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Cn

Cn can be conceived of as the set of ordered n-tuples
v = (v1, v2, . . . , vn) of complex numbers made into a vector
space with the familiar properties of addition and scalar
multiplication.

For typographical convenience we represent these as rows, but
for compatibility with matrix operations and standard function
notation they are, actually, columns.
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Cn AND 〈 v ,w 〉c

Let the vector ei denote the member of Cn that has a 1 in the ith
row and zeroes elsewhere.

Then we have

v = (v1, v2, . . . , vn) = v1e1 + v2e2 + · · ·+ vnen.

Cn is a Hilbert space with inner product

〈 v ,w 〉c = v1 w1 + v2 w2 + · · ·+ vn wn.
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Cn AND “REALITY” (PART I)

We identify Cn with some fragment of “reality” by identifying
each ei with a specific displacement of something measurable
and “vector-like” in the “reality” fragment displacements.

The “reality” displacements we consider will be called Reality.

In the structure we build we will use a concept of “angle” so in
Reality there should be some concept analogous to
“orthogonal.”

From the outset, we should have good reason to believe that
Reality looks like an n-dimensional inner product (i.e. Hilbert)
space.
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Cn AND “REALITY” (PART II)

We will also be interested in operators T : Reality→ Reality
and when we write T(v) = w for certain v,w ∈ Cn what we
really mean is that there are items A and B in Reality for which
T(A) = B and w is the member of Cn which we have associated
with B and v is the member of Cn which we have associated
with A.

It is important that we make this clear: without an explicit,
up-front “legend” associating specific, measurable “reality”
displacements with the ei the equation T(v) = w is meaningless.
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Cn AND MATRIX REPRESENTATIONS OF T

If T : Cn → Cn is any linear operator it can be represented using
left multiplication by matrix M = (Ti

j) where Ti
j is the coefficient

on ei in T(ej). So matrix M is the n× n matrix

M = (T(e1) T(e2) · · ·T(en))

and it follows by linearity and direct calculation that

T(v) = M v =
n∑

i=1

 n∑
j=1

Ti
jv

j

 ei.
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ADJOINT IN Cn

The adjoint of an operator T is an operator T† defined by

〈T v ,w 〉c = 〈 v ,T†w 〉c.

The matrix of T† can be determined by applying this formula to
the ei. Then

〈T ei , ej 〉c = 〈 ei ,T†ej 〉c

producing the equality
(
T†
)i

j = Tj
i.

In other words the matrix of T† is Mtranspose.

Defining the conjugate transpose of any square matrix M to be
M† we have (by this definition) that

M↔ T if and only if M† ↔ T†.
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NORMAL OPERATORS ON Cn (PART I)

If λ1, λ2, . . . , λn are complex numbers we define

diag(λ1, λ2, . . . , λn)

to be the n× n matrix with λ1, λ2, . . . , λn, in order, along the
diagonal and zeroes elsewhere. Such matrices are called
diagonal matrices.

A square matrix M is said to be diagonalizable if there is an
invertible matrix P and diagonal matrix D for which

P−1MP = D or, equivalently, MP = PD.

If M is diagonalizable and D = diag(λ1, λ2, . . . , λn) the numbers
λ1, λ2, . . . , λn are unique except for order.

P is said to diagonalize M.
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NORMAL OPERATORS ON Cn (PART II)

Operators that commute with their adjoint are called normal
and those that are their own adjoint are called self-adjoint.

An invertible isometry on Cn is called unitary.

The vocabulary is also applied to the matrices that represent
these operators.

If P is a unitary matrix, then P−1 = P†, and this property
characterizes this type of matrix. Unitary matrices are normal.

It is a standard theorem of Linear Algebra that normal matrices
are exactly those which are diagonalizable by a unitary matrix
of transition.
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NORMAL OPERATORS ON Cn (PART III)

Suppose M is normal MP = PD for diagonal D and unitary P as
above. Let Pi denote the ith column of P. We have

MP = (MP1 MP2 · · ·MPn) = (λ1P1 λ2P2 · · ·λnPn) = PD.

So the columns of P form a linearly independent set of
eigenvectors for M and, of course, the operator T
corresponding to M.

By virtue of the equation P−1M P = P†M P = D we say that any
normal matrix (or operator) is unitarily equivalent to a
diagonal matrix (or operator.)
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SELF-ADJOINT OPERATORS ON Cn (PART I)

Normal M is self-adjoint exactly when all the λi are real.

When M is self-adjoint, we will insist (by permuting the
columns of P if necessary) that the λi are listed along the
diagonal in decreasing order. Of course some of these numbers
may coincide.

For each λi the eigenspace for λi, which is the span of the
columns of P corresponding to this eigenvalue, will be denoted
Eλi .

The sum of the dimensions of the eigenspaces for distinct
eigenvalues is n.
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SELF-ADJOINT OPERATORS ON Cn (PART II)
Let’s see how this looks working directly with the operator T.

