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This appendix is too brief to do more than touch on its subject matter. Most
of modern and classical analysis was invented to deal with issues raised in what
we now call functional analysis, the study of some aspects of linear spaces. Point-
set topology and much of abstract algebra were created to deal with problems that
popped up, specifically, in this context. The subject is truly central to mathematics.

The reader is invited to view the older, but still wonderful, treatments in Riesz
and Sz.-Nagy, Functional Analysis [?] and Lorch, Spectral Theory [?]. The influ-
ence of that majestic compendium Dunford and Schwartz, Linear Operators Part
I [?] can be seen on every page. I also highly recommend the beautiful short book
by Arveson, A Short Course in Spectral Theory [?] and Reed and Simon, Meth-
ods of Modern Mathematical Physics v. 1, Functional Analysis [?] and Narici and
Beckenstein, Topological Vector Spaces, Second Edition [?] among many others.

1. Linear Functionals and Hyperplanes

We will examine some properties of vector spaces over the fields R or C, as
encountered in Section ??. Any reference to a field F is intended to denote one
of these two fields. Particular attention will be paid to vector spaces comprised of
linear transformations.

First, if a is a number, A is a nonempty set of numbers and b is a vector and
B and C are nonempty sets of vectors we use the rather obvious notations

B + C = { b+ c | b ∈ B and c ∈ C }, B 	 C = { b− c | b ∈ B and c ∈ C },
AB = { ab | a ∈ A and b ∈ B }, Ab = { ab | a ∈ A },
aB = { ab | b ∈ B }, b+ C = { b+ c | c ∈ C }.

The set of all F-linear transformations from the F-vector space V to the F-
vector space W will be denoted HF(V,W ). In Appendix ?? this set was denoted
HomF−mod(V,W ).

When W = F this set of transformations will be denoted V∗F and called the
algebraic dual of V. Members of the algebraic dual are also called F-linear
functionals. Sometimes, when no misunderstanding can arise, the “F” subscript
or hyphenated prefix is suppressed.

Since any complex vector space is also a real vector space, this should be done
carefully. It may not be possible to deduce from context which field you have in
mind when referring to a linear transformation or functional, or other features of a
space.

For instance if B is a basis for complex vector space V and iB = { ib | b ∈ B }
then B

⋃
iB is a basis for V as a real vector space. So if B is finite the real

dimension of V is double its complex dimension.

And the real algebraic dual of a complex vector space is not the same as the
complex algebraic dual of that space. V ∗C ⊂ V ∗R ⊕ i V ∗R ⊂ CV .

V ∗C is a very special subspace of the indicated direct sum, as we shall see.
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1.1. Exercise. (i) Any member Θ of the complex algebraic dual of the complex
vector space V can be written in a unique way as Θr + iΘc where Θr and Θc are in
V ∗R , called the real and complex parts of Θ, respectively. The real and complex
parts of Θ are related. Show that for all x ∈ V

Θr(i x) + iΘc(i x) = −Θc(x) + iΘr(x).

We find, then, that

Θc(x) = −Θr(i x) and Θc(i x) = Θr(x).

(ii) If Ψ is any member of the real algebraic dual of the complex vector space
V then Θ defined by Θx = Ψx − iΨ(ix) is a member of the complex algebraic
dual of V . We find that A : V ∗R → V ∗C given by A(Ψ)(x) = Ψx − iΨ(ix) is a real
isomorphism onto V ∗C .

1.2. Exercise. Any real vector space W can be “complexified” as follows. Let
V = W×W . V is an additive group in the obvious way, and a real vector space. We
make V into a complex vector space by declaring i(x, y) = (−y, x) and, generally,

(a+ bi)(x, y) = (ax− by, bx+ ay) for real a and b and (x, y) ∈ V.

(i) Show that this operation does give V the structure of a complex vector space.

(ii) Show that if B ⊂W is a basis for the real vector space W then B̃ = { (b, 0) |
b ∈ B } is a basis for the complex vector space V .

(iii) Suppose α, β ∈W ∗R and define Θα,β on V = W ×W by

Θα,β(x, y) = α(x)− β(y) + i (β(x) + α(y)).

This association is one-to-one: different ordered α, β pairs produce different
Θα,β. Also, Θα,β is obviously real linear and

Θα,β( i (x, y) ) = Θα,β(−y, x) = −α(y)− β(x) + i (−β(y) + α(x)) = iΘα,β(x, y)

so, in fact, Θα,β is complex linear, a member of V ∗C .

(iv) Suppose Θ is a member of the complex algebraic dual of V = W×W . Then

Θ(x, y) = Θ(x, 0) + Θ(0, y) = Θ(x, 0) + iΘ(y, 0).

So Θ is determined in a simple way by its effect on the real vector subspace W ×{0}
of V , and Θ is real linear on that subspace.

Θ(x, 0) = Θr(x, 0) + iΘc(x, 0) = α(x) + i β(x)

for certain real valued real linear functions α and β on W . From the remark above,

Θ(x, y) = Θ(x, 0) + Θ(0, y) = α(x) + i β(x) + i (α(y) + i β(y))

= α(x)− β(y) + i (β(x) + α(y)) = Θα,β(x, y).

So the association indicated by Θα,β between members (α, β) of the real vector space
W ∗R ×W ∗R and members of V ∗C is a real isomorphism onto V ∗C .
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An F-subspace W of the F-vector space V is said to have codimension n if
the dimension of the F-vector space V/W is the cardinal number n. W is called
a maximal subspace of V if it has codimension 1. This is field dependent: a
complex subspace of complex codimension 1 will have real codimension 2, and a
real subspace of real codimension 1 is not a complex subspace at all.

The intersection of k maximal subspaces could have codimension as high as k,
but not more.

An F-hyperplane is a coset of the F-vector space V/W where W is a maximal
subspace of V.

Select non-zero v +W in V/W where W is maximal. Let B̃ be a basis for W .

Then B = {v} ∪ B̃ is a basis of V . Every element in V can be written in a unique
way as a linear combination of members of this basis, and the function Ψ defined on
V by letting Ψx be the coefficient on v in the linear combination for x is F-linear.
W = Ker(Ψ), and the hyperplane v+W consists exactly of those members x of V
for which Ψ(x) = Ψ(v) = 1.

Conversely, if Ψ is any nontrivial linear functional then W = Ker(Ψ) is max-
imal: since the quotient V/W is isomorphic to the image of Ψ, which is F, it has
dimension 1.

If v is chosen so that Ψv = 1 then Ψ is a functional of the type in the last
paragraph for W and this v. Of course, any other vector that differs from v by a
member of W would work equally well but that is the only flexibility in choice of
vector: it must be in the hyperplane v +W .

Suppose Θ and Φ are two nontrivial F-linear functionals with the same kernel
W . We saw above that if v /∈ W and if x = a v + w for generic member x of V ,
where w ∈ K, then

Θx = aΘv and Φ = aΦv and so Θx =
Θv

Φv
Φ.

In other words, functionals with the same kernel are multiples of each other.

If Ψ is a nontrivial real linear functional on the complex vector space V then
Wreal = Ker(Ψ) is a real—not a complex—vector subspace of V . Wreal

⋂
iWreal is

a complex vector space, however, and is the kernel of the complex linear transfor-
mation Θ defined by Θx = Ψx− iΨ(ix) for x ∈ V .

Suppose W is a maximal real subspace of the (real or complex) vector space
V . Suppose v ∈ V, v /∈W and c ∈ R. Define open and closed halfspaces

W≥v,c =
⋃
t≥c

(tv +W ) W>
v,c =

⋃
t>c

(tv +W )

W≤v,c =
⋃
t≤c

(tv +W ) W<
v,c =

⋃
t<c

(tv +W ).

These halfspaces are agglomerations of those “parallel” real hyperplanes on one
side or the other of cv +W .

It is important to emphasize that in the infinite dimensional setting with a
variety of possible topologies on our vector spaces, these open halfspaces may not
be topologically open, and closed halfspaces may not be topologically closed. It
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will give us important information when they are, but for now they are simply sets
defined by algebraic means.

Note that W≥v,c = W≤−v,−c and W>
v,c = W<

−v,−c.

1.3. Exercise. (i) If we were interested in proliferating vocabulary, we might

call a set similar to W≥v,c−ε ∩W
≤
v,c+ε a slabspace and, if Z is maximal and different

from W , we might refer to W≥v,c ∩ Z
≥
u,d as a wedgespace. Think about why these

names would make sense.

(ii) Suppose that neither v nor w is in the maximal real subspace W of V . Then
there is a unique real non-zero constant α with v − αw ∈ W . If α > 0 we say that
v and w are on the same side of W, while if α < 0 we say that v and w are on
opposite sides of W. Suppose cv + W = bw + W . Show that W≥v,c = W≥w,b if v

and w are on the same side of W , while W≥v,c = W≤w,b if v and w are on opposite
sides of W .

