphere in space. Compare that to the circulation of F around the
boundary circle in the XY plane.

The curl is not defined for vector fields in two dimensions. However by changing
the point of view we can do something with them. If F(X,Y) = (M (X,Y), N(X,Y))
is a vector field in the plane, define the vector field F in space by F(X,Y,Z) =
(M(X,Y), N(X,Y), 0). The field F looks just like F' on the XY plane in space.
And V x F = (0, 0, DyN — Dy M).

Let’s suppose that 8 is a region with piecewise good boundary € with unit
tangent J in the plane and F' is a continuously differentiable vector field in the
plane.

By applying Stokes’” Theorem to the plane region thought of as the XY plane
in 3D we get, in many circumstances,

/VF(S)-EdS:/DlN(S)—DgM(S) dS:/F(s)-iT(s) ds.
8 8 (&

Conditions for equality of these last two integrals comprise the Tangential
Form of Green’s Theorem or Stokes’ Theorem Theorem in the Plane.

43.5. Exercise. Calculate the integral of F - k over the unit circle for the
field given by F(X,Y) = (=Y, X). Compare this result to the one you obtained in
Ezercise 24.2.

In the early chapters we made reference to foundational material upon which
various results, such as the intermediate value theorem for continuous functions,
depend. In the earlier sections of this chapter, the equality of double and triple
integrals with their brethren in parametric form was a notable hole, waiting to be
filled, in the structure we have built. Now, in this concluding section we have named
and discussed numerous results and proved virtually nothing, though the immedi-
ate utility of the results as stated here is enormous, in applications throughout
Engineering and Physics.

In your further studies, as you come to fill in the holes we have left, you will
touch bases with most branches of modern mathematics. Sometimes you will see
several versions of these results, with different proofs, each illuminating different
aspects of the structure which underlies it all.

As your understanding grows, that which is illuminated will depend largely on
you—the facts you have seen before, your esthetic sense and the connections you
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are able to make. Don’t forget to step back, from time to time, to appreciate the
beauty of your creation as you build.
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Endnotes

Note 1, From Page 44:

The Maple 6 command (this and all subsequent Maple commands are to be
typed on a command line after the command prompt) that will generate a (rotat-
able) graphic of this cone is:

with(plots) : implicitplot3d( x ~2+y~ 2=2"2,
x=-2.2, y=-2.2 z=-2.2, grid = [30,30,30], axes = NORM AL,
shading = Z, style = PATCHCONTOUR);

Note 2, From Page 45:
The Maple commands for the cylinder:

with(plots) : implicitplot3d( x ~2+y~ 2 =1,
x=-2.2, y=-2.2 z=-2.2, grid = [30,30,30], axes = NORM AL,
shading = Z, style = PATCHCONTOU R);

Note 3, From Page 45:
Maple will draw you a picture of a helicoid with:

with(plots) : implicitplot3d( y = z * x,
x=-2.2, y=-2.2 z=-2.2, grid = [30,30,30], axes = NORM AL,
shading = Z, style = PATCHCONTOUR);

Note 4, From Page 45:
An “off-center bump” surface:

with(plots) : implicitplot3d( (x —1) "2+ 2% (y+2) " 2=—2z+1,
x=—-4.4, y=—-4.4, z=-2.2, grid = [30,30,30], axes = NORMAL,
shading = Z, style = PATCHCONTOUR);

Note 5, From Page 46:
The Maple command which will let you visualize the ellipsoid is:

with(plots) : implicitplot3d( x "2+ 2*xy  2+3x2"2=1,
x=-1.1,y=-1.1, z=—1..1, grid = [30,30,30], axes = NORMAL,
shading = Z, style = PATCHCONTOUR);
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Note 6, From Page 46:
The Maple command which will let you work with the torus is:
with(plots) : implicitplot3d( (2~ 2+y~24+2"2 — 4.25)
=16%(.25 — 272), 2 =-3.3, y=-3..3, z=—-1..1,
grid = [30,30,30], axes = NORMAL,
shading = Z, style = PATCHCONTOUR);

Note 7, From Page 47:

Maple will generate a monkey saddle with:

with(plots) : implicitplot3d( x "3 —xxy 2=z,
x=-1.1,y=-1.1, z=-1..1, grid = [30,30,30], axes = NORMAL,
shading = Z, style = PATCHCONTOUR);

Note 8, From Page 47:
Maple will generate “fat axes” with:

with(plots) : implicitplot3d( x " 2%y~ 24+ 7 2%x272 + 27 2%y~ 2 =1,
x=-3.3, y=-3.3, z=-3..3, grid = [30,30,30], axes = NORMAL,
shading = Z, style = PATCHCONTOUR);

Note 9, From Page 55:

Here are the Maple commands for the curve Q(t) = (¢,t*,t%):
with(plots) : spacecurve( [t,t~ 2,t" 3],
t=—-1.2,axes = NORMAL,thickness = 2, color = GREEN);

Note 10, From Page 55:
The following will get you the curve found above together with a helix H(t) =
(cos(t), sin(t),t)
with(plots) : spacecurve( { [t,t~2,t~ 3 ,t = —1..2, color = GREEN],
[cos(t), sin(t),t,t = —3..8,color = RED | },ares = NORM AL, thickness = 2);

Note 11, From Page 60:

Linear plus Circular plus Circular: The numbers to modify are the first five in
parentheses.
with(plots) :
(S, RadiusOne, FreqOne, RadiusTwo, FreqTwo ):=(2*Pi, 1, —1, 0, 0 );
Q = evalm([S = t,0]
+ [RadiusOne * cos(2 x Pi* FreqOne x t), RadiusOne * sin(2 x Pi* FreqOne xt)] +
[RadiusTwo * cos(2 x Pix FreqTwo * t), RadiusTwo * sin(2 x Pix FreqTwo *t)]);
plot((Q[1], Q[2),t = 0..2]);

Note 12, From Page 62:
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Here are the Maple instructions that will draw a graph of 101 data points which
will recreate the picture in the text. The first part is to simply name 101 points.
The interesting part is the next section where we define the function linint which
linearly interpolates over the consecutive time intervals between positions. This
could be replaced by a different interpolation scheme, such as one which smoothes
out corners. The last part is just the plot instruction. There are several ways to
modify this to plot your own points. If you want to change the number of points
you must modify NumO fPoints. In the plot commands you must modify the
range of ¢ to whatever interval your times include. If you want to plot 3D points
the modifications are a little more extensive. You must include a third coordinate
in linint and the initial points will have four coordinates. You then must use the
spacecurve command to plot your 3D linint(t).

I would also like to point out that no attempt was made to optimize the cal-
culation, as would surely be necessary if there were many points involved. In the
instructions below I ask Maple to graph the sum of 101 different functions. The
“characteristic function” denoted in the Maple instruction char fcn wipes out 100
of them leaving only 1 of them nonzero on each time interval between consecutive
data points. It should be possible to improve the speed of the calculation by at
least a factor of 50 (that is N/2 where N is the number of data points.)

restart : with(plots) : NumO f Points := 101 :
P:=[]0.00,53,0.],[001, 535, 1.11],
0.02, 5.14, 2.13], [0.03, 4.73, 2.97], [0.04 , 4.20, 3.60] ,
0.05, 3.64, 4.04], [0.06, 3.10, 4.34], [0.07, 255, 4.55] ,
0.08, 2.00, 4.70], [0.09, 1.39, 4.78], [0.10, 0.77 , 4.76 ] ,
0.11, 0.04, 4.56], [0.12, —.70, 4141, [0.13, —1.35, 3.47] ,
0.14, —1.82, 2.58], [0.15, —2.06, 1.54], [0.16, —2.00, 0.454 ] ,
0.17, —1.68, —.600], [0.18, —1.15, —1.53], [0.19, —.48, —2.31],
0.20, 0.26, —2.94], [0.21, 1.02, —3.46], [0.22, 1.79, —3.91]
0.23, 2.65, —4.35], [0.24, 3.61, —4.73
026, 591, =5.09], [0.27, 7.17, —4.93
I
I

]

|

, (025, 47, —5.],
[0.28, 839, —4.49],
[

3

0.29, 9.46 , —3.82], [0.30, 10.3, —2.94], [0.31, 11.0, —1.95] ,

) 3

,[0.34, 11.5, 0.806 ],
0.37, 11.2, 2.89

0.32, 11.3, —.954
0.35, 11.5, 1.54] ,
0.38, 10.9, 3.56

[
[
[
[
[
[
[
[
{
[ 0.33, 11.5, —.028
[

[
[0.41, 9.09, 5.14
[

[

[

[

[

[

[

[

[

[

[

[

[

0.36, 11.3, 2.22] ,
0.39, 10.4, 4.20

]
]
]
]
) ]
[ [ ],
[ ],[040, 983, 4.76 ] ,
,[042, 819, 5.28], [0.43, 7.27, 5.13 ]
, [0.45, 5.76, 4.04], [0.46 , 5.32, 3.24] ,
[ ],
5 0.
]
]
]
]
]

)

3

]
]
0.44 , 6.42, 4.70 ]
0.47, 5.09, 2.39], [0.48, 5.04, 1.55], [0.49, 5.13, 0.759 ] ,
050, 5.3,0.], [0.51, 553, —759], [0.52, 5.84, —1.55] ,
053, 6.29, —2.39] ,
0.56 , 8.82, —4.70], [0.57, 10.1, —5.13

