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1. The Shape of a Hanging Rope: Qualitative Analysis

A heavy but “limp” rope is strung between two anchor pillars. As everyone
knows, and as shown below, it will hang in a curved shape that looks a lot like a
parabola.

Though it is not obvious from a rough inspection, the shape of a rope like this is
not a parabola. If you cast a shadow onto a piece of graph paper the shadow point
coordinates will not satisfy any second degree equation.

This is a golden opportunity to do an experiment! Make a hanging rope from
a couple of feet of string. Shine a light on the string from as far away as possible,
put the graph paper close to the string and put the origin at the shadow of the
bottom of the arc of the string. Find the coordinates (X0, Y0) of a shadow-point
well away from the origin. If you find a so that Y0 = aX2

0 for this point, you will
find that the graph of Y = aX2 does not match the shadow very well, particularly
away from the center.

The shape of a rope like this is called a catenary, and is obviously of great impor-
tance to practical folk like engineers, some of whom spend much of their professional
lives supporting and hanging structures in various ways.
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From our experience we know that a rope set up this way will start out pretty
steep near where it meets the support pillar and gradually flatten until it is horizon-
tal in the middle. But why is the shape as it is? What makes the angle change as
you go along the rope? How can you predict what the shape will be from measuring
qualities of the rope? Even if the shape had turned out to be a parabola, that fact
alone would be unsatisfying without an explanation of why.

The complete story requires quite a bit of calculus, but we can make some
serious progress by considering forces. Let’s examine a small piece of the hanging
rope midway between post and center.

Since there is no motion the force vectors acting at each point along the rope add
to the zero vector. Since the rope is floppy, these force vectors lie along the same
direction as the rope at this spot.

Let’s consider the force which points down and to the right. It can be thought of
as the sum of vectors: a horizontally pointing vector added to a vector that points
straight down.

The rightward pointing part, of magnitude K, is caused, ultimately, by the tug on
the rope by the far wall. The downward pointing part, of magnitude W , is caused
by the weight of the rope which hangs beneath the spot we are examining, from
there to the center (each half of the rope supports half the weight.)

We are speculating here about why the angle of the rope changes: The horizontal
component of the pull along the rope is always the same but the “weight below”
is dropping - the vertical part of the force vector is getting shorter - as you move
toward the middle.

There are several (possibly linked) claims about the way floppy ropes behave in the
paragraphs above, and these claims constitute a “theory” about such ropes.

• The force is parallel to the rope at each point
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• The horizontal part of the force is constant
• The vertical part is the weight of the rope from the “point” to the center.

We can make various measurements to try to put some numbers on the table related
to these forces.

First we measure the weight of the rope and tie little black threads around
the rope so that the weight of the rope between thread pieces is, say, one pound
or whatever force units you find handy. We count from the center of the rope.
Put different color thread markers at fractional pounds along the way so you can
estimate the weight of pieces of intermediate lengths. It is not necessary that the
rope be of uniform density, though most ropes will be. So if H is the weight of the
rope from the bottom to the edge there will be H tickmarks up to the edge.

Next we need to measure the horizontal component of the force. The easiest way
to do that might be to insert a (small) spring-type force measuring device into the
rope at the center where there is no vertical force - all the tension in the rope comes
from this horizontal force at the center, so we will be able to read off this force from
the gauge.

At this point we have the means to rather thoroughly test our theory. We set
up an angle-measuring device - the blue gadget in the picture found below. We
then change the length of the rope and/or the pillar separation distance and the
position of the gadget along the rope. With a few dozen measurements we can pretty
thoroughly confirm or refute our speculations about floppy ropes. If confirmed, we
could then predict the angle of the rope at each distance (that is, weight) measured
along the rope from the center:

θ = tan−1

(

K

W

)

where W is the weight of the rope from “the spot” to the middle and K is the
measured tension on the rope at the middle.
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• How do you think the shape would change if everything else remained the
same but you simply used a rope that was denser by some constant factor?
How would K change in this case?

• How would K change (qualitatively) if you move the pillars closer together
or farther apart?

• In case the rope has uniform density, how should the shape change if the
separation of the pillars and the rope length were changed by the same
multiple?