Two subsets A and B of a vector space V are said to be separated by the
real hyperplane cv + W provided A is contained in one of W≥v,c or W≤v,c while
B is contained in the other. Note that both A and B could be entirely contained
in that hyperplane, they could even be equal, or empty, and this definition would
have them separated by that hyperplane: not a very interesting case.

A and B are said to be strictly separated by the real hyperplane cv + W
provided A is a subset of exactly one of W>

v,c or W<
v,c while B is only a subset of

the other.

A and B are said to be strongly separated by the real hyperplane cv + W
when there is some positive number ε for which A is a subset of exactly one ofW>

v,c+ε

or W<
v,c−ε and B is only a subset of the other.

We say the subsets A and B are separated, strictly separated or strongly
separated when they can be separated in the appropriate sense by some real
hyperplane.

The non-zero real linear functional Ψ is said to separate A and B if there
is a number c for which A is contained in (at least) one of the sets Ψ−1( (−∞, c] )
or Ψ−1( [c,∞) ) while B is contained in the other.

Ψ is said to strictly separate A and B if there is a number c for which A is
a subset of exactly one of the sets Ψ−1( (−∞, c) ) or Ψ−1( (c,∞) ) while B is only
a subset of the other.

Finally, Ψ is said to strongly separate A and B if there are real numbers c
and ε with ε > 0 and for which A is a subset of just one of the sets Ψ−1( (−∞, c−ε) )
or Ψ−1( (c+ ε,∞) ) while B is only contained in the other.

1.4. Exercise. If A and B are (strictly) (strongly) separated by a hyperplane
cv+W for v /∈W , add {v} to a real basis of W to form a real basis C of V and let
Ψ be the real linear functional defined by letting Ψx be the coefficient on v when x is
represented as a linear combination of members of the basis C. Then W = Ker(Ψ)
and Ψ (strictly) (strongly) separates A and B.
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Conversely, if a real linear functional Ψ (strictly) (strongly) separates A and
B, select v ∈ Ψ−1(c) if c 6= 0, while if c = 0 let v be any vector not in W = Ker(Ψ).
In either case cv +W (strictly) (strongly) separates A and B.

Finally, A and B are (strictly) (strongly) separated exactly when A 	 B and
the set {0} are (strictly) (strongly) separated.

Quite a few different properties will be discussed in combinations, and we may
occasionally use the following notational contrivance in the interest of brevity. If
we want to ascribe a property to an object X we might, in the first instance that X
is encountered in a discussion, list that property along with X as a superscript. For
example we could indicate that Y is a real vector subspace of a real vector space X

by Y
real vector
subspace ⊂ X

real vector
space , or that P is a real linear function by P

real
linear : V →W .

An ordinary vector space basis will frequently be called a Hamel basis, whose
cardinality can be called the Hamel dimension of the space, to distinguish it
from other types of bases to be discussed later. The most important fact about
Hamel basis and Hamel dimension is their existence: every spanning set in a vector
space can be “pruned” to a Hamel basis. Every linearly independent set can be
“expanded” to a Hamel basis. They all have the same cardinality. The general
argument requires the Axiom of Choice.

If you see unadorned reference to “a basis” or “dimension” we are, most likely,
discussing a Hamel basis. Check context to be sure.

2. Some Properties of Subsets of Vector Spaces

A point q is said to be an internal point of the subset M of the vector space V
if for each v ∈ V there is a nonempty interval of the form [0, ε) for which q+tv ∈M
whenever t ∈ [0, ε). The interval (obviously) depends on both q and v.

2.1. Exercise. Suppose M and N are subsets of the vector space V .

(i) If q is an internal point of M and p is any point of N then q + p is an
internal point of M +N .

(ii) If x is any point of V , q is an internal point of M exactly when x+ q is an
internal point of x+M .

A subset A of the F-vector space V is called absorbing if, for each v ∈ V ,
there is a positive real number r so that b v ∈ A whenever b ∈ F and |b| < r.

This condition can be rephrased as follows. Let Sr = { b ∈ F | |b| ≤ r }. So
if F = R this is the interval [−r, r], while in the complex case it is the complex
numbers inside and on the circle of radius r.

A is absorbing ⇔ V =
⋃
r>0

{ v ∈ V | Srv ⊂ A }.

If A is absorbing then 0 is internal to A. More generally, if M	{q} is absorbing
then q is an internal point of M . For real spaces, the converse is also true. But for
complex spaces, even in dimension 1, more is required. (See Exercise 2.3.)
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A set N in a vector space V is said to absorb a set B if there is an integer n
so that if t ∈ F and |t| ≥ n then B ⊂ tN .

If 0 ∈ N , which is the case of primary interest, this is equivalent to saying that
there is an ε > 0 so that SεB ⊂ N .

So a set N is absorbing if it absorbs every one-vector set in V . On the other
hand, N absorbs B if there is an upper bound on the “stretch magnitude” needed
for N to absorb every scalar multiple of magnitude 1 or less of every vector in B
“simultaneously.”

If N absorbs B and 0 ∈ N then for each b ∈ B and scalar α of magnitude 1
there must be some “interval” of vectors { t α b | t ∈ (−ε, ε) } contained in N , where
a single ε > 0 can be chosen for all α and all b. And if arbitrarily large (magnitude)
multiples of a non-zero vector b are in B then the whole line { t α b | t ∈ R } must
be in N for every α.

A is called symmetric if −A = A.

A subset A is called balanced or circled if, for every v ∈ A and b ∈ F with
|b| ≤ 1 we find that b v ∈ A.

A is balanced or circled ⇔ A = S1A.

The “circled” vocabulary is more natural when F = C, while “balanced” seems
more descriptive of the situation for real vector spaces, but both adjectives are
employed in either case.

2.2. Exercise. (i) If A is balanced then 0 ∈ A and A absorbs itself. And if
0 ∈ A and A absorbs itself then A contains a balanced subset that also absorbs A.

(ii) Let A be the interval (−1, 3) together with the single real number 4. The
real numbers are a one dimensional real vector space. A absorbs itself and 0 ∈ A
but A is not balanced.

2.3. Exercise. (i) If M and N are balanced and a ∈ F then M + N and aM
and M ∩N and M 	N are all balanced.

(ii) If N is balanced and 0 is internal then N is absorbing.

(iii) If either N or B is balanced and B ⊂ kN for one k then N absorbs B.

(iv) If both M and N absorb B then M ∩N absorbs B.

Suppose x, y ∈ V . The linear combination tx + (1 − t)y is called a convex
combination of x and y when 0 ≤ t ≤ 1. A subset M of V is called convex if all
convex combinations of x and y are in M whenever x and y are in M .

If M is convex, any straight line segment is entirely contained in M whenever
its endpoints are in M . This condition can be rephrased as follows.

M is convex ⇔ tM + (1− t)M = M ∀t ∈ [0, 1].

2.4. Exercise. (i) If M and N are convex in vector space V and a ∈ F then
M +N and aM and S1M and M ∩N and M 	N are all convex.

(ii) If M is convex in V and ti is in [0, 1] for i = 1, . . . , n and
∑n
i=1 ti = 1 and

xi ∈M for i = 1, . . . , n then
∑n
i=1 tixi ∈M .
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A disk or absolutely convex set is a balanced convex set. Once again, both
vocabularies are found in the literature. The term “disk” might invoke misleading
imagery. For instance, the disks we work with will often contain nontrivial sub-
spaces, and of course any subspace is a disk. Any set of the form |f |−1( (−ε, ε) ) for
linear functional f and positive ε will be a disk, and contains a maximal subspace.

All the definitions of this section apply to the empty set of vectors: every set
absorbs the empty set, which is symmetric, balanced and convex. Normally, of
course, we will be interested in nontrivial sets with these properties.

2.5. Exercise. (i) The intersection of any finite number of absorbing sets is
absorbing, but the intersection of a countable number need not be.

(ii) Any intersection of balanced sets is balanced. So the intersection of all
balanced sets containing a set B ⊂ V is balanced, called the circled hull of B.
The circled hull of B is just S1B.

(iii) The convex hull of a set A ⊂ V is the intersection of all convex sets
containing A. Since the intersection of any family of convex subsets of V is convex,
the convex hull is the smallest convex set containing A. The notation convex(A)
is used for this set. Show that

convex(A) =

{
n∑
i=0

tixi

∣∣∣∣ ti ≥ 0, xi ∈ A,
n∑
i=0

ti = 1, n ∈ N

}
.

(iv) The absolutely convex hull of A is the intersection of all disks containing
A. The absolutely convex hull is itself a disk, the smallest disk containing A. The
notation disk(A) is used for this set. Show that

disk(A) =

{
n∑
i=0

αixi

∣∣∣∣ αi ∈ F, xi ∈ A,
n∑
i=0

|αi| ≤ 1, n ∈ N

}
.

(v) Is disk(A) equal to S1 convex(A)? What about convex(S1A)?

(vi) Suppose B is a disk and absorbs A. Then B absorbs disk(A).

(vii) Any intersection of halfspaces is convex.