Suppose we have self-adjoint T and diagonalizing unitary P so
M P = P D for diagonal D. Then T(Pi) = λiPi for i = 1, . . . ,n.

Any vector v in Cn has a unique representation as

v = a1P1+a2P2+· · ·+anPn where a = P−1v because Pa = v.

Note that

‖ v ‖2 =

n∑
i=1

vivi =

n∑
i=1

aiai.

The unitary operator given by matrix multiplication
P : Cn → Cn is an isometry: that is, for every v,w ∈ Cn

〈 v ,w 〉c = 〈Pv ,Pw 〉c.
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SELF-ADJOINT OPERATORS ON Cn (PART III)

T(v) = λ1a1P1 + λ2a2P2 + · · ·+ λnanPn

so representing vectors in terms of this basis makes T trivial to
calculate.

Should you have mild regret concerning your initial choice of
e1, e2, . . . , en, you can use P to tell you how to “change your
mind” consistently.

Had you chosen e1 to be the “reality fragment” displacement
represented by Pi for each i, as you very well could have, the
matrix of T would have been diagonal from the outset.

P is your ”new choice to original choice” translator!
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COUNTING MEASURES

µ : P(R)→ [0,∞] is called a counting measure on R if there is a
countable subset S of R, called the support of µ, so that µ(A) is
the cardinality of A ∩ S for every A ∈ P(R).

For instance, if S = { 1, 2, 5 } then µ(Q) = 3 and µ([0, 3]) = 2
and µ([10, 20]) = 0.

Or if S = Q then µ([0, 3]) =∞ and µ( {
√

2, 7/3, e } ) = 1.

For each λ ∈ R we define δλ to be counting measure on the
one-point set {λ }.

This is called (by mathematicians) a point mass at λ.
Sometimes these measures are called Dirac delta functions.

Note that µ =
∑

s∈S δs where we apply a sum of point masses to
a set in the obvious way.
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COUNTING MEASURES (PART II)

We define here a couple of relations between measures that are
more pertinent, perhaps, for more general measures. But
remember, our goal here is to run through the vocabulary
involved in infinite dimensional spectral theory for unbounded
operators but applied in a finite dimensional setting.

Suppose µ is a counting measure with support S and ν is a
counting measure with support R.

µ called absolutely continuous with respect to counting
measure ν if ν(A) = 0 implies µ(A) = 0.

This condition holds when and only when S ⊂ R.

µ and ν are called mutually singular if S ∩ R = ∅.
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L1(µ) (PART I)

If f : R→ C and if
∑

s∈S |f (s)| <∞we define∫
R

f dµ =
∑
s∈S

f (s)µ( { s } ) =
∑
s∈S

f (s).

The functions for which we have defined
∫
R f dµ are called

integrable or summable.
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L1(µ) (PART II)

If
∑

s∈S |f (s)| = 0 we call f a null function, or, specifically, a
µ-null function.

The set of equivalence classes of integrable functions, where f is
equivalent to g when f − g is a null function, is denoted L1(µ).

When f − g is a null function we write

f = g almost everywhere,

or f = g a.e. as an abbreviation. If there is more than one
measure around we may need to use the more specific

f = g µ-a.e.
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L2(µ) (PART I)

If f : R→ C and if
∑

s∈S |f (s)|2 <∞we call f square integrable
or square summable.

L2(µ) consists of equivalence classes of square integrable
functions, where equivalent functions are those which are
equal almost everywhere.

For reasons of custom and convenience, we conflate a function
with its equivalence class.

This is harmless in our definitions and calculations because µ
(and the inner product defined by µ) has no way to distinguish
among functions in the same class.
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L2(µ) (PART II)

Products of square integrable functions are integrable (BCS
inequality) and L2(µ) with inner product given by

〈 f , g 〉µ =

∫
R

f g dµ =
∑
s∈S

f (s) g(s)

is a Hilbert space.
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L2(µ) (PART III)

For any subset A of R let

χA : R→ { 0, 1 }

denote the function that evaluates to 1 on members of A and 0
otherwise. χA is called the characteristic function for A.

So if f ∈ L2(µ) then f =
∑

s∈S f (s)χ{s}.

In fact, the set of characteristic functions {χ{s} | s ∈ S } forms
an orthonormal basis for L2(µ).
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L2(µ) (PART IV)

Select a member g : R→ C and, for f ∈ L2(µ), consider the
a.e.-defined function Kg(f ) = gf .

If g is in L2(µ) then Kg(f ) ∈ L1(µ) by the BCS inequality.

If g is bounded on the support of µ then Kg(f ) ∈ L2(µ) ∩ L1(µ).

Kg is called a multiplication operator.

An important example is when g is the constant function 1.

K1(f ) = f for all f .
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L2(µ) (PART V)

Another multiplication operator, which will be key for us, is
that corresponding to the identity function

Id : R→ R given by Id(x) = x.

If S is a bounded set, then the multiplication operator KId is
bounded, and

KId(f ) =
∑
s∈S

s f (s)χ{s}.