2. The Differential Equation

A heavy but “limp” rope is strung between two anchor pillars as shown below
and as discussed in Part 1.

Using vectors and basic Trigonometry we found a way to predict the angle that
the rope would make at various places by making some measurements involving the
physical properties of the rope ... but we did not actually produce a formula for the
shape. We will make an additional assumption about the density of the rope and,
using calculus, go a little farther and produce such a formula. First we establish a
coordinate system and name various parameters of the hanging rope.

We let the origin be at the height of the anchor points and in the center measured
from left to right. The distance between the two anchor points is 2A meters and the
low spot on the rope has Y coordinate m. We let δ denote the mass in kilograms of
the rope per unit length (meters). So the units of δ are kilograms/meter. δ could
be a a function of X . Suppose the rope has total length 2L. We will introduce the
notation u = Y ′ to eliminate some visual clutter.

In integral calculus we learn that the arclength along the curve Y from 0 to X is

given by
∫X

0

√
1 + u2 dt and the mass of the rope from 0 to X is

∫X

0
δ
√

1 + u2 dt.

So the force due to gravity of this mass is
∫ X

0
gδ
√

1 + u2 dt newtons where g ≈
9.8 meter/sec2.

We made some speculations about the nature of floppy ropes hanging like this
which we discussed and, perhaps, confirmed in Part 1:

• The horizontal part of the tension is constant, of magnitude K.



THE SHAPE OF A HANGING ROPE November 25, 2005 5

• The vertical part of the tension is the weight of the rope from the “point”
to the center. We will call this magnitude W .

• The tension in the rope is parallel to the rope at each point so u = W
K

.

With those definitions and assumptions the magnitude of the tension on the rope
is
√

W 2 + K2 where W varies from place to place but K does not.

Differentiating

W = Ku =

∫ X

0

gδ
√

1 + u2 dt

yields

Ku′ = gδ
√

1 + u2 with initial condition u(0) = 0.

3. Constant Density Series Solution

We now make an additional assumption: that our rope has constant density

everywhere along its length.

We can differentiate both sides of the differential equation above to produce

u′′ =
gδ

K

1

2
(1 + u2)−

1
2 2 u u′.

Replacing u′ by gδ
K

√
1 + u2 on the right, we get the differential equation

u′′ =
g2δ2

K2
u with initial condition u(0) = 0, u′(0) =

gδ

K
.

This form is more amenable to series solution. Under the assumption that there is

a solution of the form

u =

∞
∑

n=0

anXn where a0 = 0 and a1 =
gδ

K

the differential equation implies that

0 =
∞
∑

n=0

(

g2δ2

K2
an − (n + 2)(n + 1)an+2

)

Xn.

Equating each coefficient to 0 in turn, we find that an = 0 for all even n, while

an = gδn

n! Kn for odd n. So

u =
∞
∑

n=0

1

(2n + 1)!

(

gδ

K

)2n+1

X2n+1 =
∞
∑

n=0

1

(2n + 1)!

(

gδ X

K

)2n+1

.

Those who are familiar with Taylor Series might recognize this as the series for

sinh

(

gδ

K
X

)

=
e

gδ
K

X − e
gδ
K

X

2
.
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Integrating this series term-by-term, we find that for some constant C

Y = C +

∞
∑

n=0

1

(2n + 2)!

(

gδ

K

)2n+1

X2n+2 = C +
K

gδ

∞
∑

n=0

1

(2n + 2)!

(

gδ X

K

)2n+2

= C +
K

gδ

∞
∑

n=1

1

(2n)!

(

gδ X

K

)2n

= C −
K

gδ
+

K

δ

∞
∑

n=0

1

(2n)!

(

gδ X

K

)2n

.

The last series on the right can be identified with

cosh

(

gδ

K
X

)

=
e

gδ
K

X + e
gδ
K

X

2
.

In view of the fact that Y (A) = 0 we have

Y =
K

gδ

∞
∑

n=0

1

(2n)!

(

gδ X

K

)2n

−
K

gδ

∞
∑

n=0

1

(2n)!

(

gδ A

K

)2n

.