2.6. Exercise. Suppose Ψ: V →W is a linear transformation.

(i) The image and inverse image (using Ψ) of balanced sets are balanced.

(ii) The inverse image of an absorbing set is absorbing. If Ψ is onto, the image
of an absorbing set is absorbing.

(iii) The image and the inverse image of convex sets are convex.

The intersection of any finite number of absorbing disks is an absorbing disk: it
too will be balanced, convex and absorbing. In the next sections we will investigate
further what can be done with such sets.
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3. The Minkowski Functional

Suppose V is a vector space over the field F and G : V → R.

G is called subadditive if G(x + y) ≤ G(x) + G(y) for any x, y ∈ V . When
G is subadditive, the defining inequality is called the triangle inequality or,
sometimes, the Minkowski inequality.

Examine G(0) ≤ G(x) +G(−x) and conclude G(0) ≥ 0 for any subadditive G.

G is called positively homogeneous if G( t x ) = tG(x) for any x and t ≥ 0.

G is called sublinear if it is both subadditive and positively homogeneous.

G is called homogeneous if G(αx ) = |α|G(x) for any x ∈ V and α ∈ F.

G is called a semi-norm if it is both subadditive and homogeneous.

Any semi-norm must be non-negative: G(x) = G(−x) and so 0 ≤ G(x) +G(x).

A semi-norm G is called a norm if G(x) = 0 exactly when x = 0.

G is called convex if G( t x+ (1− t) y ) ≤ tG(x) + (1− t)G(y) for any choice
of x, y ∈ V and t ∈ [0, 1]. Note that every sublinear function is convex.

3.1. Exercise. (i) A positive multiple of a semi-norm is a semi-norm. A finite
sum of semi-norms is a semi-norm. If G1, . . . , Gn is a finite list of semi-norms
the function Gmax defined, for each x ∈ V by

Gmax(x) = max{G1(x), . . . , Gn(x) }.

is a semi-norm too.

(ii) If G is a semi-norm, G−1( [0, ε) ) and G−1( [0, ε] ) are absorbing disks for
each ε > 0. Disks of this kind are said to be generated by G.

(iii) If Ψ is a member of the algebraic dual of V then |Ψ| is a semi-norm on
V . It is never a norm, unless V has dimension 0 or 1.

Suppose q is a specified internal point of a set M . Let [0, εv) be the largest
half-open interval for which q+ tv ∈M whenever t ∈ [0, εv). Define P (v) to be ε−1

v

if εv < ∞ and 0 otherwise. The function P is called the Minkowski functional
for M and internal point q. We will refer to P , synonymously, as a Minkowski
gauge.

The Minkowski gauge applied to v is a measure of how far the “edge” of M is
from q in the direction v using v itself as a yardstick. If P (v) is large then it takes
a small multiple of v to get to the edge in that direction. v is “big,” according to
M as seen from q. On the other hand, if it takes many multiples of v to get to
the edge of M from q the gauge evaluates v to be a small vector. If P (v) = 0 for
non-zero v then M is unbounded in the v direction from q.

3.2. Exercise. Suppose P is the Minkowski functional for M and internal point
q in vector space V .

(i) Prove that if t is any non-negative real number, 0 ≤ P (t v) = t P (v) < ∞,
so P is positively homogeneous.
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(ii) Suppose M is convex. If t > 0 and q + t v ∈M then P (v) ≤ 1/t. If q + t v
is, itself, an internal point of M then P (v) < 1/t. If q + t v /∈M then P (v) ≥ 1/t.

(iii) Show that if M is convex then P is subadditive, so (combined with (i)) P
is sublinear and hence convex. (hint: Let c be any number exceeding P (v) + P (w).
Select positive numbers a and b with a > P (v) and b > P (w) and c = a+ b. Since
M is convex, a

a+b (q + a−1v) + b
a+b (q + b−1w) is in M . But this member of M is

q + v+w
a+b = q + v+w

c which implies P (v + w) ≤ c.)

(iv) If M 	 {q} is a disk and q is an internal point of M (so 0 is internal to
M 	 {q}, which is balanced and therefore absorbing) then P is a semi-norm. The
Minkowski gauge for the absorbing disk P−1( [0, 1) ) and internal point 0 is P itself.
Must P−1( [0, 1) ) equal M 	 {q}? What about P−1( [0, 1] )? Give a condition on
M 	 {q} that will guarantee it equals one or the other.

(v) Suppose D is an absorbing disk and Q is the Minkowski gauge for D and
internal point 0. Suppose, for some v ∈ V and t > 0, we find that v ∈ bD if b > t
but v /∈ bD if b < t. Then Q(v) = t.

In this section we have seen that purely geometrical considerations involving
absorbing, balanced convex sets in a vector space can be captured in a gauge, or
semi-norm. Conversely, semi-norms produce these absorbing disks.

4. The Hahn-Banach Theorem

This section is devoted to the possibility of extending a function with certain
properties to a larger domain while preserving those properties.

One reason we want this theorem is that it will allow us to conclude that there
is a rich stock of continuous functionals whenever the theorem applies.

4.1. Theorem. The Hahn-Banach Theorem

If Y
real vector
subspace ⊂ X

real vector
space and P : X → R is convex

and Λ ∈ Y ∗R satisfies Λ ≤ P |Y
then ∃Ψ ∈ X∗R with Λ = Ψ|Y and Ψ ≤ P .

Proof. Suppose Λ′ : Y ′ → R is a linear extension of Λ to a proper subspace
Y ′ of X and that Λ′ is dominated by P on Y ′, as required in the theorem.

If w ∈ X − Y ′ and α, β are positive and u, v ∈ Y ′

β Λ′u + α Λ′v = (α+ β) Λ′
(

β

α+ β
u+

α

α+ β
v

)
≤ (α+ β)P

(
β

α+ β
(u− αw) +

α

α+ β
(v + βw)

)
≤ β P (u− αw) + αP (v + βw).

So
1

α
[ Λ′u− P (u− α w) ] ≤ 1

β
[ P (v + β w)− Λ′v ].
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The left side does not depend on v or β, while the right is independent of α and u.
So there is a real number t with

sup
u∈Y ′
α>0

1

α
[ Λ′u− P (u− α w) ] ≤ t ≤ inf

v∈Y ′
β>0

1

β
[ P (v + β w)− Λ′v ].

Define Λ′′ : Y ′
⊕

Rw → R by Λ′′(v+ rw) = Λ′v+ rt for each r ∈ R and v ∈ Y ′.
Considering the cases of r positive, negative or zero separately, the definition of t
yields

Λ′′(v + rw) = Λ′v + rt ≤ Λ′v + P (v + rw)− Λ′v = P (v + rw).

So any function Λ′ satisfying the conditions of the theorem and whose domain is not
all of X can be extended to a larger subspace of X while preserving its relationship
with P .

Let S be the set of all linear extensions of Λ to subspaces of X which are
dominated by P on their domain. Partially order this set of extensions by Θ ≤ Ψ if
Ψ is an extension of Θ. Chains in S have upper bounds in S and we invoke Zorn’s
lemma and assert that there is a maximal member Ψ of S. The domain of Ψ is X,
else it could be extended by one dimension, contradicting maximality. �

An inspection of the proof shows that for every vector not in the domain of a
functional dominated by P there is a (nonempty) interval of real numbers for which
the value of any functional extension of Λ must lie if it too is to be dominated by
P . The point of the proof is that there always is a value that is consistent with
the other, previously chosen, values of this function subject to domination by P ,
allowing for an extension to one more dimension. A typical Zorn’s lemma argument
finishes the job.

4.2. Corollary . The Hahn-Banach Theorem

If Y
complex vector

subspace ⊂ X
complex vector

space and P : X → R satisfies

P (αv + βu) ≤ |α|P (v) + |β|P (u) if u, v ∈ X and |α|+ |β| = 1

and if Λ ∈ Y ∗C satisfies |Λ| ≤ P |Y
then ∃Ψ ∈ X∗C with Λ = Ψ|Y and |Ψ| ≤ P .

Proof. Let L be the real part of Λ, thought of as a real linear functional.
∀y ∈ Y, Ly ≤ |Λy| ≤ P (y). Also, for real positive constants α and β the condition
on P in the statement of this corollary reduces to convexity. So Theorem 4.1 applies:
∃ real linear M : X → R extending L and with Mx ≤ P (x) ∀x ∈ X.

Let Ψx = Mx− iM(ix) ∀x ∈ X. Ψ is real linear (because M is) and we check
that Ψ(ix) = iΨx, so Ψ is actually a complex linear functional and extends Λ to
all of X. It remains only to show that |Ψ| ≤ P .

Pick x ∈ X. Find angle θ so that Ψx = |Ψx|eiθ.
Then |Ψx| = (Ψx)e−iθ = M

(
e−iθx

)
− iM

(
ie−iθx

)
= M

(
e−iθx

)
(the complex part must be zero)

≤ P
(
e−iθx

)
≤
∣∣e−iθ∣∣ P (x) = P (x).
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�

4.3. Lemma. Suppose M is a convex subset of the (real or complex) vector
space V with internal point 0 and x /∈M . Then there is a real linear functional Ψ
so that Ψx ≥ 1 but Ψy ≤ 1 for all y ∈ M . In other words, x is separated from M
by this real linear Ψ.