]

]

]

[0.54, 6.92, —3.24
[
0.59 , 12.7, —5.14], [0.60 , 13.8, —4.76
[
[

0.55, 7.76 , —4.04

) )

[ ]
, (058, 114, —5.28] ,
,[0.61, 14.8, —4.20] ,
0.62, 15.7, —3.56], [0.63, 16.4, —2.89], [0.64, 16.9, —2.22 ]
0.65, 17.5, —1.54], [0.66, 17.9, —.806], [ 0.67, 18.3, 0.028 ] ,
0.68, 18.5, 0.954], [0.69, 18.6, 1.95], [0.70, 18.3, 2.94] ,
0.71, 17.9, 3.82], [0.72, 17.2, 4.49], [0.73, 16.4, 4.93 ],
0.74, 155, 5.09], [0.75, 14.7, 5.], [0.76 , 14.0, 4.73] ,
0.77, 134, 4.35], [0.78 , 13.0, 3.91], [0.79, 12.6, 3.46 ] ,
0.80, 12.3, 2.94], [0.81, 11.9, 2.31], [0.82, 11.6, 1.53 ],

) 3 3

3

[
Y [
[
[

3
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[0.83, 11.5, 0.600], [0.84, 11.6, —.454], [0.85, 11.9, —1.54],
[0.86, 12.6, —2.58], [0.87, 13.4, —3.47], [0.88, 14.5, —4.14 ]
[0.89, 15.6, —4.56], [0.90, 16.8, —4.76], [0.91 , 17.8, —4.78] ,
[0.92, 188, —4.70], [0.93, 19.8, —4.55], [0.94, 20.7 , —4.34] ,
[ ] I ]
[ ]

3 3

0.95, 21.6, —4.04], [0.96, 22.6 , —3.60], [0.97 , 23.5, —2.97
0.98, 24.3, —2.13], [0.99, 25.0, —1.11 1.00, 253, 0.]]:

for i from 1 to NumO fPoints do Q[i] := [PJi, 2], P[i, 3]] end do :
for i from 1 to NumO fPoints do T[i] := PJi, 1] end do :
for i from 1 to NumO fPoints —1 do deltaT[i] := Pli+1,1] — P[i, 1] end do :

linint := t— > evalm(Q[1] * charfen[T[1]](t) + add( (Q[k] + (t — T[k]) *
(Qlk+ 1] — Qlk]) /deltaT [k]) * ( char fen|T[k].. T[k+ 1])(t) — char fen[T[k]](t) ), k =
1..NumO f Points — 1));

plot( [ linint(t) [1], linint(t)[2],t=0..1]);

) )

3

Note 13, From Page 62:
Type the following on a new command line on the same Maple worksheet as
the above. We subtract off the apparent linear motion.

plot( [linint(t) [1] — 20t , linint(¢) [2],t=0..1]);

Note 14, From Page 62:

Type the following on a new command line on the same Maple worksheet as the
above. We now subtract off the apparent linear motion and a big circular motion
too.

plot( [linint(t) [1] — 20xt — 5xcos(6* Pixt), linint(t)[2] — 5x
sin(6x Pixt) ,t=0.1]);

Note 15, From Page 63:
Type the following on a new command line on the same Maple worksheet as the
above. We now subtract off the apparent linear motion and both circular motions.

plot( [ linint(t) [1] — 20xt — 5% cos(6* Pixt) — 0.3%cos(20* Pi *
t), linint(t) [2] — 5xsin(6x Pixt) — 0.3xsin(20« Pixt) ,t=0.1]);

Note 16, From Page 66:
The text presumes exposure to first year Calculus in this chapter.

Specifically, to read Section 16 completely you should know the meaning of the
following words from Differential Calculus in one variable: limits, continuity, differ-
entiability, one sided limits and one-sided continuity. You should know that sums,
products and (where defined) compositions of continuous functions are continuous.
You should know that sums, products and (where defined) compositions of differen-
tiable functions are differentiable and how to calculate derivatives of compositions
by the chain rule. You should understand the Mean Value Theorem. You should
know how to calculate derivatives for polynomials, exponentials, logs, trig functions
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and combinations of these and have worked through a large number of the usual
Max-Min and applied problems.

To read Section 18 you should know about definite and indefinite integrals
of continuous functions (including those mentioned above) and improper integrals
defined as limits of definite integrals. You should understand how basic initial
value problems are related to integrals. You should understand the techniques of
integration by substitution and by parts. You should have plenty of experience
going from Riemann sums to the associated integrals in applied problems.

Starting at Section 20 you will need some experience with sequences and series
to follow the exercises and endnotes, although the text itself can be read without
it for a ways farther. An outline of the basic facts concerning sequences and facts
about derivatives and integrals too are presented here and there in the endnotes,
but the discussion is likely too brief if you have never seen it before. Sequences are
usually studied late in the first year of Calculus.

Note 17, From Page 66:

Depending on the choices of your previous math instructors you might have
had some serious work with (and serviceable definition for) limits and continuity,
or not. Proving statements in Calculus requires an understanding of these things,
and that understanding usually takes several exposures to mature. If you have
struggled with limits before that is all to the good.

In any case, here is the definition of limit for a vector function @ defined (at
least) everywhere in some interval centered at ¢ except, possibly, for ¢ itself. We
assume L is a vector of the same type as Q(t).

%im Q(t) = L exactly when for each ¢ > 0 there exists some § > 0 so that
|Q(t) — L| < & whenever 0 < |c—t| < 4.

We say that the limit is L when the above condition can be shown to hold:
that @ converges and, specifically, Q converges to L. What that means is that
whenever you are required to put Q(t) in a ball or circle of radius € > 0 around L,
you can accomplish this task by finding a § > 0 and picking ¢ to be any number
within a distance § of ¢ (c itself excluded.) And you must be able to accomplish
this for ANY & > 0. The definition doesn’t explain how this might be done, nor
does it tell you how to find L. It is merely an outline of what must be accomplished
to show that a specific L is, in fact, the limit.

Suppose that the domain of @ is an interval (a,b) and ¢ is in this interval.
Recall that @ is continuous at c¢ if the limit exists at ¢ and is Q(c¢), and @ is
called continuous on a subinterval of (a,b) if it is continuous at each point in the
subinterval.

There is an important fact about functions which are continuous on an interval
which contains both endpoints. They have a property called uniform continuity:

Suppose @ is defined and continuous on the interval [r, s]. @ is called uniformly
continuous on [r, s] if for each € > 0 there exists some 6 > 0 so that |Q(¢)—Q(u)| < e
whenever 0 < |t — u| < ¢ and both ¢ and u are in [r, s].
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In the definition of continuity on [r, s], we merely require that such a 0 exist
for each € at each point in [r, s], but the ¢ for a given ¢ could vary from place to
place. The statement above says that 6 can be picked so that it “works” for a given
e everywhere on [r,s]. This is a pretty deep property of continuity and the real
numbers.

That result is usually proved in the same class where they show the following
two facts which are used in one form or another in many places in Calculus classes,
but which are surprisingly hard to show. To prove them, and the fact about uniform
continuity, you must go back to basics and do a better job of defining the real
numbers, and that can take you pretty far afield!

The Intermediate Value Theorem
If a real function f is continuous on [r, s] then for any real number Y between f(r)
and f(s) there is some ¢ in [r, s] for which f(¢) = Y. The theorem says that no
values are “skipped” when you go from one height to another along the graph of a
continuous function.

The Extreme Value Theorem
If a real function f is continuous on [r, s] then there are numbers ¢ and d in the
interval for which f(c¢) < f(x) < f(d) for every x in the interval. The theorem states
that a continuous function on a closed interval actually attains both a maximum
and a minimum value at numbers in that interval.

A real valued sequence is a function whose domain is the positive integers and
whose range is a set of real numbers. If A is a sequence the value of A at domain
member n is by custom denoted A,,.

A is said to be monotone if either A,, > A, for every pair of positive integers
n and m with n > m, or if A,, < A,, for every pair of positive integers n and m
with n > m. The first case is called monotone increasing, while the second is called
monotone decreasing.

A sequence is called bounded if there are real numbers r and s with r < A4,, <'s
for every positive integer n.

A sequence is said to converge if there is a number L such that for each ¢ > 0
an integer N can be found for which |A, — L| < € for every integer n > N. The
number L is called the limit of the sequence and denoted lim,_ A, when it exists.

It is a fact that a real valued function f defined on an interval (a,b) is con-
tinuous at ¢ in (a,b) precisely when lim, .~ f(A,) exists and is f(c) for every
sequence A with range in (a,b) and which converges to ¢. This is an extremely
useful observation.

A sequence can have at most one limit.

The Monotone Convergence Theorem for real valued sequences states
that a bounded monotone sequence will converge.

The part that causes most of the work (in these more advanced classes where
they discuss this in detail) lies not in showing that the the sequence values of a
bounded monotone sequence are piling up on some place, but that there is actually
a real number at that place to which they can converge. There are “no holes” in
the real numbers.
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The following definitions are related to this “no holes” fact:

Suppose A is any set of real numbers. A number U is called an upper bound
for A if x < U for every = in A. A number L is called a lower bound for A
if L < x for every x in A. It is a fact that every set with a lower bound has
a greatest lower bound: a lower bound larger than all others. It is a fact that
every set with an upper bound has a least upper bound: an upper bound smaller
than all others.