For obvious reasons, it is customary to use KId(f ) = x f (x) to
denote the output function, which is fine as long as you don’t
forget what it means.
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L2(µ) AND THE OPERATOR T (PART I)

We will suppose self-adjoint T : C3 → C3 has real eigenvalues
7, 5 and 3.

Let P be the unitary matrix that diagonalizes T (or, actually,
MT). The columns of P are unit eigenvectors for 7, 5 and 3,
respectively.

Let µ be the counting measure on S = { 7, 5, 3 }.

So C3 = CP1 ⊕ CP2 ⊕ CP3 where the summands are orthogonal
subspaces of C3.
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L2(µ) AND THE OPERATOR T (PART II)

Define U : L2(µ)→ C3 by

U(f ) = f (7)P1 + f (5)P2 + f (3)P3.

U is an invertible isometry between these two Hilbert spaces,
and satisfies (and could have been defined by)

U
(
χ{7}

)
= P1, U

(
χ{5}

)
= P2, U

(
χ{3}

)
= P3

and extending to all of L2(µ) by linearity.
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L2(µ) AND THE OPERATOR T (PART III)

The isometry U lets us associate x (or rather multiplication by
x) down in L2(µ) with operator T. All operations involving C3

or T can be carried out in L2(µ) using KId.
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L2(µ)↔ T (PART IV)

Then by continuity of U we can define f (T) for any f ∈ L2(µ).
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MULTIPLICITY (PART I)

The previous considerations are a complete rephrasing of the
Spectral Theorem and the Functional Calculus for self-adjoint
operators on a three dimensional space when the eigenspaces
have dimension 1.

The theory of spectral multiplicity for these operators has an
easy translation here to deal with possible eigenspace of
dimension greater than one.
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MULTIPLICITY (PART II)

If µ is a counting measure on R with support S and n ≥ 1 define
L1(µ,Cn) to be the set of those functions f : R→ Cn for which∫

R
‖f‖ dµ =

∑
s∈S

‖f (s)‖ <∞.

For these functions we define
∫
R f dµ to be

∑
s∈S f (s).

We define L2(µ,Cn) to be the set of those functions f : R→ Cn

for which ∫
R
‖f‖2 dµ =

∑
s∈S

‖f (s)‖2 <∞.
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MULTIPLICITY (PART III)

Note that L2(µ,C1) was the space we previously called L2(µ).

For each Dirac delta measure, or “function,” the space
L2(δλ,Cn) has dimension n.

A specific basis consists of the n functions bλ,k : R→ Cn which
are 0 except at λ and for which bλ,k(λ) = ek, for 1 ≤ k ≤ n.

Any function f : R→ Cn is defined as a member of L2(δλ,Cn)
by the single vector

f (λ) = v1e1 + · · ·+ vnen.

Then, again as members of L2(δλ,Cn), we have

f = v1bλ,1 + · · ·+ vnbλ,n.
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MULTIPLICITY (PART III)

L2(µ,Cn) is a Hilbert space with inner product

〈 f , h〉 =
∫
R
〈 f (s), h(s)〉 dµ =

∑
s∈S

〈 f (s), h(s)〉

=
∑
s∈S

n∑
j=1

f
j
(s) h j

(s).
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MULTIPLICITY (PART IV)

Now suppose T : C3 → C3 is a self-adjoint operator, as before,
but which only has two distinct eigenvalues 5 and 3.

Suppose the eigenspace for 5 has dimension 1, so the
eigenspace for 3 has dimension 2.

Let P be the unitary change of basis matrix with columns P1, P2
and P3 where P1 is an eigenvector for eigenvalue 5 and the
remaining columns two span the eigenspace for eigenvalue 3.

C3 = CP1 ⊕ (CP2 ⊕ CP3) .
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MULTIPLICITY (PART V)

Let L = L2(δ5,C1)× L2(δ3,C2).

L consists of ordered pairs of functions (f , g) where f is complex
valued and g has values in C2.

It has a basis consisting of the three function-pairs

(χ5, 0) and (0, b3,1) and (0, b3,2)

L is a Hilbert space of dimension 3 with inner product:

〈(f , g), (h, k)〉 = 〈f , h〉+ 〈g, k〉

= f (5)h(5) + g1(3)k1(3) + g2(3)k2(3).
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MULTIPLICITY (PART VI)

Define U : L→ C3 by

U(χ5, 0) = P1 and U(0, b3,1) = P2 and U(0, b3,2) = P3

extending to all of L by linearity.

U is an isometry onto C3, just as before.

If h : R→ C define, for each (f , g) ∈ L the pair

Kh(f , g) = (hf , hg).

Kh is called a multiplication operator on L, and once again the
multiplication operator KId of the identity map Id(x) = x
corresponds to the operator T, and this allows us to define h(T),
for a wide class of functions h, as the operator h(T) that
corresponds to the multiplication operator Kh.
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