Proof. Let P be the Minkowski functional for M and the internal point 0 as
in Exercise 3.2. Since x /∈M , P (x) ≥ 1.

Define linear Λ on Rx by Λ(t x) = t P (x). If t ≥ 0 then Λ(t x) = P (t x) =
t P (x) ≥ t. If t < 0 then Λ(t x) = t P (x) < 0 ≤ P (t x).

So by the Hahn-Banach Theorem, Λ can be extended to a real linear functional
Ψ dominated by P on all of V . We saw in Exercise 3.2 that P (y), and hence Ψy,
cannot exceed 1 on M . �

4.4. Exercise. In Lemma 4.3, if P (x) > 1 then the real linear functional Ψ
strongly separates x and M . This must happen, for instance, if M = P−1( [0, 1] ).

Suppose M is an absorbing disk, and consider the situation of Lemma 4.3.
Suppose P (y) < 1 for all y in M . We will call M edgeless in that case. The
temptation to call it “open” is resisted to avoid clash with the related topological
notion, and we will see later that the two ideas may not coincide.

For edgeless M , since M is balanced y ∈M exactly when S1y ⊂M . Generally,
P (cy) = |c|P (y) so for those x with P (x) = 1 the vector cx is definitely not in M
when |c| ≥ 1, and definitely in M if |c| < 1.

Given real linear Ψ for any x with P (x) = 1, as in the lemma, note that |Ψ|(cy)
never exceeds |c|P (y). That is because Ψ(cy) ≤ P (cy) = |c|P (y). And if Ψ(cy)
were ever less than −|c|P (y) then |c|P (y) = P (−cy) ≥ Ψ(−cy) > |c|P (y) = P (cy),
impossible.

Every member of M is in the open halfspace Ψ−1( (−∞, 1) ) and x is not.
Actually, every member of M is in the “slab” Ψ−1( (−1, 1) ) = |Ψ|−1( [0, 1) ) which
is, itself, an absorbing disk.

Finally, if z satisfies P (z) > 1 then choosing x = z/P (z) we see that z is not
in the halfspace either.

We conclude with the following proposition.

4.5. Proposition. Edgeless absorbing disks are the intersection of open
halfspaces. The complement of an edgeless absorbing disk
is the union of closed halfspaces.

Proof. See the discussion above. �

So these absorbing disks are exactly the balanced absorbing sets that can be
separated from the rest of the space by slicing away that which is not wanted using
translates of real maximal subspaces. It might take, however, an infinite or even
uncountably number of these real hyperplanes to nip off all the unwanted corners,
even in the real two dimensional setting.
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In that particular case, though, you can use linear combinations of just two
functionals to create the necessary maximal subspaces (lines through the origin).
In an infinite dimensional setting you will need . . . more.

4.6. Exercise. (i) Modify the argument from above to accommodate edged
absorbing disks: i.e. those for which M = P−1( [0, 1] ). These are the intersection
of closed halfspaces.

(ii) Is an edged absorbing disk the intersection of open halfspaces? Is an edgeless
absorbing disk the intersection of closed halfspaces?

(iii) Can anything be done with disks that are not absorbing?

4.7. Exercise. (i) (Convex Separation Theorem) Suppose M and N are
disjoint nonintersecting convex subsets of the vector space V , and the convex set
M has an internal point. Then there is a real linear functional Ψ which separates
M and N . (hint: Suppose m is internal in M . Then M 	 {m} and N 	 {m} are
disjoint and 0 is internal in M 	 {m}. Any Ψ separating M 	 {m} and N 	 {m}
would also separate M and N , so without loss we assume 0 to be internal to M .
Now select x ∈ N . 0 is also internal to the convex set M 	N + {x}, and x is not
in M 	N + {x}. Look at the real linear functional of Lemma 4.3 for M 	N + {x}
and {x}.)

(ii) If, following the hint in part (i), P (x) > 1 where P is the Minkowski gauge
for M 	N + {x} with internal point 0, then Ψ strongly separates M and N .

(iii) If V is a complex vector space there is a complex linear functional Θ whose
real part separates M and N . (hint: Let Θp = Ψp− iΨ(ip).)

5. Normed Linear and Banach Spaces

A semi-normed linear space is a vector space Y over a field F, where F
is either C or R, together with a semi-norm ‖ · ‖ : Y → [0,∞). If the semi-norm
is a norm, Y together with this norm is called a normed linear space. The
abbreviations SNLS and NLS are used for the phrases “semi-normed linear space”
and “normed linear space” respectively.

5.1. Exercise. (i) Any semi-norm ‖ · ‖ gives rise to a pseudometric ρ defined
by ρ(x, y) = ‖x − y‖. This pseudometric is translation invariant: ρ(x + z, y +
z) = ρ(x, y) ∀x, y, z ∈ Y . Also, ρ(αx, αy) = |α| ρ(x, y) for any α ∈ F. In fact,
any pseudometric on a vector space that is translation invariant and also has this
homogeneity property for scalars can be used to produce a semi-norm for which
it is the pseudometric: let ‖x‖ = ρ(x, 0).

Any SNLS can (and will, whenever convenient) be regarded as a pseudometric
space with this pseudometric, and a topological space with the topology induced by
this pseudometric.

(ii) Scalar multiplication and vector addition are jointly continuous (product
topology on domain pairs) with the topology generated by this pseudometric, and this
topology makes V into a topological group with vector addition. (See Proposition
7.2 for the generalization to locally convex topologies.)
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(iii) This pseudometric is a metric exactly when the semi-norm is a norm.

The set of all continuous linear transformations in HF (V,W ) will be denoted
CLF (V,W ). And we may use, from time to time, CLF (V ) in place of CLF (V, V )
to denote the set of continuous operators on the SNLS V . The vector space
CLF (V ) is also an algebra with composition as multiplication, non-commutative
except in trivial cases, and this additional structure will be important later.

Here, and in later usage, topologies on a vector space V will come from different
sources; there may be, for instance, more than one semi-norm on V . In that case
the notation CLF (V,W ) is ambiguous. Whenever this confusion is likely we will get
more specific, identifying a topology T on V and S on W and then denote the con-
tinuous linear maps from V with topology T and W with topology S by a sufficiently
detailed notation such as CLF ( (V,T), (W, S) ) or CLF ( (V, ‖ · ‖1), (W, ‖ · ‖2) ).

If W = F we write V ′F instead of CLF (V, F ). V ′F is called the continuous dual
of V. It is a subset of the algebraic dual V ∗F . Short forms neglecting to mention
the field F will be used when that will not cause confusion.

We call an SNLS complete if it is complete with the pseudometric of the
exercise above, which means that every Cauchy sequence1 in the space converges
to a point in the space. A complete NLS is called a Banach space.

Two (semi-)norms ‖ · ‖1 and ‖ · ‖2 on Y are called (semi)norm equivalent if
there are positive constants C1 and C2 with

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1 ∀x ∈ Y.

This means, exactly, that the pseudometrics generated by these semi-norms are
pseudometrically equivalent, and equivalent semi-norms produce the same Cauchy
sequences.

If A is a nonempty subset of an F-vector space let span(A) denote the set of
all finite F-linear combinations of members of A.

5.2. Exercise. (i) Two semi-norms ‖·‖1 and ‖·‖2 on Y are semi-norm equiva-
lent if and only if the identity map from (Y, ‖·‖1) to (Y, ‖·‖2) is a homeomorphism.

(ii) Every vector space has a norm. (hint: Let B be a basis of vector space
Y . For y =

∑n
i=0 y

i bi, where the bi are distinct members of B and each yi is a
number, define ‖ y ‖ =

∑n
i=0 | yi |.)

(iii) If Y is infinite dimensional not all norms on Y are equivalent. (hint:
Define ‖ · ‖ on Y with basis B as in (ii). Let ci for i ∈ N be an ordering of a
countably infinite subset C of B and let A = B − C. So Y = span(A)⊕ span(C).

Define ‖ · ‖0 on span(C) by ‖ y ‖0 =
∑n
i=0

∣∣∣ yi

i+1

∣∣∣ when y =
∑n
i=0 y

i ci. Finally, for

y = yC +yA where yC ∈ span(C) and yA ∈ span(A) define ‖ y ‖1 = ‖ yC ‖0 +‖ yA ‖.
Norm ‖ · ‖1 is not equivalent to ‖ · ‖.)

(iv) If Y is finite dimensional all norms on Y are equivalent. (hint: Suppose Y
is n dimensional with norm ‖ · ‖ and ordered basis b1, . . . , bn. Let e1, . . . , en be the

1Recall that a sequence xn for n ∈ N is Cauchy exactly when, for every ε > 0 ∃N so that
m,n > N ⇒ ‖xn − xm ‖ < ε.
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standard basis of Fn. Define isomorphism T : Y → Fn by T (y) =
∑n
i=1 y

i ei when

y =
∑n
i=1 y

i bi. Define norm ‖ · ‖0 on Fn by ‖x‖0 =
∥∥T−1x

∥∥.