A subsequence of a sequence A is another sequence B with the property that
for each positive integer k there is a positive integer ni with By = A,,, and where
ni+1 is always bigger than ny.

Every subsequence of a convergent sequence converges, and to the
same limit.

We will mention one final result about sequences.

If A is a sequence whose values lie in an interval [, 8] then there is a subse-
quence B of A which converges to a number in [, 5]. The assumption that this
interval contain its endpoints is important.

A vector valued sequence is a function whose domain is the positive integers
and whose range is a set of vectors. The notation for vector valued sequences is
similar to that for real valued sequence. A vector valued sequence is said to converge
if the sequences at all coordinates converge. The vector formed from the limits of
these coordinate sequences is called the limit of the vector valued sequence.

Note 18, From Page 68:
The Mean Value Theorem
Suppose f is a real valued function differentiable on (a,b) and continuous on |a, b].

Then there is a ¢ in (a,b) for which f/(c) = W.

We break the proof into cases. The first case is if f(a) = f(b). If f is constant
on any subinterval of (a, b) then we can pick ¢ to be any point in the subinterval and
then f’(¢) = 0. So we will further presume that f is not constant on any subinterval
of (a,b). Since f is continuous on [a, b] it attains both its maximum value M and
its minimum value m at points in [a,b]. Since f is not constant one of these must
be unequal to f(a) and occur in the interval (a,b). We will suppose ¢ is in (a,b)
and f(c) = M # f(a). The case where f(c) = m # f(a) is left as an exercise.

Let Y be a sequence of numbers in (f(a), M) with lim, ., Y;, = M.
Define A, ={z€(a,¢)| f(x)=Y,} and B,={ze(cb)]| f(x)=Y,}.

These sets are nonempty because f must pass through every value between f(a)
and M somewhere on both (a,c) and (¢, b).

Let a, be the least upper bound of A, and b, be the greatest lower bound
of B,. Continuity of f requires that f(a,) = f(b,) = Y,. Also ¢ is in (ay,by)
and all function values f(z) for any = in (an,b,) exceed Y,. (Prove this!) So
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lim,, oo @y, = ¢ and lim,, .o b,, = c.

0=f(bi) = flai) = f(bi) — f(e) + f(e) — flas)
_bi—c (f(bi)—f0)> c—a (f(c)—f(ai))'

bi—ai bi—C +bz—az C — a;

Both ratios involving f converge to f’(¢) and the coefficient ratios add to 1 for each
i so the sum converges to f’(c) which is, therefore, 0.

The second case, where f(b) # f(a), is an application of the first case to the
function g(x) = f(z) — Kz for the constant K = f(bl)):;]:(a)'

The Cauchy Mean Value Theorem
This is a variant of the Mean Value Theorem with numerous applications. An
example is found in an exercise below. We suppose that X and Y are two functions
defined on an interval containing the interval (a,b). We suppose both X and Y
are continuous on [a,b] and differentiable on (a,b). Finally, we suppose that X’ is
never 0 on (a,b). We conclude that there is some ¢ in (a, b) for which
Y'(e) _ Y(b) —Y(a)

X'(e) ~ X(0) = X(a)’
Note first that if X () — X (a) = 0 then the mean value theorem would imply that
X'(t) = 0 somewhere in (a,b) which, by assumption, cannot happen. So at least
the two fractions above exist.

We define a function K (t) = Y (t) = Y(a) — (X (t) = X (a)) Tip— -

K(b) = K(a) = 0 and K satisfies the conditions of the Mean Value Theorem
on the interval so there is a ¢ in (a,b) with K’(¢) = 0. The result follows.

Ezercise I * If X and Y are differentiable on some interval (a —e,a + €) around
a and X' is never 0 on this interval and if Y’ and X' are continuous at a then

Y(a+h)—Y(a) Y'(a)

hed X(a+h) — X(a)  X'(a)

Ezercise II. *If X andY are differentiable on some interval (a —e,a+ €) around
a and X' is never 0 on this interval except possibly at a then

_ !/
lim 7}/(0 V() = lim Y (t)
X ()~ X(a) s X
provided the second limit exists.

When Y (a) = X (a) = 0 this is one form of L’Hopital’s Rule.

The Intermediate Value Theorem for Derivatives
Suppose f is differentiable on an interval containing [a,b] and f'(a) # f’(b) and
Y is any number between f’(a) and f/(b). Then there is a ¢ in (a,b) for which

fllc)=Y.
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Note that we are not assuming that f’ is continuous: only that it exists on the
interval. This result implies that whatever discontinuities f’ might have, they are
not the kind that cause f’ to jump past any values.

We suppose Y is any number between f’(a) and f/(b). By the Mean Value
Theorem there is ¢ in (a,b) with f/(t) = W. If f'(¢t) happens to equal Y we
are done. At least one, if not both, of the following statements are true: (i) Y is
between f’(t) and f’(a) or (ii) Y is between f'(t) and f'(b).

Let us suppose that (ii) is true, and leave the other case as an exercise.

Define H(x) = W' H is continuous on [a,b) and lim,_;- H(z) = f'(b)
so there is a number s > ¢ in (a,b) so that Y is between H(a) = f'(t) and H(s).
Since H is continuous on (¢, s) there is a number u in that interval with H(u) =
W =Y. The Mean Value Theorem applies to this last fraction yielding c
between ¢t and v with f'(¢c) =Y.

Note 19, From Page 70:

Suppose a real valued function f is differentiable at ¢ and f’(¢) = K > 0. Since
limp 0 w = K there is a positive ¢ for which % < M for any
h with —e < h < e. When 0 < h < ¢ this gives f(c+ h) > f(c) + h&. When
—& < h <0 this gives f(c+h) < f(c) + h& . In words, f(c) is strictly smaller than
nearby function values to the right, and strictly bigger than nearby function values
to the left.

A similar result holds if f is always negative on (a,b).

The Mean Value Theorem also implies this, but without the interesting h%
term, which lets us think about how fast f must grow near c.

Note 20, From Page 70:

Ezercise III. * If X is differentiable on some interval containing [a — €,a + €]
around a and X' is never 0 on this interval the Intermediate Value Theorem for
Derivatives implies that X' must have constant sign on this interval. So X is one-
to-one on this interval. Since it is continuous, it cannot skip any values between
A=X(a—¢) and B= X(a+¢). Eacht in[a—e,a+¢| is associated with a unique
X in [A, B): that is, X has an inverse function. This inverse, which we denote t,
is defined as follows: for w in [A, B] let t(u) be the unique member of [a — €, a + €]
for which X (t(u)) = u.

Suppose X' is positive so A < C = X(a) < B. The case of X' negative is left
as an exrercise.

If' Y is another function differentiable on an interval containing [a — e, a + €]
let W denote the function W(u) =Y (t(u)).

In Exercise I we saw that limj_.q ;EZIZ;:E/{((Z)) = ;EZ% and that can now be

rephrased as

W(C+AX)-W(C)  Y'(a)

/ _ .
WiHC) = JJim | AX X'(a)’
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You sometimes see this written as
ay - dy/dt
dX — dX / dt’

Note 21, From Page 71:
This follows from the usual discussion of integration and Riemann sums which
we apply to the coordinate functions and recall to mind here.

Suppose X is a continuous real valued function on the interval [r, s]. We let
r=ty <t <--- <ty = s and for each n between 1 and N we let ¢, denote
a selection of a point in the interval [t,_1,t,]. Let At, = t, — t,—1 for each n
between 1 and N. The selection of the ¢, values is called a partition of [r, s]. The
mesh of this partition is the largest of the N numbers At,,.

We will be interested in thinking about more than one partition and more than
one possible choice of the ¢, values so we will give them names. If we say T is a
partition we mean a subscripted selection of members t,, of [r, s] as above. If we
say C is subordinate to T' we mean that C' is a subscripted selection of members
¢ of [tn—1,ty] for each n as above. If U is another partition, we say that U is a
refinement of T if T is a subset of U. Any two partitions have what is referred
to as a common refinement: form the union of the two partitions and label the
members of the union in order.

The Riemann sum formed from partition 7" and subordinate C' is the number

N
Riemann(T,C) = Z X (cn)Aty,
n=1

X attains both a maximum and minimum value on each interval [t,_1,t,]
formed from a partition 7. We denote these numbers My ,, and mr,, respectively.
The Upper and Lower Riemann sums for a partition 7' are defined to be,
respectively:

N N
Upper(T) = Z MrpnAt, and Lower(T) = Z my,, Aty,.
n=1 n=1

These definitions were set up carefully to make the following facts easy to show.
(i) If T is any partition and C' is subordinate to T then
Lower(T) < Riemann(T,C) < Upper(T).

(ii) If U is a refinement of T' then
Lower(T) < Lower(U) < Upper(U) < Upper(T).

We now use the property of uniform continuity of the function X as discussed
in the note above. In our context it states that for each ¢ > 0 we can find a § > 0
so that if the mesh of a partition 7" is less than § then Mz, —mr, < ;= for every
n. The variation between the maximum and the minimum values of X on every
[th—1,tn] cannot exceed —=.
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(iii) Show that if the mesh of T is less than ¢ as in the paragraph above and C
is subordinate to T" then

Upper(T)—Lower(T) < e
and so  Upper(T) — Riemann(T,C) <
and  Riemann(T,C) — Lower(T) < e.