4. Constant Density Solution By Integration

In this section we also assume that our rope has constant density every-

where along its length, which yields the differential equation

u′

√
1 + u2

=
gδ

K
with initial condition u(0) = 0.

This can be integrated directly to produce

sinh−1(u) =
gδ

K
X so u = Y ′ = sinh

(

gδ

K
X

)

.

Integrating the right hand equation, we have

Y =
K

gδ
cosh

(

gδ

K
X

)

+ P

for a constant P . We organized things initially with Y (A) = 0 and so

P = −
K

gδ
cosh

(

gδ

K
A

)

which gives

Y =
K

gδ
cosh

(

gδ

K
X

)

−
K

gδ
cosh

(

gδ

K
A

)

.

Another important parameter to consider is the half-length of the rope, L.

L =

∫ A

0

√

1 + sinh2

(

gδ

K
X

)

dX =

∫ A

0

cosh

(

gδ

K
X

)

dX =
K

gδ
sinh

(

gδ

K
A

)

.

Finally, two visible parameters would be the “low spot”

m = Y (0) =
K

gδ
−

K

gδ
cosh

(

gδ

K
A

)

.

and the angle θX of the rope at X:

tan(θX) = Y ′(X) = sinh

(

gδ

K
X

)

.
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Note that tan(θA) should equal
half weight of the rope

K
. Since the half weight of

the rope is gδL the representation of L above verifies that tan(θA) = gδL
K

should

be sinh
(

gδ
K

A
)

.

To reiterate, we have:

• Y =
K

gδ
cosh

(

gδ

K
X

)

−
K

gδ
cosh

(

gδ

K
A

)

and so m =
K

gδ
−

K

gδ
cosh

(

gδ

K
A

)

.

• L =
K

gδ
sinh

(

gδ

K
A

)

.

• tan(θX) = sinh

(

gδ

K
X

)

and specifically,
gδL

K
= sinh

(

gδ

K
A

)

.

There are still two (related) items that could be addressed here, using only the
most modest accouterments from mechanics, and also one topic using the series
representation for sinh(X).

• If δ changes the graph stays the same. This will follow if δ
K

is constant for
fixed values of A and L, which seems obvious. Can you prove it?

• If the Y = g(X) is the solution we just calculated and we replace L by sL
and A by sA for a positive scaling constant s and let Y = f(X) be the new
solution then f(X) = sg

(

X
s

)

. Essentially, this says that the picture “scales”
so that if you increase L and A proportionately the graph is “similar” to the
old graph. This will follow if the magnitude of new horizontal component
of the tension is sK which, once again, seems pretty clear. Can you prove
it?

• It would be useful to people building structures to be able to predict K
from L, δ and A. However K cannot be solved for explicitly. Here is a case
where the first few terms of the Taylor series for sinh(X) with error bounds
will be useful.

5. A Rope of Variable Density

In this section we use notation and conventions similar to those used in Section
2. In this section we will think about what happens when we adjust the density as
we go along the rope proportionately with increasing magnitude of tension.
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You will recall that we had arrived at the equation

u′

√
1 + u2

=
gδ

K

where Y ′(X) = u and then made the constant δ assumption. Here we will presume
instead that density changes with position and

δX = c
√

W 2
X + K2.

where WX is the weight of the rope from the center to a given X value.
√

W 2
X + K2 is the magnitude of the tension on the rope at each X and we

will use a stronger (and proportionately heavier) rope where that tension is higher.
This is a natural assumption if you are trying to connect the pillars while being
parsimonious with rope material. The rope will be thinnest at the bottom where
it has minimum weight per unit length δ0 = cK and get thicker as needed.

The constant c =
δ0

K
(kg/(newton meter) is the mass per unit distance of a

rope thick enough to withstand K newtons of tension and reflects the strength
of the material. We might prefer a smaller c so long as the rope doesn’t snap,
with an adequate safety margin. For example, a uniform cable of a certain very
strong material of density 1 kg/meter might plausibly support 106 newtons, so
c = 10−6 kg/(newton meter) for this rope.

In this section we presume that the origin is at the middle of the rope as indicated
in the picture with support pillars at X = ±A.

From Part 2 we have

W ′

X = gδX

√

1 + u2 and WX = Ku.

