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1. Vectors in the Plane

Vectors in the plane will be denoted by bold capital letters with x and y coordi-
nates indicated in columns, such as

V =

(

x
y

)

.

Vectors e1 and e2 are the unit (length) vectors in the direction of the coordinate
axes

e1 =

(

1
0

)

and e2 =

(

0
1

)

.

A linear combination of two vectors is a vector sum aV + bW where a and b
are numbers and V and W are vectors.

So any vector, such as V above, can be written as a linear combination xe1 +ye2

of the unit vectors e1 and e2.

Two vectors V and W are called independent if neither is a numerical multiple
of the other. The two vectors are called dependent if they are not independent.

It is not too hard to show that any vector in the plane can be written as a linear
combination of any chosen independent pair of vectors.
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2. Matrix Preliminaries

Suppose we are given matrix with real entries

A =

(

a1,1 a1,2

a2,1 a2,2

)

.

We define tr(A) = a1,1 + a2,2 and det(A) = a1,1 a2,2 − a1,2 a2,1.

These numbers are called the trace and determinant of the matrix A, respec-
tively.

The characteristic polynomial of the matrix A is

P (x) = det (xI − A) where I is the identity matrix

(

1 0
0 1

)

.

In this two dimensional situation P (x) = x2 − tr(A)x + det(A).

The roots of the characteristic polynomial will be denoted λ1 and λ2, called the
eigenvalues of the matrix A. So

P (x) = (x − λ1)(x − λ2).

An eigenvector of the matrix A is a nonzero vector V for which AV = λiV

for i = 1 or 2. So the effect of A on an eigenvector is particularly simple: it acts
as a “stretcher” or “shrinker” by factor λi. If AV = λiV, nonzero V is said to be
an eigenvector “for” λi.

Note that AV = λiV exactly when

(A − λiI)V = 0 =

(

0
0

)

.

We make three important observations, that are pretty easy to show.

First, if V is an eigenvector for λi then so is any nonzero numerical multiple of
V.

Second, there is an eigenvector for each different eigenvalue.

Third, if V and W are eigenvectors for different eigenvalues then V and W are
independent.

We like eigenvectors in these notes because, as we shall see in a later

section, they will allow us to write down simple “straight line” solutions

to a linear system of differential equations. We like an independent

pair of eigenvectors because we can realize any initial vector as a linear

combination involving this pair, and the solution to the corresponding

initial value problem is the same linear combination of these “straight

line” solutions.

But that is for a bit later.
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3. Cayley’s Theorem

Cayley’s Theorem If P (x) is the characteristic polynomial of
square matrix A then P (A) = 0.

This important and useful theorem is proved in Linear Algebra classes for n× n
matrices, but it is easy to show for 2 × 2 matrices by calculating

A2 − tr(A)A + det(A)I

and observing that it is the zero matrix.

The reason we want to know this theorem is to speed up the process of finding
eigenvectors. Since

P (A) = (A − λ1I)(A − λ2I) =

(

0 0
0 0

)

= (A − λ2I)(A − λ1I)

this matrix must yield the zero vector when applied to any vector. In particular
for any vector V

(A − λ1I)

(

(A − λ2I)V

)

=

(

0
0

)

= (A − λ2I)

(

(A − λ1I)V

)

.

Looking at the left expression we see that (whenever it is nonzero) the vector
(A − λ2I)V is an eigenvector for λ1.

(A−λ2I)e1 is the first column of A−λ2I and (A−λ2I)e2 is the second column
of A − λ2I.

So nonzero columns of A − λ2I are eigenvectors for λ1 and, by an identical
argument, nonzero columns of A − λ1I are eigenvectors for λ2.

4. Eigenvectors: The Real Case

First suppose λ1 6= λ2.

(A − λ1I) has a nonzero column which is an eigenvector for eigenvalue λ2.

(A − λ2I) has a nonzero column which is an eigenvector for eigenvalue λ1.

This pair of columns forms an independent pair of vectors.

We now consider two variations on the case λ1 = λ2 = λ.

It is possible that A − λI is the zero matrix, so e1 and e2 are eigenvectors. All
is good, they are an independent pair of eigenvectors.