With these facts in mind we now turn to a specific collection of partitions
obtained by repeatedly cutting [r, s] in half.

For each integer n > 1 we let D™ be the partition containing the numbers
Qn%(s—r) fork =0...2""'. So D' is the crudest possible partition, containing only
the endpoints of the interval [r, s] while D? cuts this interval into two equal pieces
and in general D™t cuts each interval from D™ into two equally sized subintervals.
Each D"*1 is a refinement of D". The mesh of D" is 5 (s — 7).

(iv) The sequence Upper(D™) is monotone and bounded. So is the sequence
Lower(D™). Therefore they both converge.

(v) If e > 0 we can find & as above so that whenever n satisfies 5:ir (s —7) < §
then Upper(D™) — Lower(D™) < e. Since € can be chosen to be arbitrarily small,
this means that the sequences Upper(D™) and Lower(D™) converge to the same
number, which we denote [” X (t)dt.

We now deal with the potential problem with other partitions. We want
Riemann(T,C) to be near to the number [” X (t)dt no matter what the partition
is and no matter the choice of C provided only that the mesh of 7" is small.

Specifically, for any € > 0 we want to be able to guarantee that
Riemann(T, C) —/ X(t)dt‘ <e

requiring only that the mesh of T" be small enough.

Select 6 to be a positive number so small that whenever u and v are in [r, s]
and |u —v| < 0 then |X(u) — X(v)| < I Select n to be an integer with
Fi=1(s — ) < 6. Suppose T is any partition with mesh not exceeding § and C' is
subordinate to T'. Let U be the common refinement of 7" and D".

(vi) Tt follows that:
|Riemann(T,C) — Upper(T)| < i

and  |Upper(T) — Upper(U)| <

RS

and  |Upper(U) — Upper(D™)| <

oY = m

and  |Upper(D™) — / X (t)dt] <
(vii) The result we wanted now follows by application of the triangle inequality:

Riemann(T,C) — /X(t)dt
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cannot exceed the sum of the four left hand sides above.

Note 22, From Page 81:
Here is Bezunit.

restart : with(plots) :
A:=1[2,7];B :=[3,6];VA:=16,-3];VB :=[-1,6];

bezeurveunit : = t— > (1—t) " 3% A+
3x(t)x(1—1t) " 2% (A+VA/3) +3xt"2x(1—t)x(B—-—VB/3)+t" 3xB;

plot( [ bezcurveunit(t ) [ 1], bezcurveunit(t)[2], t=0.1]);

Note 23, From Page 82:
Here is Bezspeed
A:=1[2,7];B:=[3,6];VA:=1]6,-3];VB:=1]-1,6];TA:
=6;7TB :=9;
bezcurvespeedchange : =t — > ((TB—t) 3% A+
3x(t—TA)x(TB—t)2%«( A+ (TB-TA)*VA/3)+3x(t—TA) 2x
(TB—t)+(B—(TB—-TA)*VB/3 )+
(t—TA)3+B)/(TB—TA)3;

plot( [ bezcurvespeedchange(t) [1] , bezcurvespeedchange(t)[ 2], t =6..9]) ;

Note 24, From Page 83:
Here is Bezpatch

A:=1[2,7];B:=[3,6];C :=1[52];VA:=1[6,-3]; VB :
=[-1,6];VC :=[8 —-1];TA :=6;TB :=9;TC := 11;

bezpatch : = t — >
(TB—1)"3%A + 3% (t—TA)x(TB—t)2( A+ (TB—-TA)*VA/3) +
¥ (t—TA) 2x(TB—-t)x(B—-(TB-TA)*VB/3) +
t—TA) 3% B )*charfen| TA.TB(t)/(TB—TA) 3+
(TC—t)"3%+B + 3% (t—TB)*(TC—t)"2%(B+(TC—TB)*VB/3 )+
x(t—TB)2x(TC—-t)x(C—(TC—-TB)xVC/3)+(t—TB ) 3xC )x*
charfen| TB..TC |(t) — charfen[ TB ] (t) )/( TC —TB )3 ;

plot( [ bezpatch(t) [ 1], bezpatch(t)] 2] ,t =6..11] );

A~~~ LY~

Note 25, From Page 83:

Type this on the same Maple worksheet as the function which linearly interpo-
lates the 101 data points above. That way this function will have access to the data
and vectors already defined. This function uses Bezpatch to interpolate smoothly
between the data points. The process is called Bezier interpolation.

for i from 2 to NumO fPoints — 1
doV[i]|:=(Q[i+1] —Q[i—1])/(T[i+1] —T[i—1])enddo:
V1] = (Q[2] —Q[1])/deltaT] 1] :
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V[ NumOfPoints ]| :=
(Q[ NumO fPoints | — Q[ NumO fPoints — 1] )/deltaT| NumO f Points — 1] :

bezint =t - >
( 1) seQll]
3 x ( [1])*(T[] t) 2% ( Q1] + deltaT[1]/3x V[1])+
3 (t - [1]) 2 (T[2] = t) * (Q[2] — deltaT[1] /3% V[2])+
(t—T[1])"3*Q[2] ) *charfen[ T[1]..T[2] |(t)/deltaT[1] 3+
add( ((Tk+1] — t)"3xQ[k] +
3x(t—TIk)* (Tk+1] — t) 2% (Qlk] + deltaT|[k]/3* V[k]) +
3 (t — []) 2% (T[k+1] — t)*(Q[k+1] — deltaT[k]/3*V[k+1]) +
(t=TE)3+Qk+1] )=

( char fen| T[k]..T[k + 1] J(t) — char fen| T[k] |(t) ) /deltaT[k]™(3)
, k=2..NumO fPoints — 2 ) +

( (T[NumO fPoints] — t )" 3% Q[NumO fPoints — 1] +

3% (t — T[NumOfPoints — 1]) * (T[NumO f Points] — t )" 2x

( Q[NumO fPoints—1] + deltaT[NumOfPoints—1]/3*V[NumOfP0ints—1] )+
3% (t — T[NumOfPoints — 1])"2 % (T[NumO f Points| — t )x

(QINumO [ Points] — deltaT[NumO f Points — 1]/3 x V[NumO f Points] ) +
(t = T[NumO f Points — 1])~3 * Q[NumO f Points] )*

( char fen[ T[ NumO f Points — 1 ]..T[ NumO f Points ] ](t)—

char fen[ T[ NumO f Points — 1 1](t) )/

deltaT[ NumO f Points —1]73

plot([bezint(t)[1] —20 %t — 5% cos(6 * Pixt) — 0.3 x cos(20 x Pixt) ,
bezint(t)[2] — 5 * sin(6 * Pixt) — 0.3 % sin(20 % Pixt) , t = 0.01..0.99 ] );

Note 26, From Page 85:

Suppose @ is a continuous parameterization of a curve as in the text and
T is the partition tg,...,tx of the interval [c,d] in the domain of @ with ¢ =
to < t1 < --- <ty = d. We will always enumerate a partition such as 7' in
the standard way, with bigger subscripts corresponding to bigger times. Define

N

Arer =372, 1Q(t:) — Q(ti—1)].

If we pick one of the terms |Q(¢;) — Q(t;—1)| in this sum and any s with ¢; >
s > t;—1 the triangle inequality tells us that [Q(¢;) — Q(ti—1)| < |Q(t;) — Q(s)| +
|Q(s) — Q(ti-—1)l-

From this we conclude that if U is any refinement of T then Arcy > Arcr:
that is, if you take a polygonal path that touches the curve at segment endpoints

and chop one or more partition subintervals in pieces the sum of the lengths along
the new path cannot be smaller than before.

We recall that if S and T" are any two partitions they possess a common refine-
ment SUT.

So either the numbers we obtain as Arcp can be chosen (for various T') to be
large without bound or not. In the first case we might say the curve has infinite
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length. In the second case we can find a sequence of partitions 7, for which the
numbers Arcy, constitute a monotone and bounded sequence, which therefore con-
verges to a number L, and we can choose this sequence so that L > Arcy for any
partition U. We would then think of L as the length of the curve: the arclength.
We can require that each T,41 be a refinement of T, and that the mesh of the
partitions converges to 0.

In case @ is continuously differentiable on [c, d] the first case is impossible, and
this number L is the same as the arclength defined as the integral of the speed as
defined later in the section. To see this we note that for any relevant r and s,

Q(r) = Qs) < [X(r) = X(s)[ + [Y(r) =Y (s)[ + ...

Since | X'| is continuous on closed [c, d] it attains a maximum value, and the same is
true for |Y”| and, if present, |Z’|. Let the number K stand for the largest magnitude
of these derivatives on [¢, d]. By the Mean Value Theorem, | X (r) — X (s)| < K|r —s|
and a similar inequality holds for Y and, if present, Z’. So |Q(r)—Q(s)| < 3K|r—s|
for any r and s. So for any partition as above

N N

Z |Q(t:) — Qti—1)| < Z 3K|ti —ti—1| = 3K(d —c¢).

=1 =1

So the sums are bounded.

Note 27, From Page 86:

Suppose @ is a parameterization of a curve as in the text and tg,...,ty is a
partition of the interval [¢, d] in the domain of ). We want to know that Ezj\il |AQ;|
is close to Zﬁl |Q'(t;)| At; when the mesh of the partition is small.