We will show that ‖ · ‖0 is equivalent to the norm ‖ · ‖1 on Fn given by ‖ a ‖1 =∑n
i=1

∣∣ai∣∣ for each a =
∑n
i=1 a

i ei and the desired result about norms on Y follows.

First, if M is the maximum value of ‖ei‖0 = ‖bi‖ for i = 1, . . . , n then the
triangle inequality implies

‖ a ‖0 ≤
n∑
i=1

∣∣ai∣∣ ‖ ei ‖0 ≤ M

n∑
i=1

∣∣ai∣∣ = M‖ a ‖1.

If Fn is endowed with the usual topology, the one generated by norm ‖ · ‖1,
this inequality and the fact that | ‖x ‖0 − ‖ y ‖0 | ≤ ‖x − y ‖0 shows that ‖ · ‖0 is a
continuous function.

The set of members of Fn that satisfy ‖x ‖1 = 1 is compact by the Heine-Borel
theorem. Since ‖ · ‖0 is continuous it attains a minimum value L on this set, and
this minimum value cannot be 0. Then homogeneity of the norm ‖ · ‖0 implies
L‖ a ‖1 ≤ ‖ a ‖0 for all a.)

(v) If ‖ · ‖1 is a semi-norm on Y then N = {x ∈ Y | ‖x‖ = 0 } is a closed
subspace of Y . The function ‖ · ‖2 : Y/N → [0,∞) defined by ‖y+N‖2 = ‖y‖1 is a
norm on the quotient space Y/N . The quotient space is Banach exactly when Y is
complete.

5.3. Lemma. If A is a subset of an NLS X and span(A) is finite dimensional
then span(A) is closed. But if A is countable and span(A) is not finite dimensional
and X is Banach then span(A) is not closed. So an infinite dimensional Banach
space has uncountable Hamel dimension.

Proof. span(A) is itself an NLS using the restriction of the norm from X. It
is easy to show that any Cauchy sequence in a finite dimensional subspace of an
NLS converges in that subspace (identify that subspace with Fn as in Exercise 5.2)
and so finite dimensional subspaces are closed in any NLS.

Now suppose X is Banach and span(A) is not finite dimensional for countable
A. We suppose, to obtain contradiction, that span(A) is closed. In that case,
span(A) is itself a Banach space with restriction norm, and so is, itself, a complete
metric space. Complete metric spaces are of second category, according to the Baire
category theorem.

Let (ai) be the sequence formed (without repeats) from the members of A,
including all members somewhere in the sequence. Let Ai = { ak | 1 ≤ k ≤ i }. So
span(Ai) is finite dimensional for each i, and therefore closed. Note that span(A) =⋃∞
i=1 span(Ai) so

∅ = span(A)−
∞⋃
i=1

span(Ai) =

∞⋂
i=1

(span(A)− span(Ai)) .

But each span(A) − span(Ai) is open in span(A) and its closure is easily seen to
be all of span(A) and therefore dense. But the intersection of such sets cannot be
empty in a second category space. This contradiction implies that span(A) is not
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closed, and so in particular cannot be all of X. So no countable subset of X can
span X unless X is finite dimensional. �

We remark that the same argument works for any vector space with a topology
making the vector operations continuous (we used this continuity twice) provided
it is of second category.

5.4. Lemma. If A is a closed subspace of an NLS X and F is a finite dimen-
sional subspace of X then A⊕ F is closed.

Proof. Suppose, to obtain contradiction, that A⊕F is not closed. Then there
must be members ai ∈ A and fi ∈ F for i ∈ N for which yi = ai + fi converges to
a vector y /∈ A⊕ F .

Should the fi contain any bounded subsequence, this subsequence will itself
have a subsequence fin converging to some member f ∈ F , since the part of the
unit sphere in finite dimensional F is compact. Then the sequence y − fin = ain
also converges, in this case to a = y − f . But A is presumed to be closed so a ∈ A
and then y = a+ f ∈ A⊕ F , contrary to assumption.

So we may presume that there is an unbounded subsequence of fi. In particular,
we may assume (by going to a subsequence if necessary) that ‖ fi ‖ > i for every i.
Now let’s examine

zi =
yi
‖ fi ‖

=
fi
‖ fi ‖

+
ai
‖ fi ‖

.

Then zi converges to the zero vector, and fi/‖ fi ‖ has norm 1 for each i. That
means fi/‖ fi ‖ has a convergent subsequence fin/‖ fin ‖ whose limit f is on the
unit sphere and in F . So ain/‖ fin ‖ also has a limit: it is −f and is on the unit
sphere and in A ∩ F = { 0 }.

With this final contradiction we conclude that A⊕ F must be closed. �

The result from above relies on the finite dimensional nature of one of the
summands: it might surprise you to learn that the statement is false without that
assumption. See Exercise 14.13 for more on this.

A member T ∈HF
(
V NLS,WNLS

)
is called bounded provided there is a non-

negative number c with

‖Tv‖ ≤ c ‖v‖ for every v ∈ V.
If T is bounded, the infimum of the numbers c with ‖Tv‖ ≤ c ‖v‖ for every

v ∈ V is denoted ‖T‖.
If T is not bounded, we could find a sequence vi for which ‖Tvi‖ → ∞ but

‖vi‖ = 1 for all i. Even more, by choosing a subsequence vik for which ‖Tvik‖ > k2

for all k and defining wk = vik/k we have ‖Twk‖ → ∞ but ‖wk‖ → 0.

T is called bounded below provided there is a positive number c with

‖Tv‖ ≥ c ‖v‖ for every v ∈ V.
We note here that if T is not bounded below, we could find a sequence vi

for which ‖Tvi‖ → 0 but ‖vi‖ = 1 for all i. By choosing a subsequence vik for
which ‖Tvik‖ < 1/k2 for all k and defining wk = k vik we have ‖Twk‖ → 0 but
‖wk‖ → ∞.
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5.5. Exercise. We will see in a moment that the bounded and continuous linear
transformations between normed linear spaces coincide, but for now let B denote
the bounded members of HF (V,W ).

(i) B is a vector subspace of HF (V,W ).

(ii) ‖ · ‖ as defined above is a norm on B, called the operator norm, and
unless otherwise specified B will be assumed to be an NLS endowed with this norm.

5.6. Proposition. For Ψ ∈HF
(
V NLS,WNLS

)
, the following are equivalent:

(i) Ψ is continuous at a particular x ∈ V .
(ii) Ψ is uniformly continuous.
(iii) Ψ is bounded.

Proof. (i) ⇔ (ii): Suppose Ψ is continuous at x. So for each ε > 0 there
is a δ > 0 so that ‖y − x‖ < δ implies ‖Ψ(y) − Ψ(x)‖ < ε. So if ‖z − w‖ =
‖(z − w + x) − x‖ < δ, we find ‖Ψ(z − w + x) − Ψ(x)‖ = ‖Ψ(z − w)‖ < ε and
conclude that Ψ is continuous at each w ∈W with a uniform choice of δ for each ε.

(ii) ⇒ (iii): If Ψ is not bounded then there is a sequence x : N → W with
limn∈N ‖xn‖ = 0 and ‖Ψxn‖ > 1 for each n. So Ψ is not continuous at 0

(iii) ⇒ (ii): If ‖Ψ‖ exists and is non-zero, and if ‖w − v‖ < ε
‖Ψ‖ then ‖Ψ(w −

v)‖ < ε so Ψ is continuous. �

It is easy to show that if F ∈ CLF (V,W ) and G ∈ CLF (W,Z) where V,W and
Z are normed linear spaces that

‖G ◦ F ‖ ≤ ‖G ‖ ‖F ‖.

The distance between two nonempty subsets A and B of an NLS X is

d(A,B) = inf{ ‖a− b‖ | a ∈ A, b ∈ B }.
It is easy to show that this is a pseudometric on the collection of nonempty

subsets of X, and in fact this pseudometric has a homogeneity condition

d( cA, cB ) = |c| d(A,B) ∀c ∈ F.

The distance between a point v and a nonempty subset B is then given by the
obvious modification d(v,B) = d({v}, B). The nonempty set B is closed exactly
when d(v,B) = 0 implies x ∈ B.

5.7. Proposition. Suppose A is a subspace of an NLS X and v ∈ X and v /∈ A.
Then there is a member φ of X ′ with ‖φ ‖ = 1 and φ(v) = d(v,A) and A ⊂ Ker(φ).

Proof. Define φ on the subspace Y = Fv ⊕A of X by

φ(λ v + a) = λ d where d = d(v,A).

If w = λ v + a then

‖w‖ = |λ|
∥∥∥∥v − a

−λ

∥∥∥∥ ≥ |λ| d(v,A) = |λ| d.