The problem case is when A − λI is nonzero. So there is a nonzero column of
A−λI. Any nonzero column must be an eigenvector for λ, but there cannot be two
independent columns: that would imply that any nonzero vector is an eigenvector
for λ which would imply A − λI = 0. So there cannot be an independent pair of
eigenvectors here.
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5. Eigenvectors: The Complex Case

We now consider the case of complex eigenvalues. Since these are obtained by
applying the quadratic formula to the characteristic polynomial, it is easy to see
that they come in conjugate pairs. This is also true in higher dimensions.

Let λ1 = r + si and λ2 = λ1 = r − si, where the “overline” is intended to
represent complex conjugation operation and r and s are real.

Any vector or matrix M with complex entries can be broken up into real and
imaginary parts by examining each entry. For instance

(

3 − 2i 5 + i
−i 2 + 7i

)

=

(

3 5
0 2

)

+ i

(

−2 1
−1 7

)

and

(

2 + i
3

)

=

(

2
3

)

+ i

(

1
0

)

.

You should check for complex numbers x = a+bi and y = c+di that xy = (x) (y)
and x + y = x + y. Because of this, complex conjugation of products or sums of
matrices can be applied to factors or summands individually too.

The first column of A − λ2I is nonzero (since A is real but λ2 is complex) and
so is an eigenvector V for λ1.

Note that (A − λ1I)V is the zero vector so
(

0
0

)

= (A − λ1I)V = (A − λ1 I)V = (A − λ2 I)V.

This means V is an eigenvector for eigenvalue λ2.

In other words, complex eigenvalues come in conjugate pairs and the

associated eigenvectors do too. In particular, these eigenvectors cannot

be real vectors.

Let V = Vr + iVi where Vr and Vi are both real: the real and imaginary parts
of the eigenvector V.

Note that Vr 6= kVi for any constant k. That is because if there was such a k,
we would have

V = kVi + iVi and V = kVi − iVi

and so

Vi =
1

k + i
V =

1

k − i
V

so Vi would be a nonzero multiple of both eigenvectors and therefor an eigenvector
for two different eigenvalues, an impossibility.

So Vi and Vr are both nonzero and an independent pair of real vectors.

Finally, one last calculation involving vectors and conjugates.

Suppose Z is a real vector and Z is a complex linear combination of V and V:

Z = (x + yi)V + (a + bi)V = (x + yi)(Vr + iVi) + (a + bi)(Vr − iVi).

Multiplying this out and using the fact that Z is real and also that Vi and Vr are
independent, it is easy to see that x = a and y = −b and so

Z = 2aVr + 2bVi = (a − bi)V + (a + bi)V.
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6. General Solutions to the Systems

We are interested in solving the initial value problem

Y′ = AY and Y(0) = Y0.

for 2 × 2 real constant matrix A and real initial vector Y0.

When we have real eigenvalues λ1 and λ2 with two independent eigen-

vectors V1 and V2, the general solution is simply

Y(t) = ae
λ1 t V1 + beλ2 t V2.

To solve the initial value problem with Y(0) = Y0 you must choose a and b so
that

aV1 + bV2 = Y0.

In case of only one real eigenvalue λ and only one eigenvector the
solution is

Y(t) = e
λ t Y0 + teλ t

(

A − λI
)

Y0.

You can check this is a solution using the fact that for any Y0

A
(

A− λI
)

Y0 = λ
(

A− λI
)

Y0.

Finally, we come to the complex case.

We suppose λ1 = r + si and λ2 = r − si.

Let V = Vr + iVi be the first column of A − λ2I.

Find α and β (and a and b) so

Y0 = αVr + βVi = 2aVr + 2bVi = (a − bi)V + (a + bi)V.

Just as in any two-eigenvector case, the solution to the initial value problem is

Y(t) = (a − bi)eλ1 t V + (a + bi)eλ2 t V.