Suppose € > 0. Since the coordinate functions of Q' = (X', Y’ ...) are contin-
uous on [¢,d] there is a § > 0 so that if |u —v| < ¢ then |X'(u) — X'(v)| < ¢, and
the same for Y’ and (if there is a Z coordinate) Z’.

Suppose that the mesh of the partition is smaller than this 6. By the Mean

Value Theorem, for each i there is s; in [t;—1.t;] so that %Xi’l) = X'(s;). This

means that ‘%ﬁ’l) — X'(ti)’ = |X'(s;) — X'(t;)| < e. A similar inequality
holds for the Y coordinate (and Z if there is one.)

The result now follows from repeated applications of the triangle inequality:
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N
‘ZIAQI—ZIQ )| At

i=1

N
_Z IAQi| — | Q'(t:)| At;

N N
< D] 1AQ Q)] Aty Z AQi — Q'(t:) At |

i=1 i=1

N

AQ’L /

= — t; At;

; Q At; @t )
< 3| (|AX: X' A imil ith ¥ and possibly Z
< Z AL (t;) t; | + similar terms wit and possibly

@
Il
A

] =

e At; 4+ similar terms with Y and possibly Z

O
I

d —c¢) + similar terms with Y and possibly Z
< 3e(d — ¢).

This can be made as small as you wish by choosing £ small enough.

Note 28, From Page 91:
The problem is named after a student in one of my classes who suggested it.

Note 29, From Page 104:

A set of real numbers A is called open if for each point ¢ in A there is a number
¢ > 0 so that the entire interval (a —e,a+¢) isin A. A set K of real numbers is
called closed if its complement (that is the set of real numbers not in K) is open.
A set B of real numbers is called bounded if it is contained in an interval of the
form [a, b] for real numbers a and b.

Note 30, From Page 114:

In elementary Calculus the second derivative test can be used to decide if a
function has a local maximum or minimum at a critical point. Specifically, if f is
a differentiable real valued functioned defined around ¢ and f/(¢) = 0 then f might
have a local extreme value at c¢. The second derivative test says that if f”/(c¢) exists
and f”(c) > 0 then f has a local minimum at ¢ and if f”(c¢) < 0 then f has a local
maximum at c¢. If f”(c) = 0 then the test is inconclusive.

A result with stronger conditions on f and more informative conclusions is
contained in the following exercise.

Ezercise IV. * If f is a twice continuously differentiable real valued functioned
defined on the interval (—e,e) and f'(0) = 0 and f"(t) > o > 0 for all t then
f(t) > $at? + f(0) for all t. In particular f has a local minimum at t = 0.
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If /(0) = 0 and f"(t) < —a < 0 for all t then f(t) < —%ozt2 + f(0) for all t.

In particular f has a local mazimum at t = 0.

A similar situation holds for surfaces defined as the graph of g on an open set
O in the plane. We will presume that g is twice continuously differentiable: that is
g is continuously differentiable on O as are the components of Vg.

We will suppose that Vg(a,b) = 0 so g has a horizontal tangent plane at
(a,b) so g, potentially, has a local extreme value at (a,b). We will derive a second
derivative test to decide the issue in many cases.

Every straight line through (a,b,0) in the XY plane except the line parallel

to the Y axis can be parameterized by < 1j-m2 + a, 1";'57”2 + b, O>. This line has

“slope” m in the XY plane and the square root factor has been placed there so
that the parameterization is being traversed at unit speed: |¢| is always the distance

t mt
from ( = T A + b, O) to (a,b,0).

Up on the surface, the curve with this shadow is

T(t)< L ( L a2 +b)>
m(t) = a, , a, .
V1+m?2 VI+m?2 IVt me VI+m?2
We (temporarily) let E = \/141FW and, in the equations below, evaluate the deriva-
tives of g at (tE + a,mtE + b). The derivative of T}, is then

T! (t) = (E,mE, ED1g+ mEDsg)

and the second derivative is
T}, (t) = (0,0, E*D1 19+ 2mE®D1 29 + m*E*Ds 59) .
Evaluating this at t = 0 we have

T)1(0) = (0,0, E*Dy1g(a,b) 4+ 2mE®D1 29 (a,b) + m*E*Da 29 (a, b)) .

Letting A = D11g(a,b), B = D129 (a,b) and C' = D29 (a,b) and replacing
FE this unpalatable mess at the third coordinate becomes
1
S(m) = W(A +2mB +m?*C).
S(m) is the second derivative at t = 0 of the parameterized curve we formed by
slicing through the surface at (a,b, g(a, b)) with the vertical plane through the line
with “slope”m in the XY plane.

If this quantity can change sign for different m values then (a, b, g(a, b)) cannot
be a local maximum or minimum on the surface, because (as in Exercise IV) one
of the curves will be above

t t
< +a, i 2—l—b,g(a,b)—i—at2>

V1 +m? V1+m?

for some a > 0 and for a small ¢ interval around 0 while for a different “slope” the
curve will lie beneath

t t
+a, 2 +b, gla,b) —at® ).
V1 +m? V1 +m3
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Places like this on g are called saddles. This will happen when the quadratic
formula gives two roots for S(m), which will happen when

B?* - AC = (Dug(a, b)>2 - <D1,1g(a, b)) (DQ,Qg(a, b)> > 0.

When B? — AC = 0 the test is inconclusive.

When B? — AC < 0 we will show that there is a local extreme value at
(a,b,g(a,b)). When B? — AC < 0 it must be that A and C are both nonzero
and have the same sign. The extreme value will be a maximum if A (and hence C
t00) is negative, and a minimum if both are positive.

Ezercise V. Create evamples to show that if B> — AC = 0 the test is inconclusive.

Ezxercise VI ** We suppose B> — AC <0 and A <0 (so C <0 too.)
(i)  S(m) = 2= (A + 2mB + m?C) must always be negative since S(0) =

1+m?2

A < 0. Also, limy, 100 S(m) = C < 0. Show that there is a positive number o so
that S(m) < —a < 0 for all m.

(i) Show that the only line through (a,b,0) which we did not consider, the
parameterized curve (a,t + b,0), generates a parameterized curve on the surface
corresponding to an ordinary differentiable function whose second derivative is C,
which cannot exceed —« either, at t = 0.

(1ii)  Show that ‘ﬁ’ <1, ‘% <2 and ‘% <1 for all m. From this
we can conclude that a variation of A by AA and B by AB and C by AC' can cause

S(m) to change by no more than |AA| 4+ 2|AB| 4 |AC|.

(iv) Since the second partial derivatives are all continuous, we can choose a

distance € so small that |AA| 4+ 2|AB| + |AC| < § where AA = Dq19(X,Y) —
Dlylg(a, b), AB = Dlﬁgg(X, Y) - Dlﬁgg(a, b) and AC = D2729(X7 Y) - D272g(a, b)

for any (X,Y) in a disk of radius € around (a,b).

(v) In the parameterizations above |t| was always the distance from the shadow
of (a,b,g(a,b)) to the shadow of the point on the curve at t. So on every curve we
discussed, the second derivative all along the parameterized curve is always negative
and in fact never exceeds —§ for anyt in (—e,e). The important point here is that
the interval (—e,€) does not vary from curve to curve: it is the same interval for
all of them.

(vi)  Use this to conclude that g(X,Y) < g(a,b) — $( (X —a)* + (Y — b)2)
whenever (X,Y) is in a disk of radius € around (a,b). So g(a,b) is a local maximum

value.

(vii) Replace g by —g to conclude that if B> — AC < 0 and A or C is positive
then we have a local minimum.

Note 31, From Page 115:
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Taylor Polynomials
We will suppose that f is a real valued function which is n times differentiable at
a point a in its domain. Let

" (R (g
Pa(t) =) ! k,( )(t— a).
k=0 ’

This is the n—th Taylor Polynomial for f at a. The values of f and P,, as well as
the first n derivatives of these two functions agree at a. We would like to conclude
that f and P, are close to each other away from a but this need not be true in any
useful way. For example define a function

0, ift=o0
f)=9 1 .
e 2 ift#£0.

This function is very flat at 0. All of its derivatives are 0 there, so the n—th Taylor
Polynomial at 0 for any n is the zero polynomial, not a good approximation to f
away from 0.

We now make additional assumptions which will allow us to conclude when and
if P, is close to f. We suppose that f has n continuous derivatives on an interval
containing [a,t] and that f(**1) exists on (a,t).

t)— Pyt
Define  H(z) = f(z) — Pu(z) — M(I —a)"th
H has been defined so that H(a) = H(t) = 0 and H has n continuous derivatives
(with respect to ) on an interval containing [a,t] and H*)(a) =0 for k=0,...,n

and is n + 1 times differentiable on (a, t).

The mean value theorem then implies that there is a ¢; in (a,t) for which
H'(c1) = 0. So there is a ¢ in (a,c¢;) for which H"”(cg) = 0. This process can
continue, yielding in the end ¢,4+1 in (a,¢,) for which H("H)(an) = 0. Let ¢ =
¢n+1 and note that ¢ is in (a,t).