These facts yield

Ku′ = gδX

√

1 + u2.

We combine this with our density assumption to find

Ku′ = gc
√

W 2
X + K2

√

1 + u2 = gc
√

K2u2 + K2
√

1 + u2 = gcK(1 + u2).
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Separating variables gives

u′

u2 + 1
= gc and so tan−1(u) = gcX + E.

Using the fact that u(0) = 0 we find that E = 0 and so

u = Y ′(X) = tan(gcX).

This means that θX , the angle between the rope and the X axis, is gcX . A rope
built this way will hang in a shape whose angle increases linearly with the X
coordinate.

If gcX were ever ±π
2

the rope would hang vertically at that X , which would imply
unbounded rope weight, a non-phsical situation. So we must have − π

2gc
< X < π

2gc

and, in particular, A < π
2gc

. This says something about the strength of the material

of the rope if we want to build it this way: We must use a stronger material (which
is what a smaller c implies) if we want to build it wider.

Integrating once more gives

Y (X) =
ln(sec(gcX))

gc
+ G for a constant G.

We organized the rope so it passed through (0, 0) so G = 0 and

Y (X) =
1

gc
ln(sec(gcX)).

The height at the pillar is Y (A) =
1

gc
ln(sec(gcA)).

The length of the rope from the center to positive X is

LX =

∫ X

0

√

1 + tan2(gct) dt =

∫ X

0

sec(gct) dt

=
1

gc
ln(sec(gct) + tan(gct))

∣

∣

∣

∣

X

0

=
1

gc
ln(sec(gcX) + tan(gcX)).

In particular, the half-length of the rope (center to pillar) is LA = 1
gc

ln(sec(gcA)+

tan(gcA)). So a product gcA that is close to
π

2
corresponds to a very long rope.

The natural parameters here are not the half-rope length L and a choice of pillar
distance A < L as in the Part 1 and 2. Here the natural parameters are gc and
the range of A values allowed by gc. If you want to link two points 2A apart using
rope material with strength parameter c built this way the length is determined
by those conditions, not specified at our convenience. The possibility of building
any rope like this at all is determined by a combination of rope strength and pillar
separation: gcA must be less than π

2
.

The weight WX of a rope built this way from the center to positive X is

WX = Ku = K tan(gcX).

Once again, if gcX is near
π

2
we have a huge weight.
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The function δX is

δX = c
√

W 2
X + K2 = cK sec(gcX) = δ0 sec(gcX)

which becomes unbounded as gcX nears
π

2
.

Putting this all together we get:

• Y ′(X) = tan (gcX) so the angle of the rope at X is θX = gcX =
gδ0

K
X .

• Y (X) =
1

gc
ln (sec(gcX)) and in particular Y (A) =

1

gc
ln (sec(gcA)) .

• The rope length from center is LX =
1

gc
ln(sec(gcX) + tan(gcX)).

• The rope weight from center to X is WX = K tan(gcX) =
δ0

gc
tan(gcX).

• The required density of the rope at X is δX = δ0 sec (gcX).

6. Suspension Bridge and Cable-Supporting-Cable

The purpose in hanging a rope in the ways we have been thinking about is usually
to support something rather than simply to tie the pillars together with a certain
horizontal force. We will think about two ways of hanging things off our ropes.

First is the suspension bridge situation:

We will presume that the bridge roadbed has uniform linear density β and the
wires from cable to roadbed are very numerous and very light in comparison to
everything else.

Next is the “parallel to the rope” situation. The assumption is that the hang-
ing object is tied close to the support cable but does not, itself, participate as a
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support structure. It merely hangs by small lightweight wires from the cable. One
sometimes sees powerlines or other utilities hung between poles like this.

We will presume that the suspended object has uniform linear density β here
too.

We will use the notation of the last sections to create differential equations which
describe four different cases which I would like to compare to see how massive the
cable must be to support the roadbed or powerline. However I don’t know how to
solve three out of the four - yet. Perhaps numerical solutions will be necessary for
one (or all) of these three.

Case I : Suspended with Density β, Rope with Constant Density δ

WX = Ku δ constant WX = g

∫ X

0

δ
√

1 + u2 + β dt.