After some messy algebra using

e
λ1 t = e

(r+si) t = e
rt( cos(st) + i sin(st) )

we simplify this to

Y(t) = e
rt

(

(α cos(st) + β sin(st))Vr − (α sin(st) − β cos(st))Vi

)

.
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7. Another Look at the Complex Case

We refer to the complex eigenvalue solution found in the last section.
(

α√
α2+β2

, β√
α2+β2

)

is on the unit circle, so it is of the form (cos(θ), sin(θ)) for

an angle θ related to arctan
(

β

α

)

. Letting B =
√

α2 + β2 we have

Y(t) = B e
rt

(

(cos(θ) cos(st)+sin(θ) sin(st))Vr − (cos(θ) sin(st)−cos(θ) cos(st))Vi

)

.

Using the angle difference formulas we have, finally

Y(t) = B e
rt

(

cos(st − θ)Vr − sin(st − θ)Vi

)

.

The term on the right is oscillatory with period 2π/s. If r = 0 the motion will
be periodic. If r > 0 it will spiral “out,” away from the origin. If r < 0 it will spiral
“in.”

There are two ways of rotating from initial ray Vi to terminal ray Vr: clockwise
or counterclockwise. One direction will represent a smaller rotation than the other.
If s is positive, the oscillatory motion as seen from the origin will correspond to
whichever of these directions is the smaller angle. If s is negative, this will be
reversed.

8. Specific Solutions to the Systems

The case of an independent pair of real eigenvectors:

A =

(

2 3
2 −1

)

, Y0 =

(

−2
3

)

.

The characteristic polynomial is P (x) = x2 − tr(A)x + det(A) = x2 − x − 8.

So the eigenvalues are λi = 1
2 (1 ±

√
33).

One of these numbers is positive, the other negative. At this point we know
that the origin is a saddle, solutions coming in along one eigenvector, leaving along
another.

A−λ2I =

(

2 3
2 −1

)

−
(

1
2 (1 −

√
33) 0

0 1
2 (1 −

√
33)

)

=

(

3
2 + 1

2

√
33 3

2 −3
2 + 1

2

√
33

)

.

Although it doesn’t really look like it, the two columns of this matrix must
be multiples of each other, since they are both eigenvectors for eigenvalue λ1 =
1
2 (1 +

√
33). Pick twice the first as V1.
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A−λ1I =

(

2 3
2 −1

)

−
(

1
2 (1 +

√
33) 0

0 1
2 (1 +

√
33)

)

=

(

3
2 − 1

2

√
33 3

2 −3
2 − 1

2

√
33

)

.

The two columns are both eigenvectors for eigenvalue λ2 = 1
2 (1 −

√
33). Pick

twice the first as V2.

Y0 = αV1+βV2 =

(

−2
3

)

=
(

9
24 −

√
33

24

)

(

1 +
√

33
4

)

+
(

9
24 +

√
33

24

)

(

1 −
√

33
4

)

.

Our explicit solution is

Y(t) = αe
λ1tV1 + β e

λ2tV2.

In trying to understand the general behavior of this motion, it would not be
helpful to replace the α, V1, β and V2 by their values, calculated explicitly above.
However it is helpful to know that λ1 is positive and λ2 is negative so in remarkably
short order the solution will be indistinguishable from αe

λ1tV1.

The case of only one real eigenvector:

A =

(

5 3
0 5

)

, Y0 =

(

−2
3

)

.

The characteristic polynomial is

P (x) = x2 − tr(A)x + det(A) = x2 − 10x + 25 = (x − 5)2.

So the eigenvalue is λ = 5.

A− 5I =

(

0 3
0 0

)

Any nonzero column of this matrix is an eigenvector for eigenvalue 5. This is
useful for drawing the vector field of this system and otherwise understanding the
nature of the solutions in aggregate. Any solution touching the line along this
vector through the origin stays on that line. Since the eigenvalue is positive, it will
move away from the origin.

Our explicit solution is

Y(t) = e
5tY0 + te5t(A − 5I)Y0 = e

5t

( (

−2
3

)

+ t

(

0 3
0 0

) (

−2
3

) )

= e
5t

((

−2
3

)

+ t

(

9
0

))

= e
5t

(

−2 + 9t
3

)

.

The case of two complex eigenvectors:

A =

(

5 −3
2 1

)

, Y0 =

(

−2
3

)

.