If you calculate H™*+Y (¢, 1) you will find that

f(t) = Pu(t)

0=H"(cop1) = fOT(c) - (t —a)ntt

(n+1)!
and this gives

B f(n+1)(c)

f(t) = Pa(t) + T

The last term on the right is called the remainder term R, (¢) and if it is small then
P,(t) is a good approximation to f(t).

(t —a)"™'  for some c in (a,t).

Show that the same result holds if ¢ < a: that is if all this takes place on an
interval of the form [t, a.

Note 32, From Page 118:

There are important properties about continuous functions on closed and bounded
subsets of their domain which we mention here. They are analogous to similar facts
we have already used in the case of continuous functions defined on intervals. We
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suppose that f is a continuous function defined on an open subset © of RY where
N is 1,2 or 3. We presume that X is a closed and bounded subset of O.

(i) The set of real numbers { f(P) | P € K} is bounded. Even more, there
are points P and @ in K where f actually attains a maximum and minimum value
on K. Specifically, there are points P and @ in X for which f(P) < f(5) < f(Q)
for all S € XK.

(ii) f is uniformly continuous on K. We take that to mean: for each ¢ > 0
thereisad > 0so that for any P € K if |[P—Q] < d then @ € O and |f(Q)— f(P)| <
€. The important point here is that ¢ can be chosen to be the same for all points
in K.

Note 33, From Page 131:
Suppose in the vicinity of a point P in the intersection, the level set for g is

the graph of Z(X,Y). Recall that D, Z(X,Y) = XS ZESD for i = 1,2,

Consider the function U = (Uy, Us, Us) defined by U(X,Y) = (X,Y, Z(X,Y))
and define W(X,Y) to be hoU(X,Y) for (X,Y) in an open set on the plane. If
h(P) = ¢, the shadow of the intersection of the two surfaces in the vicinity of P
onto the XY plane will be the level set W(X,Y) = c.

W(X,Y) =
— W (U(X,Y)U(X,Y)
DU, DU,
— (Dih Dsh Dsh) | DiUs DslUs
D1Us  DyUs
1 0
— (Dih Dsh Dsh) 0 1
—Dig —Dag
Ds3g Dsg
— (Dlh— D%]Dgh D2h_ D2D(]D3h)
39 39 '

This can only be the zero matrix at points where

_ Dsh
(D1h Dgh)—D—&g(Dlg D»g)

which would imply that Vh = Vg. If this is not the case at P then one or both of
the coordinates of W’ (P, Py) is nonzero. If the second is nonzero, then for points
around (P, Py) on the level set W (X,Y) = ¢ we can write Y as a function of X.

The parameterization H(X) = (X,Y (X)) traces out the graph of Y, and

H/(X) _ 17 —D1W _ 17 Dlngh—DlhDgg '
D2W DQhDgg — D29D3h
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For X in an interval around P; the intersection we wanted is parameterized
explicitly by Q(X)=Uo H(X) = (X,Y(X), Z(X,Y(X))). Note that

1 0

1
Q00 =0 HCOHX) = [ 0 1 (pnintnin,
—Dig  =D2g DohDsg—DagDsh
Dsg Dsg
1 Dgngh — Dgngh

Dgngh, - Dlngh,
D29D3h_D39D2h DlgDQh—DQQDlh

This tangent vector is an explicit multiple of Vg x Vh as we speculated it must
be on the intersection.

So we come the the following sufficient condition to guarantee that the inter-
section of two level sets of differentiable functions g and h in space will be a curve:
First, at each point on the intersection one component of (the same component
of) ¢’ and A’ should be nonzero (though that component could change from place
to place on the intersection) and Vh should never be a multiple of Vg on the
intersection.

Note 34, From Page 138:

After wrestling with a couple of different (lengthy) approaches to filling in the
details in the construction and calculation of integrals in the plane and in space it
seems to me that expanding the generality in our results might be better left until
after a student has learned about the Lebesgue Integral. Students who really
need to have more generality will need to know about the Lebesgue Integral anyway
for other reasons. Those who won’t go that far will probably be satisfied with my
assurance that the plausible arguments and pictures presented in this text can be
generalized extensively.

After studying the Lebesgue Integral you will learn that there is essentially
only one way of creating integrals consistent with our intuition about ordinary area
in the plane and ordinary volume in space, and that both the Riemann sum con-
struction of multiple integrals and the Fubini Theorem iterated integral approach
agree with this Lebesgue Integral where they are all defined, which includes at least
the constant functions on rectangles. This, together with a “continuity” condition
implies that they agree with the Lebesgue Integral (and hence with each other)
whenever multiple and iterated integrals are both defined.

So it is OK to use iterated integrals (and all the techniques of basic Integral
Calculus which apply to them) to come up with the numbers practical applications
require in situations of far greater generality than we suppose in this text.

Other topics, such as the change of variable formulas, are really awkward to
prove sans Linear Algebra and also require a bit more of the Topology you will
learn about in an Advanced Calculus course than I want to deal with here.

Note 35, From Page 139:
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Consider the sum Mp = Y AX;AY; where this notation indicates that the
(V]

sum is over those subscripts corresponding to rectangles in P which are entirely
inside O. This is an approximation to the area of O.

Suppose P and @ are partitions of our rectangle. We will suppose n and k are
positive integers and the mesh of P is less than % while the mesh of @ is smaller:

less than n—lk .

If N is an integer larger than both b — a and d — ¢ the partition P generates no
more than 2nN vertical or horizontal gridlines. Each gridline has length no more
than N so can cut through the inside of no more than knN rectangles from Q.
The total area of all these rectangles from @ for all the gridlines cannot exceed
(2nN)(knN) s = 22,

The only way any part of a rectangle from Mp could be left out of the area cal-
culation Mg is if this lost area corresponded to a rectangle from @) which extended
past a P gridline and subsequently extended outside of O. We have calculated the
maximum total area of all the rectangles from ) which could do that, or in fact
which cross any gridline from P at all.

Therefore Mp — Mg < %, a fact we will use in a moment.

You will note that by throwing extra gridlines into a partition we do not di-
minish Mp. In fact, the areas of all the old rectangles will be included in the new
sum (possibly broken into smaller pieces) plus some new rectangles could be added
to the sum, formed by breaking up larger rectangles that formerly were too big to
fit entirely inside Q. A partition @) formed by adding gridlines to a partition P is
called a refinement of P. So for any partition P we can find a partition @ of
arbitrarily small mesh and Mg > Mp.

The set of all sums of the form Mp for all possible partitions is a set of real
numbers bounded below by 0 and bounded above by N2. So this set of sums has a
least upper bound which we will denote A.

Suppose P is a partition and A — Mp < €. From the remarks above we may
presume that the mesh of P is as small as we want: say less than % for a positive
integer n.

Choose an integer k so big that % < e. Soif @ is any partition whose mesh

is less than ﬁ we know from the calculations above that

A—MQ<A—MP+MP—MQ<€+E:2E.

We have just shown that there is a number to which all the sums M are arbitrarily
close provided only that the mesh of @ is small enough. This number, A from above,
is called the area of O.

Suppose that h is a bounded and continuous function defined on O. You will
recall that the function h is bounded on O provided that there is a positive number
M for which —M < h < M everywhere on O.

A set of points C' with members C;; for i = 1...n and j = 1...m in the
plane is called subordinate to the partition P if C;; is in the subrectangle
[Xi—1,X;] x [Yj_1,Y;] for each ¢ and j.
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Consider the sum Y h(C; ;)AX; AY; where this notation indicates that the sum
(v}

is over those subscripts corresponding to rectangles in P which are entirely inside
O. A sum of this kind, which depends on h, C' and P, is called a Riemann sum.
We will denote this sum Riemann(C, P) in some calculations below.

Select integer n so large that if the mesh of P is less than % then A — Mp < e.
Now select k so large that if the mesh of @ is less than % then Mp — Mg < e.

It is now necessary to appeal to a fact we don’t prove. A continuous function
defined on a closed set is uniformly continuous on that closed set. In our situation
we will use that fact as follows: let JC denote the closed set formed from all the
closed rectangles from P which are entirely inside O. Now let k be (possibly) even
larger than before: let k& be so large that if G and H are any two points from &K
and the distance between these two points is less than - then |h(G) — h(H)| < e.

If Q! and Q? are partitions the common refinement of Q! and Q? is the
partition obtained by combining all the gridlines from both partitions into a third
partition, the “coarsest” partition which is a refinement of both Q' and Q2.

Suppose Q' and @Q? are partitions with mesh less than 3= with common re-
finement @ and suppose CZ{ ; 1s subordinate to Q"' and Cﬁ ; is subordinate to Q2.

We are going to select two points for each rectangle in ). These selections will

not be subordinate to @, but they will be within a distance of ﬁ of a point in

the rectangle and hence within ﬁ of each other. Each rectangle in @ is a piece of

exactly one rectangle from Q' and also exactly one rectangle from Q2. If a rectangle
[Xi_1, Xi]x [Y;_1,Y;] from Q is a part of the rectangle from Q' containing the point
Cl{m we define C; ; = Cl{m. If a rectangle [X;_1,X;] x [Yj-1,Y;] from @ is a part

of the rectangle from @Q* containing the point C7 , we define B; ; = C7 .

|Riemann(C*, Q') — Riemann(C?, Q%)|

w

< Y |(Ciy) = h(Bij)| AXAY;
o
= > |h(Cij) — h(Bi ;)| AX;AY;
those rectangles
entirely contained
in I
* > |h(Cij) — h(Bi ;)| AXiAY;
those rectangles
which extend
beyond K
< Ae +2M2¢
= (A+4M)e

We have just shown that under these conditions there is a number denoted

/ WX,Y) dX dY
O



ENDNOTES 207

to which every Riemann sum is arbitrarily close provided only that the mesh of P
is small enough.