This gives

W ′

X = Ku′ = gδ
√

1 + u2 + gβ.

This can be transformed by a linear speed change to the differential equation

V ′ =
√

1 + V 2 + B.

I don’t know how to solve this DE (yet.)

Case II : Parallel with Density β, Rope with Constant Density δ

WX = Ku δ constant WX =

∫ X

0

g(δ + β)
√

1 + u2 dt.

This gives

W ′

X = Ku′ = g(δ + β)
√

1 + u2.

This is essentially the case we considered before with new density δ = δ + β.

This is the one I can solve now.

Case III : Suspended with Density β, Rope with Variable Density
δX = c

√

W 2
X + K2
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WX = Ku δX = c
√

W 2
X + K2 WX = g

∫ X

0

δt

√

1 + u2 + β dt.

This gives

W ′

X =Ku′ = g
(

δX

√

1 + u2 + β
)

=gc
√

W 2
X + K2

√

1 + u2 + gβ = gcK(1 + u2) + gβ.

This cleans up to

u′ = gcu2 +

(

gc +
gβ

K

)

.

This can be transformed by a linear speed change to the differential equation

V ′ = V 2 + B.

I don’t know how to solve this DE (yet.)

Case IV : Parallel with Density β, Rope with Variable Density δX = c
√

W 2
X + K2

WX = Ku δX = c
√

W 2
X + K2 WX =

∫ X

0

g(δt + β)
√

1 + u2 dt.

This gives

W ′

X = Ku′ = g(δX+β)
√

1 + u2 = g

(

c
√

W 2
X + K2 + β

)

√

1 + u2 = gcK(1+u2)+gβ
√

1 + u2.

Rearranging constants gives

u′ = gc
(

1 + u2
)

+
gβ

K

√

1 + u2.

The substitution u = tan(θ) followed by a linear speed change yields:

θ′ = cos(θ) + B.

I don’t know how to solve this one either.

7. A Vertical Hanging Rope

In this final section we consider a rather different scenario. We are interested
in the tension along a rope hanging vertically. We presume, first, that the rope
is sufficiently short that the gravitational acceleration does not change over its
length, though ultimately we will want to consider ropes sufficiently long so that
gravitational change over its length should be considered.

A long rope is hanging vertically, supporting a mass W (kg) attached to the
bottom. Put the origin at the bottom of the rope. Assume constant linear density
δ (kg/meter) of the rope.

So the tension at height X meters is g(W + Xδ) newtons.
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Let’s assume that this rope material has “strength constant” s (newton meter /kg).
The numerical value of s is the number of newtons that can be safely supported
by a rope of this material constructed to have linear density 1 kg/meter. We will
let c = s−1 where that is convenient. A currently available material based on
Kevlar has a strength constant around 2 × 106 newton meter /kg, corresponding
to c = 5 × 10−7 kg/(newton meter). A rope of this material of linear density
1 kg/meter would have a radius of roughly 1.5 cm.

So if W = 100 kg, δ = 0.1 kg/meter and with this s (so the diameter of this
rope is roughly 1 cm) the maximum safe height X is given by

(0.1)(2 × 106) = 9.8(100 + 0.1 X)

So X is about 203 kilometers.

We will now change the scenario to allow the linear density δ to change, propor-
tionally with the tension. Near the bottom it is thinner than at the top.

We are parsimonious with material, so δ(0) = g c W . This is exactly the linear
density which will allow the bottom bit of rope to support the mass W under the
influence of normal gravity. At height X ,

δ(X) = g c

(

W +

∫ X

t=0

δ(t) dt

)

.

This implies δ′ = g c δ so
δ(X) = g c W e

gcX .

A huge s—tiny c—representing a stronger material, helps both in the exponent
and as a multiplier. However growth in density with height is exponential.

Suppose, for example, that you wanted to support 100 kg on a rope constructed
this way with s = 2×106 newton meter /kg as above. The height at which a density
of 0.1 kg/meter would be needed satisfies

0.1 = 9.8 × 5 × 10−7 100e
9.8×5×10−7X .

