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Let’s start with the canonical Newton’s 2nd Law problem:

1 Mass on an Inclined Plane

A block is sliding down a frictionless plane that is inclined an angle θ to the
horizontal. Find the acceleration of the block.
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ax = −g sin θ (1)

This acceleration is manifestly constant, so if we wanted the velocity of the block
at some time t, we would use

v(t) = v0 + axt

= v0 − gt sin θ
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and if we wanted its position,

x(t) = x0 + v0t+
1

2
axt

2

= x0 + v0t−
1

2
(g sin θ) t2

However, let’s think a bit more carefully (i.e., mathematically) about what just
happened. First of all, Newton’s 2nd Law reads

1

m
F =

d2x

dt2

The fact that we write the second derivative of x of course implies that, in
general, x = x(t). Thus I can write Eq. 1 as

d2x

dt2
= −g sin θ (2)

To find the velocity of the block, let’s assume it starts from rest at the point
shown in the diagram (where I put my origin), and has moved a distance ∆x =
x− x0 after some amount of time t. Integrating Eq. 2 with respect to t gives

ˆ
d2x

dt2
dt = −

ˆ
g sin θdt

v(t) ≡ dx

dt
= −gt sin θ + v0

where v0 is our constant of integration.
However, we are told that the initial velocity is zero. This means

v (t = 0s) = v0 − (g sin θ) (0s) ≡ 0
m

s

which gives v0 = 0m
s ; we thus interpret this integration constant to be the initial

velocity of the block.
And of course, a second integration gives

x(t) = x0 + v0t+
1

2
axt

2

Applying the condition that x = 0m when t = 0s gives

x(0) = x0 −
1

2
(g sin θ) (0s)

2 ≡ 0m
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This integration constant x0 = 0m is thus seen to be the initial position, and so
our function x(t), in this case, reads

x(t) = −1

2
(g sin θ) t2

Note carefully that a different set of initial conditions would result in a different
specific function.

1.1 Summary

What we have done, of course, is solve a second-order ODE (Eq. 2), got the
general solution which has two adjustable parameters (v0 and x0), then obtained
our specific solution (specific to the problem at hand) by requiring that the
general solution so obtained match the physical requirements of the problem–
i.e., we imposed our boundary conditions.

2 Mass on A Spring

Our next system is a block of mass m on a frictionless horizontal surface, at-
tached to a horizontal spring that is in turn attached to a perfectly rigid wall,
as shown in the diagram below:
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This system will obey Hooke’s law:

F (x) = −κx (3)

Now, from Newton’s second law,

F = ma = m
d2x

dt2
(4)

Substituting this into Equation 3 and dividing both sides by m gives

d2x

dt2
= − κ

m
x (5)
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This is an ordinary differential equation (ODE) for x = x(t); its solution is

x(t) = A sin

(√
κ

m
t

)
+B cos

(√
κ

m
t

)
(6)

or, defining ω ≡
√

κ
m ,

x(t) = A sin (ωt) +B cos (ωt) (7)

Applying initial/boundary conditions is the same here; we have two adjustable
parameters (A and B) whose values are determined by applying specific initial
position and initial velocity values. For example, let x(0) = xmax and v(0) = 0;
then

x(0) = xmax = A sin [ω(0)] +B cos [ω(0)]

xmax = B

This leaves A still undetermined; for that, we use the velocity function:

v(t) =
d

dt
x(t)

v(t) = ωA cos (ωt)− ωB sin (ωt)

Hence

v(0) = 0 = ωA cos [ω(0)]− ωB sin [ω(0)]

0 = ωA

A = 0

and thus our specific solution is

x(t) = xmax cos (ωt)

3 The Wave Equation

Suppose you have a very long string held taut by a tension T (Fig. 1).
In equilibrium it coincides with the x-axis, but if you shake it (thus providing
a restoring force), a wave y(x, t) will propagate down the string. I will state
without proof that the net transverse force on the piece of string shown is

F = T
∂2y

∂x2
∆x
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Figure 1: Tension on a vibrating string

If the mass per unit length is µ, Newton’s second law gives

F = µ (∆x)
∂2y

∂t2

Since F is equal to both of these, they must be equal to each other:

T
∂2y

∂x2
∆x = µ (∆x)

∂2y

∂t2

and therefore

∂2y

∂x2
=

µ

T

∂2y

∂t2

Notice that the quantity µ
T has units of s2

m2 , which is the inverse of the units of

velocity squared. Thus, we interpret its inverse,
√

T
µ to be the velocity of the

wave as it moves down the string:

∂2y

∂x2
=

1

v2
∂2y

∂t2
(8)

This equation is called the wave equation. It is a partial differential equation
that describes the space and time behavior of the wave as it propagates down
the string. It turns out that this same equation can be derived for any system
that undergoes simple harmonic motion.

4 Fundamental Starting Point

A crucial idea in all of these examples is the role played by Newton’s 2nd Law.
It is the starting point of every problem, because we make it a postulate that the
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force, and the acceleration it causes, are related in this way; that the acceleration
is linearly proportional to the force, inversely proportional to the mass, and that
Newton’s 2nd Law is a second-order ODE whose solution x(t)–in every case–has
a physical interpretation (the position of the object).
It is also worth pointing out that the function x(t) predicts where the particle
will be (with, be it noted, 100% certainty); but to have confidence in the validity
of N2L, you have to check it–you have to actually go into the lab and make a
measurement of the object’s position.

4.1 A Reminder

Recall that a (conservative) force1 is related to a potential energy function by

F⃗ = −
(
∂V

∂x
êx +

∂V

∂y
êy +

∂V

∂z
êz

)
or simply

F⃗ = −∇V

where V = V (x, y, z). And of course, F and V can be expressed in cylindrical
or spherical coordinates, if desired. Thus, Newton’s 2nd Law reads

F⃗ = ma⃗
1

m
F⃗ = a⃗

− 1

m
∇V =

d2r⃗

dt2

1And conservative forces are the only kind we deal with in quantum mechanics.
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