‘We now enshrine in exercises certain facts which are often useful.

Exercise VII. Show that if f is uniformly continuous on a bounded set in R? then
it s bounded.

Ezxercise VIII. Show that if [ is bounded and continuous on a bounded open set in
R? and € > 0 then there is a finite list of closed squares S; with i = 1...n inside
O with the following properties: First, the squares do not touch each other except
possibly on their boundaries. Second, the part of O outside of all these squares has
area less than €. Third, if S; is the open square inside of and with the same edges
as S; for each i then

< €.

/Of(X, Y) dXdY — Z;/S f(X,Y) dXdy

Note 36, From Page 141:

We will prove Fubini’s Theorem in the following case: when the set O is the
bounded open rectangle (a,b) X (¢,d) and for functions h that are uniformly con-
tinuous on (a, b) x (¢, d).

This is sufficient (for many applications) in light of the exercises from the last
note.

Following the text, Sy = (a,b) for each Y in (¢,d) so B(Y) = f: h(X,Y) dX.

Suppose € > 0 and let n be an integer so big that if G and H are points in the
rectangle and |G — H| < % then |h(G) — h(H)| < e. If numbers Y; and Y; are in
(c,d) and |Y; — Ya| < & then

b b b
/h(X,Yl)dX—/ h(X,Ys)dX g/ [h(X, Y1) — h(X,Y2)|dX <e(b—a).

So ‘B is uniformly continuous on (¢, d).

Ezercise IX. Show that if the mesh of partitions P and @ of (a,b) are both less
than % then the difference between any two Riemann sum approzimations to B(Y)
using partitions P and Q cannot exceed (b — a)e in magnitude. This implies both
must be within (b — a)e of B(Y').

Further, we choose n big enough so that whenever the mesh of a partition P
of (c,d) is less than 1 and for any selection of points C subordinate to P then the

Riemann sum Riemann(C, P) formed from B, C and P is close to fcde(Y)dY.
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Specifically:

(Y)dY — Riemann(C, P)| < e

Finally select integer k so big that both %2 < —n and d 5
big that

/ h(X,Y)dXdY — W‘ <e
(V)

where W is the regularly spaced Riemann sum approximation:

w=b-ald—0 2z_:lh(a+ _ka),c+j(d_c)>.

9k
3,7=1

All the elements are in place to show that [ h(X,Y)dXdY is close to fcd B(Y)dY
but we are facing a notational debacle here if we are not careful, so we will pro-
ceed in steps. First let

=0 0y 020,02

2k
i=1

Define

From this we have two facts:

2’c 1
= ZWJ and  |B,—W;|<e¢
j=1
We also know that
B c) 2k 1
/ B(Y)dY — > By <e.

=1

Finally by the triangle inequality:
2k -1 2k -1
(d—c) (d—c)
}W— oF > Bl < oF W, —B;| < (d—c)e
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With these facts in hand we have, once again by the triangle inequality:

‘/Oh(X,Y)dXdY—/cde(Y)dY‘

< ‘/ h(X,Y)dXdY—W‘
O

(d—o) X

+’/cd3(Y)dY— oF Zg,-

<e+(b—c)e+e.

Since € can be chosen as small as we wish, we have shown that the iterated and
double integrals are equal for uniformly continuous functions on bounded rectangles.

Note 37, From Page 146:

Maple commands (to be typed after the command prompt) to explore this
function are:

with(plots);
plot3d( cos(x) * cos(y) + 3, x=0.4%«Pi, y=0.4%Pi);

int( int( sqrt( sin(z) "2 * cos(y) "2 + sin(y) "2 * cos(x) "2 + 1), =
0.4« Pi), y=0.4%Pi);

eval f (int(int( sqrt( sin(z) ™2 * cos(y) 2 + sin(y) "2 * cos(x) "2 4+ 1), =
0.4« Pi), y=0.4%Pi));

The first two lines create the graph. The third shows you the integral setup

without actually trying to calculate it. The fourth line gives a floating point nu-
merical estimate.

Note 38, From Page 147:
It is a fact that under these conditions it is not necessary to assume that U is
open: it must be open.

Specifically, if f is one-to-one and continuous from an open set W in R? with
values in R? then the collection of values f(s,t) for (s,t) in W constitute an open
subset in the plane.

This is called an invariance of domain result and is quite hard to show. It
is easier to show if you assume also that f’ is continuous and nonzero.
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Note 39, From Page 152:
Here are Maple commands to create four longer gridlines for this coordinate

system as well as four short pieces which surround a roughly polygonal piece of the
XY plane.

plot( {
[ flu, 2)[1], f(u,.2)[2], u=.2.2],
[ F(.2,w)[1], f(.2,w)[2], u=.2.3],
[ f(uv?))[l]v f(u73)[2]7 U= '2"2] )
[f(27u)[1] ) f(27u)[2] y U= 23] )
[ flu, D[], f(u,D)[2], u=1.5..1.6],
(15,01, f154)72], u=1.11],
[Flu, 1.D)[1], f(u,1.1)[2], u=1.5..1.6] ,
[f(L6,u)[1], f(1.6,w)[2], u=1.1.1]});

Note 40, From Page 152:
Here are Maple commands for gridlines (nearly) surrounding the region of in-
terest. Following that are two integrals which are germane to the problem.

plot( {
[f(u, OD)[1], f(u,.01)[2], u=.01..In(4)],
[f(01,w)[1], f(.0L,u)[2], u=.01.3.14],
[f(u,3.14)[1], f(u,3.14)[2] , uw=.01..In(4)] ,
[Fn(4), w1 Fn(4), 0], w=01.3.14] } ) ;

int(int( 1, y=0..sqrt( (15/8)72 — (15/17) "2 x"2) ), x = —17/8..17/8) ;
int( int( (sin(t)) =2 + (sinh(s)) "2, s=0.In(4) ), t=0..Pi);

Note 41, From Page 152:
If you replace the condition

(i) The vector A’ (t) x Bj(s) is never 0.
by

(iii)’ k - AL(t) x Bl(s) is never 0.
then you can replace

(i) We presume that f is one-to-one and that the values f(s,t) for (s,t) in
‘W constitute part of the graph of a differentiable function g restricted to an open
subset U of its domain O.
by
(i) We presume that f is one-to-one.
In other words, if the tangent plane never goes vertical then the collection of

values f(s,t) for (s,t) in W must be the graph of a function g defined on an open
set U in the plane.

From the last note we know that if f = (X,Y,Z) is one-to-one then so is
f = (X,Y). Since f is differentiable so is f and so the collection of all f(s,t) is



ENDNOTES 211

an open set W in the plane by invariance of domain. f has an inverse function

which is itself differentiable. So g = Zo f ' is the function required in the original
condition (4).

Note 42, From Page 159:

Maple commands which might help to understand this problem:

plot3d( | sin(t) , exp(t) xs , txin(s) ], s = 1.2, t = 0.1 , azes =
NORMAL , thickness =2 , shading =7 ) ;

eval f( Int( Int( sqrt( exp(2xt) =« (t~ 2 + (In(s)) 2 — 2xt=xlIn(s) +
(cos(t)) " 2) + t72 x(cos(t)) "2 /s72),s=1.2),t=0.1));

Note 43, From Page 163:

In this note we will discuss orientability on two dimensional manifolds in space.
You will recall that in Section 30 we defined these to be sets M in space which can
be formed from overlapping patches, each of which is the graph of one variable
as a continuously differentiable function of the other two, where the free variables
are drawn from an open set.

At any point on a surface, there are exactly two unit normal vectors, and these
two vectors depend on the geometry of the surface and not the parameterization.
So at any point on a two dimensional differentiable manifold there are exactly two
unit normal vectors.

Let M be a two dimensional manifold. For each point P of M let N'p denote
a choice of one of the two unit normals to M at P.

N is called a unit normal vector field on M.

We will call N consistent if N is a continuous vector valued function on the
domain of every patch used to create M.

We will call M orientable if there is a consistent unit normal vector field. A
choice of one of these is called an orientation for M. An oriented manifold is
a manifold M together with a choice N of an orientation.

We are in no position to create general conditions to decide when or if a manifold
is orientable. Unlike orientability on curves or surfaces that are graphs, the situation
here is subtle and hard.

The Mobius strip is an example of a manifold which has no orientation but
most easily constructed manifolds, such as the sphere, are orientable.

But if we are on an orientable manifold then there is an orientation which will
be consistent with any admissible decomposition of M, which can then be used to
define flux through a surface in a way that does not depend on the decomposition
used to calculate it.

Note 44, From Page 164:
In this note you construct triple integrals:

Exercise X. Modify the discussion in the note above within which we discuss the
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construction of the double integral to handle the 3D case.

Note 45, From Page 166:
In this note you think about the 3D Fubini Theorem:

Ezxercise XI. Modify the discussion in the note above within which we discuss Fu-
bini’s Theorem for double integrals to handle the triple integral case.