So X could be as big as 1085 kilometers, over five times as long as the “unshaped”
rope. Note that these are ropes constructed from commercially available materials.

These huge distances lead one to speculate about the density “at the top” re-
quired to support this weight over even greater lengths of rope.
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With the same s but with X = 3.6 × 107 meters (roughly the distance from
Earth’s surface to geosynchronous orbit) we find that δ(X) is unreasonably large:
a density of around 2 × 1073 kg/meter is required at the top. The exponential
growth in density as a function of length is the issue.

Still, perhaps we were too crude in our calculation. The force of gravity is hardly
constant over such distances. That was one assumption in our calculation and that
assumption acted against us. Let’s try to get a better estimate.

The radius of the Earth is roughly d = 6.4×106 meters and the acceleration due
to gravity diminishes proportionally as the inverse square of the distance from an
object to the center of mass of the Earth. At the surface it is roughly 9.8 meter/sec2

so

9.8 =
α

(6.4 × 106)2
so α ≈ 4 × 1014 meter3/sec2.

From this, our improved density formula becomes

δ(X) = c

(

g W +

∫ X

t=0

α

(X + d)2
δ(t) dt

)

.

This gives the differential equation

δ′ =
c α

(X + d)2
δ(t) with initial condition δ(0) = c g W

or
δ′

δ
=

c α

(X + d)2
with initial condition δ(0) = c g W.

Integrating, we have

δ = c g W e
cα
d
−

cα
X+d = c g W e

cα( 1
d
−

1
X+d ).

This is a completely different kind of solution. As X increases, so the acceleration
due to the Earth’s gravity drops to 0, the required density asymptotically rises
toward the constant value

c g W e
cα
d .

With c = 5 × 10−7 kg/(newton meter) and α = 4 × 1014 meter3/sec2 and
W = 100 kg and d = 6.4× 106 meters we find this asymptotic density to be about
1.8 × 1010 kg/meter. Going to geosynchronous orbit is, practically speaking, no
better: the density there is about 1.6 × 108 kg/meter.

So how strong must the cable be to support this weight from geosynchronous
orbit using an imaginable cable density at the top—perhaps 103 kg/meter? This
gives

103 = c 980e
cα( 1

d
−

1
X+d ) ≈ c 980e

c 5.3×107

.

Roughly, this gives 1 ≈ cec 5.3×107

. Checking values of this increasing func-
tion we find that a value of c of around 2.8 × 10−7, or s of around 3.5 × 106

newton meter/kg will do the trick. This is less than double the strength of the
material we were working with before. Evidently the practical possibility of such a
cable is very sensitive to the strength of the material used. And we will soon have
materials able to withstand the tensions under consideration here.
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If we come into possession of materials five times stronger than kevlar, so for
this material s = 107 newton meter /kg, the “thread” at the bottom has density
10−4 kg/meter and the density at the top to support this 100 kg mass at Earth’s
surface is just .02 kg/meter. If the material were similar in density to Kevlar, this
rope would have radius in the neighborhood of 2 mm!

The formula relating the relevant quantities for stationary orbit is

R =

(

T 2α

4π2

)

1
3

where R (meters) is the radius of the orbit, T (seconds) is the length of day and α
is the acceleration constant as calculated for earth above.

For Mars, the radius of the planet is about 3.4 × 106 meters, acceleration due
to gravity at the surface about 3.7 meters/sec2, α ≈ 4.3 × 1013 meter3/sec2 and
T ≈ 2.13 × 106 seconds corresponding to about 24.6 hours. The radius of the
stationary orbit is, therefore, about 2.04 × 107 meters. So the distance from Mars
surface to stationary orbit is roughly 1.7 × 107 meters. On Mars, the formula for
variable density ropes with W (kg) hanging on the end is

δ = c 3.7 W e
c

“

4.3×1013

3.4×106
−

4.3×1013

X+3.4×106

”

.

Given c = 5 × 10−7 kg/(newton meter) and at stationary orbit and W = 100
this gives a density at the top of

δ ≈ 370 cec 1.0539×107

≈ 3.6 × 10−2 kg/meter.

We seem to have the basis, with Kevlar ropes, for space elevators at Mars.
Phobos, however, will have to go.