The characteristic polynomial is P (x) = x2 − tr(A)x + det(A) = x2 − 6x + 11.
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So the eigenvalues are λi = 3 ± i
√

2.

At this point we know that the motion will spiral out, leaving the origin roughly
as e

3t. The period at which it rotates around the origin as viewed from the origin
will be

√
2π in the units favored by t.

A− λ2I =

(

5 −3
2 1

)

−
(

3 − i
√

2 0

0 3 − i
√

2

)

=

(

2 + i
√

2 −3

2 −2 + i
√

2

)

.

The first column is

(

2 + i
√

2
2

)

=

(

2
2

)

+ i

(√
2

0

)

, an eigenvector for λ1.

Y0 =

(

−2
3

)

= 3
2

(

2
2

)

+ −5√
2

(√
2

0

)

.

So

θ = arctan
(

β

α

)

= arctan
(

−5
√

2
3

)

≈ −1.17 radians.

B =
√

α2 + β2 =
√

9
4 + 25

2 = 1
2

√
59.

Finally, our explicit solution is

Y(t) =
1

2

√
59e3t

(

cos(
√

2 t − θ)

(

2
2

)

− sin(
√

2 t − θ)

(√
2

0

) )

.

The motion is clockwise as seen from the origin.
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9. Examples with Graphs

(

x(t)
y(t)

)′

=

(

0 0
0 1

) (

x(t)
y(t)

)

=

(

0
y(t)

)

P (λ) = λ2 − λ.

Eigenvectors:

(

1
0

)

for eigenvalue 0 and

(

0
1

)

for eigenvalue 1.

The general solution is:

(

x(t)
y(t)

)

= a

(

1
0

)

+ bet

(

0
1

)

.
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(

x(t)
y(t)

)′

=

(

0 −1
1 3

)(

x(t)
y(t)

)

=

(

−y(t)
x(t) + 3y(t)

)

P (λ) = λ2 − 3λ + 1.

There are two positive eigenvalues,
3

2
±

√
5

2
.

Eigenvectors:

(

3 −
√

5
−2

)

≈
(

.38
−2

)

for
3

2
+

√
5

2
and

(

3 +
√

5
−2

)

≈
(

5.24
−2

)

for
3

2
−
√

5

2
.

The general solution is:

(

x(t)
y(t)

)

= ae

“

3

2
+
√

5

2

”

t

(

3 −
√

5
−2

)

+be

“

3

2
−
√

5

2

”

t

(

3 +
√

5
−2

)

.
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(

x(t)
y(t)

)′

=

(

0 1
1 1

) (

x(t)
y(t)

)

=

(

y(t)
x(t) + y(t)

)

P (λ) = λ2 − λ − 1.

There are two eigenvalues, one positive and one negative,
1

2
±

√
5

2
.

Eigenvectors:

(√
5 − 1
2

)

≈
(

1.2
2

)

for
1

2
+

√
5

2
and

(√
5 + 1
−2

)

≈
(

3.2
−2

)

for
1

2
−
√

5

2
.

The general solution is:

(

x(t)
y(t)

)

= ae

“

1

2
+
√

5

2

”

t

(√
5 − 1
2

)

+be

“

1

2
−
√

5

2

”

t

(√
5 + 1
−2

)

.
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(

x(t)
y(t)

)′

=

(

1 −2
2 −1

) (

x(t)
y(t)

)

=

(

x(t) − 2y(t)
2x(t) − y(t)

)

P (λ) = λ2 + 3.

There are two complex eigenvalues with zero real part, ±i
√

3. So the motion will
be periodic with period 2π/

√
3.

Vr =

(

1
2

)

and Vi =

(√
3

0

)

.

The general solution is:

Y(t) = B

(

cos(
√

3 t − θ)Vr − sin(
√

3t − θ)Vi

)

= B

(

cos(
√

3 t − θ)

(

1
2

)

− sin(
√

3t − θ)

(√
3

0

) )

For initial condition Y0 choose B and θ so that

Y0 = B

(

cos(θ)

(

1
2

)

+ sin(θ)

(√
3

0

) )

.