So the operator norm of φ on Y cannot exceed 1. In particular, φ is continuous
when restricted to Y , and |φ(w) | ≤ ‖w ‖ there.
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On the other hand, we can select a sequence of vectors ai ∈ A for which
‖ v − ai ‖ converges to d. Then xi = v−ai

‖ v−ai ‖ has norm 1 and so φ(xi) = d
‖ v−ai ‖

which converges to 1. Thus ‖φ ‖ ≥ 1.

Coupled with the earlier inequality we have ‖φ ‖ = 1. Also φ(v) = d and
φ(A) = { 0 }.

Now extend φ to all of X using the Hahn-Banach theorem using the norm as
dominating function on all of X. �

Note that if A = { 0 } in this proposition we have found, as a special case,
continuous φ for which ‖φ ‖ = 1 and φ(v) = ‖ v ‖. This useful and important
observation has many consequences, as we shall see; the following lemma is one.

We will call a sequence xn, n ∈ N in an NLS X uniformly weakly Cauchy
if for every ε > 0 there is an integer N so that

m,n ≥ N ⇒ |φ(xn − xm) | ≤ ‖φ‖ ε ∀φ ∈ X ′.
In other words, the functional differences can be made small simultaneously for

every functional in the unit ball in X ′.

5.8. Lemma. Suppose xn, n ∈ N is a sequence in an NLS X. The sequence is
Cauchy in the norm of X if and only if it is uniformly weakly Cauchy.

Proof. Since |φ(xn − xm) | ≤ ‖φ ‖ ‖xn − xm ‖ it is clear that if the sequence
is Cauchy it will be uniformly weakly Cauchy.

On the other hand, if the sequence is not Cauchy, there is a ε > 0 so that for
every N there are nN and mN for which ‖xnN − xmN ‖ > ε. By the remark above
there is a functional φN with ‖φN ‖ = 1 and |φN (xnN−xmN ) | = ‖xnN−xmN ‖ > ε.
So the sequence is not uniformly weakly Cauchy. �

5.9. Exercise. Suppose V is an NLS and V ′ is separable. That means there is
a countable set of continuous functionals φi, i ∈ N, which is dense in V ′.

(i) Show that the set of functionals of the form τi = φi/‖φi ‖ (delete any
instances of the zero functional first) is dense in the unit sphere in V ′.

(ii) So there is a sequence of unit vectors vi in V for which τi(vi) > 1/2 for all
i. Let A denote the closure of the span of these vectors.

(iii) Suppose v ∈ V − A. By Proposition 5.7 there is a functional µ ∈ V ′ of
norm one with µ(v) = d = d(v,A) > 0 and for which µ(vi) = 0 for all i.

(iv) For each i we have 1/2 < τi(vi) = τi(vi) − µ(vi) ≤ ‖ τi − µ ‖. But this
contradicts the assumption that the τi are dense in the unit sphere in V ′. Therefore
V −A is empty.

(v) The complex numbers with rational real and complex part form a countable
dense subset of the complex numbers. So the set of finite linear combinations using
these “rational” complex numbers and the vectors vi for i ∈ N is dense in A = V.

(vi) Conclude that if V′ is separable so is V.
(vii) The converse of this statement is false. In Section ?? we saw that `1,

which is separable, has dual `∞, which is not separable. (hint: For each subset A
of N the characteristic function χA is in `∞ and each characteristic function of
this type is distance 1 from every other. Looking at the ball of radius 1/2 around
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each we have an uncountable number of disjoint balls in `∞. No countable dense
set can have a member in each.)

A result, similar in flavor, is given next. It says, essentially, that there are parts
of the unit sphere in any Banach space that are a substantial distance away from
any proper closed subspace, nearly the maximum possible distance of 1.

5.10. Proposition. Riesz’ Lemma
Suppose A is a subspace of a Banach space X and X 6= A. Then for every t with
0 < t < 1 there is a member x ∈ X with ‖x ‖ = 1 and d

(
x,A

)
≥ t.

Proof. Suppose y ∈ X − A and let d = d
(
y,A

)
. So d > 0, else there would

be a sequence in A converging to y and then y ∈ A, contrary to assumption.

For any ε > 0 select aε ∈ A so that ‖ aε − y ‖ < d+ ε. and then define

xε =
aε − y
‖ aε − y ‖

.

So d
(
xε, A

)
= inf

{
‖xε − a ‖ | a ∈ A

}
= inf

{∥∥∥∥ aε − y
‖ aε − y ‖

− a
∥∥∥∥ | a ∈ A}

= inf

{∥∥∥∥ a− y
‖ aε − y ‖

∥∥∥∥ | a ∈ A} =
inf
{
‖ a− y ‖ | a ∈ A

}
‖ aε − y ‖

=
d

d+ ε
.

ε can now be chosen to satisfy the requirement for any t with 0 < t < 1. �

Sometimes Riesz’ Lemma is phrased in the following (obviously equivalent)
form: If A is a subspace of a Banach space X and X 6= A then there is a sequence
xn of unit vectors in X for which d

(
xn, A

)
→ 1.

5.11. Exercise. Use Reisz’ Lemma to show that the unit sphere in an infinite
dimensional Banach space cannot be compact.

5.12. Exercise. We will show here that if V is an infinite dimensional NLS
then V ′ cannot be all of V ∗: there are linear functionals which are not continuous.

Let S be a a Hamel (i.e. ordinary vector space) basis for V and let x0, x1, . . .
be a countably infinite ordered list of distinct members of S with ‖xi ‖ = 1 for each
i. Define f(xi) = i for each i ∈ N and define f(s) = 0 for the remaining members
of S. Extend f to all of V by linearity. This function is not bounded.

A function T : V → W between vector spaces V and W is called conjugate
linear if T (v + αw) = T (v) + αT (w) for all v, w ∈ V and α ∈ F. If a one-to-one
linear or conjugate linear function T is onto W it has an inverse function, and that
inverse is also linear or, respectively, conjugate linear.

5.13. Exercise. (i) A linear or conjugate linear function T between normed
linear spaces is an isometry if and only if ‖x‖ = ‖Tx‖ for each x ∈ V . Note that
one must deduce from context which norm we mean (the one on V or the one on
W ) in an expression such as this one. An isometry is continuous and one-to-one.
If T is an isometry onto W then T−1 is also an isometry.
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(ii) Make the necessary definitions and prove for conjugate linear functions the
analogue of Proposition 5.6.

(iii) Suppose V and W are Banach spaces and A is a vector subspace (not
necessarily closed) of V . A is the topological closure of A, the set of limits of all
Cauchy sequences of members of A, and is itself a Banach space with norm from
V . Suppose T : A → W is a linear isometry. Then T can be extended in a unique
way to a continuous function G : A → W and G(A) = T (A). So thought of as as
a map G : A→ G(A) the function G is an invertible isometry between two Banach
spaces.

We will refer to a member of CLF (V,W ) as an isomorphism of normed
linear spaces provided it is a homeomorphism: that is, it is continuous with
continuous inverse. In light of Proposition 5.6, an invertible member of CLF (V,W )
is an isomorphism in this sense exactly when the inverse is in CLF (W,V ).

5.14. Proposition. Suppose Ψ ∈ CLF
(
V Banach,WNLS

)
. Ψ has an inverse

function Ψ−1 ∈ CLF (W,V ) exactly when Ψ is bounded below and Ψ(V ) is dense in
W .

Proof. If Ψ has an inverse function at all then Ψ(V ) is not only dense in W ,
it must equal W . And it is easy to show that if Ψ is not bounded below then Ψ−1

cannot be continuous. So the necessity of the two conditions is clear.

On the other hand, suppose Ψ(V ) is dense in W and Ψ(vi) for i ∈ N is a Cauchy
sequence in Ψ(V ). If Ψ is bounded below there is a greatest positive constant c for
which ‖Ψ(x)‖ ≥ c ‖x‖ for all x ∈ V . It follows that ‖Ψ(vi) − Ψ(vj)‖ ≥ c ‖vi − vj‖
so the sequence of vectors vi is Cauchy in Banach V and therefore converges to a
vector v ∈ V . By continuity of Ψ we must have Ψ(vi) converging to Ψ(v), so W is
complete too and in fact Ψ(V ) = W . It follows easily that

∥∥Ψ−1(x)
∥∥ can approach

but never exceed ‖x‖/c so
∥∥Ψ−1

∥∥ = 1/c. �

For more along this line see Lemma 10.5 and the exercise that follows it.

5.15. Exercise. Suppose B is a countable Hamel basis for a vector space V and
that b0, b1, b2, . . . is an enumeration of the members of this basis. Every member
of V has a unique representation as

∑
n∈N anbn where only finitely many of the an

are non-zero. Define ‖
∑
n∈N anbn‖ to be the maximum value among the numbers

|an|, n ∈ N. Define T : V → V by T
(∑

n∈N anbn
)

=
∑
n∈N

an
n+1bn.