Note 46, From Page 168:

Once again, the 3D version of invariance of domain holds: if f is one-to-one
and continuous from an open set W in R? with values in R? then the set of those
values must be an open set in R3.
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acceleration, 68
admissible decomposition, 160
alien
from Arcturus, 59
weird, 112
angle
between two planes in 3D, 39
between two vectors in 2D, 14
between two vectors in higher dimensions,
32
antisymmetric, 35
approximation, 66
derivative, 67
integral, 71
arclength, 85, 198
weighted by, 87
area, 205
of a bounded open set in 2D, 141
of a parallelogram in 2D, 15
of a parallelogram in 3D, 36
of a shadow, 39
of a surface, 145, 149
polar coordinates, 99, 150
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arrow, 2 hyperbolic-elliptic, 152
parabolic, 151

bearings, 15 polar, 95, 130, 150
Bezier curves, 80 rectangular, 26
boundary spherical, 171

of a plane set, 139 cross product, 34
bounded curl, 178

function, 205 curve, 55

in R2, 138 go(;d, 85

in R3, 163 in a surface, 109

sequence, 190 oriented, 88

set of real numbers, 199 piecewise good, 90
bug, 27, 95 cusp, 79, 89

cycloid, 60

Cauchy Mean Value Theorem, 192 .
cylinder, 45

central force, 75

chain rule. 68. 111. 120. 129 cylindrical coordinates, 171
Chan%;;f variables, 71, 148, 154, 168, 172, debacle

notational, 208

charge, 87, 141, 145, 149, 166, 170 decomposition, 8
circulation admissible, 160

around a loop, 89 Del operator, 175
closed set

derivative, 67, 129

in space, 118, 165 determinant, 14, 35

in the plane, 104, 140

developable
of real numbers, 199 surface. 44
rectangle, 138 differentiable, 67, 106, 119

rectangular solid, 163
coefficient of static friction, 24
collision, 58
common refinement, 206
complement, 104
components, 11
composite surface, 160

oriented, 162
cone, 44
confined to a line or plane, 72
conservative vector field, 132
consistent

choice of unit normal, 211

choice of unit normal on a surface, 161

parameterization, 161
constant velocity motion, 6
constraint, 23, 131

continuously, 71

on an interval, 67
direction, 2

cosines, 28

opposite, 3

same, 3

vector, 12, 27
directional derivative, 112, 120
displacement, 4
divergence, 175
Divergence Theorem, 178

in the Plane, 178
dot product, 13, 27
double integral

over a set in R?, 139

parametric form, 149

continuous, 66, 107, 119, 189 eliminate the parameter, 18, 28
in space, 118 ellipsoid, 46
in the plane, 105 Extreme Value Theorem, 190
on an interval, 66
uniformly, 189, 203 feature, 27, 95
continuously differentiable, 71 feedback, 25
control, 25 Fido, 37
converge flow
sequence, 190 along a curve, 89
vector function, 189 flux
coordinate past an oriented curve in 2D, 92
grid, 148, 153, 169 through an oriented surface, 162
plane, 26 force, 4
coordinates frequency, 60

cylindrical, 171 friction, 24



Fubini’s Theorem, 141, 166
function
defined implicitly, 121
real or real valued, 55
vector or vector valued, 55

geometrical track, 19

good
curve, 85
loop, 85

good parameterization

of a curve, 85

piecewise, 90

of a surface, 153

of an open set in R?, 147

of an open set in R3, 169
gradient, 106, 119
Greatest Lower Bound, 191
Green’s Theorem

Normal Form, 178

Tangential Form, 180

helicoid, 45
helix, 55
hyperbolic-elliptic coordinates, 152

identity matrix, 129
implicit function, 121
improper integral, 141, 150
inclined plane, 23
instances, 2
integral, 71
double, 139
parametric form, 149
improper, 141, 150
iterated, 141, 166
Lebesgue, 204
line, 87
surface, 145
over a composite surface, 160
parametric form, 155
triple, 164
parametric form, 170
volume, 164
weighted by arclength, 87
weighted by surface area, 145
weighted by volume, 164
integration
by parts, 71
by substitution, 71
Intermediate Value Theorem, 190
for Derivatives, 192
interpolation
Bezier, 83, 196
linear, 62, 187
invariance of domain, 209, 212
inverse function derivative, 130
is at
an object is at a vector, 17

215

iterated integral
in 2D, 141
in 3D, 166

Jacobian matrix, 129

L’Hoépital’s Rule, 192
Lagrange Multiplier, 130
Least Upper Bound, 191
Lebesgue Integral, 204
level set, 125
lies in
a vector lies in a line or a plane, 17

limit, 66, 105, 118

vector function, 189
line integral, 87
linear combination, 3
linearization, 76, 109, 119
local

extreme values, 114, 121

maximum value, 114, 120

minimum value, 114, 121
loop, 84

good, 85

piecewise good, 90
lower bound, 191

Moébius strip, 159, 211
magnitude, 2, 11, 26
manifold, 126, 211
mantra, 175
Maple, 44
mass, 87, 141, 145, 149, 166, 170
Mathematica, 44
matrix, 127
addition, 128
multiplication, 127
Mean Value Theorem, 68, 191
Cauchy, 192
meaning, 37
members of an admissible decomposition, 160
mesh, 71, 138, 163, 194
mixed partial derivatives, 108
monkey saddle, 47
Monotone Convergence Theorem for Sequences,
190
monotone sequence, 190
Mr. Bacon’s Train, 91
multiplication
matrix, 128
scalar, 3

normal, 14
form
for a line in 2D, 19
for a line in 3D, 29
for a plane in 3D, 48
vector for an oriented curve in 2D, 92
Normal Form of Green’s Theorem, 178
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objective function, 131 points at
octant, 26 a vector points at a place in the plane
one-to-one, 69 or space, 17
open set polar coordinates, 95, 130, 150
in space, 118 position vector, 6
in the plane, 104 potential, 133
on the line, 199 product rule, 68
order of a partial derivative, 109 projection
orientable scalar, 22
manifold or surface, 211 vector, 22
orientation

for a composite surface, 162 quotient rule, 68

for a curve, 88

for a manifold, 211

for a piecewise good curve, 90
for a surface, 161

radial
component, 98
direction vector, 98

. real
oriented
. " 162 valued
composite surface, 16 function of one variable, 55
curve, 88

function of three variables, 118
function of two variables, 104
sequence, 190

rectangle, 138

manifold or surface, 211
piecewise good curve, 90
surface, 161

origin, 6 rectangular
orthogor.lal7 14 coordinates, 26
coordinate system, 150 solid, 163

refinement, 194, 205

parabolic coordinates, 151 common, 194, 206

paraboloid, 46

lati
parallelepiped, 36 re ;ngi 59
paralldsgraém 15, 36 position, 58
parameter, speed, 59

parameterized, 6 velocity, 58

parametric resultant, 3
form , Riemann sum, 93, 138, 164, 173, 194, 206
of a surface integral, 155
of an integral in 2D, 149 saddle, 201
of an integral in 3D, 170 scalar
vector equation multiplication, 3, 128
for a line, 7, 18 product, triple, 34
for a plane, 52 projection, 22
partial derivative, 107, 119 second
mixed, 108 derivative test, 114, 200
order of, 109 partial derivatives, 108, 119
second and higher order, 108, 119 sequence
partition, 71, 194 real, 190
of a rectangle, 138 vector, 191
of a rectangular solid, 163 shadow, 39
path, 55 shift, 77
connected, 132 slime, 6
connecting two points, 132 slug, 6
perpendicular, 8, 14 speed, 4, 68
Pete’s World, 115, 132 change, 77
piecewise good spherical coordinates, 171
curve, 90 standard position, 6, 10
oriented, 90 Stokes’ Theorem, 180
loop, 90 in the Plane, 180
parameterization, 90 subordinate, 138, 163, 194, 205

plane, 43 subsequence, 191



sum of two vectors, 2
surface, 42, 105
area, 145
weighted by, 145
composite, 160
developable, 44
integral, 145
over a composite surface, 160
parametric form, 155
Susan’s Hill, 113
symmetric, 13
synchronized, 58

tangent

line, 79

plane, 109

vector for an oriented curve, 88
tangential

component, 98

direction vector, 98
Tangential Form of Green’s Theorem, 180
Taylor Polynomial, 115, 121, 201
tension, 16
tensor, 13, 35
tetrahedron, 38
three dimensions, 26
time, 6
torus, 46, 126
translate among coordinate systems, 54
transpose, 128
transposition of a matrix, 128
triangle inequality, 34
triple

integral

over a set in R3, 164
parametric form, 170

scalar product, 34

two dimensions, 26

uniform continuity, 189, 203
unit
circle, 12
normal vector for an oriented curve in 2D,
92
sphere, 27
tangent vector for an oriented curve, 88
vector, 12
upper bound, 191

vector, 2

addition, 3

direction, 12, 27

field, 107, 119
conservative, 132

projection, 22

sequence, 191

unit, 12

valued function, 55
in the plane, 107

INDEX

in the space, 119
velocity, 4, 68
volume
integral, 164
parametric form, 170
of a parallelepiped, 37
of an open set in 3D, 166
under a surface, 141
weighted by, 164

weighted

by arclength, 87

by surface area, 145

by volume, 164
Weird Alien, 112
work, 22, 89

zero vector, 3