(i) ‖·‖ is a norm on V but V is not complete. (The sequence vk =
∑k
n=0

1
n+1bn

is Cauchy but does not converge to any member of V .)

(ii) T is bounded and ‖T‖ = 1.

(iii) T has an inverse but T−1 is not bounded.

5.16. Proposition. CLF
(
V NLS,WBanach

)
is Banach with operator norm.

In particular, V ′F is Banach.
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Proof. We need only demonstrate completeness. SupposeA : N→ CLF (V,W )
is Cauchy. So for each x ∈ V the sequence formed by Anx is Cauchy in W . Since
W is complete Anx converges to some point B(x) in W . Because each An is linear,
so too is the function B.

It remains to show that B is bounded and A converges to B in operator norm.

Note that | ‖An‖ − ‖Am‖ | ≤ ‖An − Am‖. So the numbers ‖An‖ converge to
some non-negative number C. For each x ∈ V , ‖Bx‖ = limn→∞ ‖Anx‖ ≤ C‖x‖.
So B is bounded.

Select k so large that m,n > k implies ‖Am −An‖ < ε. So if x is non-zero,

‖(B −An)x‖
‖x‖

≤ ‖(B −Am)x‖
‖x‖

+
‖(Am −An)x‖

‖x‖
.

As m grows the first term on the right converges to 0 and the second cannot exceed
ε. We conclude that

‖(B −An)x‖
‖x‖

≤ ε for n > k and any non-zero x.

Since ε was an arbitrary positive number, we find that limn→∞ ‖B −An‖ = 0 and
A converges to B in operator norm.

Since | ‖B‖ − ‖An‖ | ≤ ‖B − An‖ and the last quantity can be made as small
as desired provided only that n is large enough, we observe that ‖B‖ = C. �

A mapping ΨLinear : XNLS → Y Banach is called compact exactly when Ψ(S) is
a compact subset of Y whenever S is a bounded subset of X.

If compact, a function Ψ must be bounded, and so compact linear functions
are continuous.

When we discuss compact sets in a more general context (see Proposition 7.13
and Exercise 7.14) we will see that Ψ is compact if and only if it takes bounded
sets to totally bounded sets.

For now there is an important equivalent condition, which reduces the question
of whether a mapping is compact or not to an issue involving sequences.

Suppose (xi) is a bounded sequence in X: that is, its range is a bounded set.
Then compactness of Ψ requires {Ψ (xi) | i ∈ N } to have compact closure in Y .
This implies that the sequence of image points (Ψ (xi)) has a Cauchy subsequence.

Conversely, if this last condition must necessarily hold for any bounded se-
quence in X then Ψ is a compact mapping.

5.17. Lemma. Ψ: XNLS → Y Banach is compact exactly when either of the
following equivalent conditions pertain.

(i) Ψ takes the unit ball in X to a set with compact closure in Y .

(ii) Ψ takes any sequence in the unit ball in X to a sequence with
a convergent subsequence in Y .
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Proof. Let D be the unit ball of X. Every bounded set B in X is contained

in nD for some positive n. So 1
nB ⊂ D. So Ψ

(
1
nB
)
⊂ Ψ(D). So Ψ

(
1
nB
)
⊂ D. A

closed subset of a compact set is compact, and continuity of scalar multiplication
finishes the argument for (i).

Condition (ii) now follows from (i) and the remarks preceding this lemma. �

5.18. Lemma. If Ψ: XNLS → Y Banach is compact and A : Y → ZBanach

and B : WNLS → X are continuous then AΨB is compact.

Proof. Show that under the given conditions a bounded sequence in W must
be taken to a sequence with a convergent subsequence in Z. �

Define KF(X,Y) to be the set of compact linear functions from X to Y with
operator norm. The special case where Y = X will be denoted KF(X), the compact
operators on X.

5.19. Proposition. The compact linear maps KF(X,Y ) from NLS X
to Banach space Y are closed in CLF (X,Y ) and therefore form,
themselves, a Banach space with operator norm.

Proof. Suppose Ψn : X → Y , n ∈ N, is a sequence of compact maps and
limn→∞Ψn = A, where the limit is taken with respect to operator norm.

Suppose (xi) is a sequence in X for which ‖xk‖ < B for all k: that is, it is a
bounded sequence. There is a subsequence

(
x0
i

)
with ‖Ψ0(x0

j − x0
i )‖ < 1 for all i

and j because Ψ0 is compact.

Having found subsequence (xni ) of the original bounded sequence for which
‖Ψn(xnj − xni )‖ < 1/(n + 1) for all i and j select subsequence

(
xn+1
i

)
of (xni ) for

which ‖Ψn+1(xn+1
j −xn+1

i )‖ < 1/(n+1+1) for all i and j. And now define sequence

(yi) by yk = xk0 for all k ∈ N.

Then the sequence (A(yk)) converges in Y . To see this, we suppose ε > 0 and
choose n so large that 1/n < ε and also that ‖A − Ψn‖ < ε. Then we have for all
k and m exceeding n

‖A(yk − ym)‖ = ‖A(yk − ym)−Ψn(yk − ym)‖+ ‖Ψn(yk − ym)‖
< ‖A−Ψn‖ ‖yk − ym‖+ ‖Ψn(yk − ym)‖ < 2Bε+ ε.

Since B is fixed and ε can be chosen to be arbitrarily small, A(yk) is a Cauchy
sequence in complete Y which therefore converges in Y .

Our conclusion is that A is compact too. �

If a continuous linear map Ψ: XBanach → Y Banach has finite rank (that is,
Ψ(X) is finite dimensional) it is clearly compact. (Apply the Heine-Borel theorem
to Ψ(X) with restriction norm.)

The range of any finite rank mapping is separable—look at the rational linear
combinations of any Hamel basis. But this is also true of any compact mapping.

5.20. Lemma. If Ψ ∈K
(
XBanach, Y Banach

)
then Ψ(X) is separable.
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Proof. Let B be the unit ball in X and D the unit ball in Y . Suppose Ψ to
be compact. The vector subspace Ψ(X) of Y can be written as

Ψ(X) =

∞⋃
n=1

Ψ(nB) =

∞⋃
n=1

nΨ(B).

By Exercise 7.14 each Ψ(nB) is totally bounded. So for each n there are members
yn1 , . . . , y

n
in

of Ψ(nB) = nΨ(B) for which

nΨ(B) ⊂
in⋃
k=1

(
ynk +

1

n
D

)
.

If y is any member of Ψ(X) then it is in all Ψ(nB) for large enough n. If O is any
open set containing y then y+ 2

nD is inside O for all n exceeding some value. And

y ∈ ynk + 1
nD for one of the ynk . But then

ynk +
1

n
D ⊂ y +

2

n
D ⊂ O.

The set of all these ynk is countable, and form the necessary countable dense subset.
�

A Banach space Y is said to have the approximation property if the identity
operator can be uniformly approximated by continuous finite rank maps on each
compact subset of Y .

Specifically, this means that for each compact B ⊂ Y and each ε > 0 there is
a continuous finite rank map F : Y → Y (depending on B and ε) for which

sup{{‖x− F (x)‖ | x ∈ B } < ε.

We will show that when Y has this property every member of K(X,Y ) is an
operator norm limit of continuous finite rank operators, a desirable feature referred
to as the approximation property for these compact operators.

It is known that some Banach spaces do not have the approximation property.
We will show that if Y is a Hilbert space (see Section 14) or any Banach space with
a Schauder basis (see Section 11) then Y does have this property.

The approximation property is key to finding solutions to some of the problems
that generated the field of functional analysis to begin with, including study of
Fredholm integral equations, and we will bring the matter up again later.

6. Topological Vector Spaces

If, for a given topology on vector space V , the vector space operations are
continuous we say that V is a topological vector space, or simply a TVS.

Continuity of scalar multiplication is not implied by continuity of vector addi-
tion. All topological vector spaces are path connected—scalar multiplication yields
a continuous path from any point to 0—but continuity of vector addition alone does
not require this. The discrete topology provides the extreme example.
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On that note, the same continuous path shows that 0 is an internal point of
every open neighborhood of 0 which, in the real case, is enough to conclude that
every open neighborhood of 0 is absorbing.

But actually, more is true. In the complex case scalar multiplication is a con-
tinuous function from C× V → V . So the inverse image of any neighborhood O of
0 is a neighborhood of (0, 0) in C× V . So there is an ε > 0 and an open neighbor-
hood O1 of 0 in V for which basic open Sε ×O1 is contained in this inverse image.
Then SεO1 ⊂ O. And SεO1 is balanced. Coupled with the fact that 0 is interior,
we find that SεO1 is absorbing. Containing an absorbing set, we find that every
neighborhood of 0 is absorbing in the complex case too.

6.1. Lemma. Every neighborhood of 0 in a TVS contains a balanced open
neighborhood of 0, which is interior, so every neighborhood of 0 is absorbing.

Proof. See the remarks above �

The subject of topological vector spaces can draw on the material developed in
Section ?? on topological groups. There the group operation is given in multiplica-
tive notation, but here the group operation is vector addition. Commutativity of
vector addition simplifies many of the results and changes their appearance some-
what. We will prove again a few of these as a reminder, and to take advantage of
simplifications found in our setting.

In a topological vector space V , if S is an open neighborhood base or subbase
at 0 then the set of translates of the form x+B for B ∈ S is a neighborhood base or
subbase at x ∈ V . So we just need this one neighborhood base or subbase
to define a topology on all of V compatible with the vector operations.

Moreover, if A ∈ S then −A is also open, and therefore so is B = A∩(−A). And
B is symmetric. The collection of sets of this form is also an open neighborhood
base at 0, so we may assume, whenever we need to, that our neighborhood base
consists of symmetric sets. Even more, our earlier observation about continuity of
scalar multiplication shows that there is actually an open neighborhood base at 0
consisting of balanced sets.

6.2. Lemma. Every TVS has an open neighborhood base at 0
consisting of balanced absorbing sets.

Proof. See the remarks above �

A net n converges to x ∈ V precisely when the net n−x (here, x is taken to be
the constant net) is eventually in O for every O ∈ S, where S is any neighborhood
subbase at 0.

Suppose f : V →W is a function between two topological vector spaces and S
is an open neighborhood base at 0 for V and T is an open neighborhood subbase
at 0 for W .

f is called continuous at x ∈ V if f−1(f(x)+O) is open in V for every x ∈ V
and O ∈ T .

f is called continuous if it is continuous at each x ∈ V . This implies that the
inverse image under f of any open set in W is open in V , and is equivalent to the
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condition: If n is any net in V that converges to 0 then for each x ∈ V the net
f(x+ n) converges to f(x).

There are useful alternative phrasings of the continuity condition.

For instance, f is continuous if for each x ∈ V and member O of a neighborhood
subbase at 0 in W there is a member B of S for which f(x+ B) ⊂ f(x) + O.

Also, f is continuous if, whenever n is any net in V that converges to 0 then for
each x ∈ V and member O of subbase T the net f(x+n) is eventually in f(x) +O.

f as above is called uniformly continuous if there is no x dependence in the
alternative definitions of continuity mentioned above.

Specifically, f is uniformly continuous if for each member O of a neighborhood
subbase at 0 in W there is a member B of S for which f(x + B) ⊂ f(x) + O for
every x ∈ V . This single B “works” for every x.

Adapting the net version, this means that if D is the directed set for net n and
n converges to 0 then for each member O of subbase T there is a member d of D
so that t ≥ d implies f(x+ n(t))− f(x) ∈ O for all x ∈ V .

For linear functions, continuity and uniform continuity are equivalent concepts.
An inspection of the last two paragraphs shows that linear f is uniformly continuous
exactly when it is continuous at 0, just as in the normed case. For such functions,
we can check continuity at 0 by verifying that for each O in T there is a member B

of S with f(B) ⊂ O.

We now generalize the definition of CLF (V,W ) and V ′F to denote the continuous
members of HF (V,W ) and V ∗F , respectively, when V and W are any two topological
vector spaces.

6.3. Exercise. Suppose V is a complex TVS and f ∈ V ∗, the algebraic dual of
V . Then f(v) = α(v) + i α(iv) for all v ∈ V , where α is the real part of f .

f is continuous if and only if α is continuous.

Once again, CLF (V,W ) is a vector subspace of HF (V,W ).

We saw before that when V and W are normed we could define the operator
norm ‖ · ‖ on CLF (V,W ).

In the normed case, a net Tν of these functions converges to linear S in the
operator norm topology provided that for all ε > 0 there is an index d so that
m ≥ d implies

‖S − Tν‖ = sup{ ‖S(x)− Tν(x)‖ | x ∈ B1 } < ε

where B1 is the unit ball in V .

There are numerous other notions of convergence in CLF (V,W ). These are
often useful when V and W are normed but are required when V and W are
more general topological vector spaces. We will list the two most common of these
alternative convergence criteria here.

We say that the net Tν converges to S in the strong operator topology when
Tν(x) converges to S(x) in W for every x ∈ V . If W is a normed space this means
‖S(x)− Tν(x)‖ converges to 0 for each x, one at a time. This is just the topology
of pointwise convergence for these functions.
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We say that Tν converges to S in the weak operator topology when the
numbers φ(Tν(x) ) converge to the number φ(S(x) ) for every x ∈ V and φ ∈ W ′.
This means |φ(S(x) ) − φ(Tν(x) ) | converges to 0 for each x and each continuous
functional φ.

It is obvious that these three notions of convergence are progressively weaker,
in the sense that it becomes easier for a net to converge as you go down the list. So
an operator norm closed set is strong operator closed, and a strong operator closed
set is weak operator closed. So the operator norm topology contains the strong
operator topology, which itself contains the weak operator topology.

We return now to features of the topology on the topological vector space V .

The interior of a subset Q of V , denoted Qo, is a neighborhood of each of its
points and is the largest open subset of Q.

If S is an open neighborhood base at 0, for every x ∈ Qo there is an open set
Ox ∈ S so that x+ Ox ⊂ Qo. In that case,

Qo =
⋃
x∈Qo

(x+ Ox).

If A is any set and B is open, then of course A + B and A 	 B and B 	 A,
unions of open sets, are open. But if A and B are closed A+B need not be closed,
even in dimension 1. (hint: let A = {n + 1

n | n is an integer exceeding 1 } and let
B = {−n | n is an integer exceeding 1 }.)

6.4. Exercise. Suppose V is a TVS and A and B are compact. Suppose also
that C is closed and α is a number.

(i) αA and A+B and A	B are all compact. (hint: A×B is compact
in the product space so its image under addition is compact.)

(ii) αC and B + C and B 	 C and C 	A are closed.

Suppose y /∈ A, the smallest closed set containing A. Then there is a member
O in the open neighborhood base S of 0 with (y + O) ∩ A = ∅. If O is symmetric
this means y /∈ O +A. If O is not symmetric, then it contains a symmetric subset,
which itself contains an even smaller member of S. We find that A ⊃

⋂
O∈S(O+A).

On the other hand, if y ∈ A and O ∈ S let P be a symmetric open subset of O.
There is a member a = y + p in A ∩ (y + P), where a ∈ A and p ∈ P. Since P is
symmetric −p ∈ P. So y = a− p = a+ (−p) ∈ A+ P ⊂ A+ O.

So we have shown:

6.5. Lemma. If S is an open neighborhood base at 0 in a TVS
then for any set A of vectors

A =
⋂
O∈S

(O +A).

Proof. See the remarks above. �
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As an aside, if the members of S and A itself are balanced, so too will be each
term in the intersection of the last lemma, so A will be too. If the members of S
and A itself are convex, A will be too.

Continuity of addition has other interesting consequences. For instance, if A is
any open neighborhood of 0, the inverse image of vector addition is a neighborhood
of each point (x,−x) in the product space V × V . Then there are basic open sets
(x + B) × (−x + C) contained in this inverse image, where B and C are basic
open neighborhoods of 0. This implies that B + C ⊂ A. It follows that for any
neighborhood A of 0 there is a symmetric (even balanced if you wish) neighborhood
D with D +D = D 	D ⊂ A.

Note that since D =
⋂

O∈S(O + D), and there is a member of S which is a

subset of D, the closed neighborhood D satisfies D ⊂ D +D ⊂ A.

6.6. Lemma. If A is a neighborhood of 0 in a TVS then there is a balanced
open neighborhood D of 0 with D +D ⊂ A and D ⊂ A. This implies that there is
a balanced open neighborhood base at 0 for which the closures of its members form,
themselves, a balanced closed neighborhood base at 0.

Proof. See the remarks above �

6.7. Exercise. Suppose V is a TVS. Prove, consecutively:
(i) V is T3: that is, if x /∈ A and A is closed then x and A can be separated
by open sets. (hint: There are open symmetric H and D for which
x ∈ H ⊂ H ⊂ D ⊂ D ⊂ V −A.)

(ii) y ∈ {x} if and only if x ∈ {y} if and only if x− y ∈ {0}.
(iii) If V is T0 then V is T2.

(iv) {0} is a closed subspace of V .

(v) V/{0} with quotient topology is a TVS and T2.

A subset B of V is called bounded if it is absorbed by every neighborhood
of 0. Given a neighborhood subbase S at 0, B is bounded if every member of S
absorbs B.

6.8. Exercise. Suppose that V is a T2 topological vector space and there is
a bounded open set B containing 0. Let S be a neighborhood base at 0 for the
topology. Then for each member A of S there is a positive integer k for which
1
kB ⊂ A, and 1

kB is itself open. So sets of the form 1
kB constitute a neighborhood

base at 0: that is, V is CI . In Exercise ?? we show that when V is CI there is a
translation invariant metric which generates the topology on V . So unless we are
dealing with a metrizable TVS, no open set in a T2 TVS can be bounded. If the
T2 condition is dropped can a bounded open set be used to produce a translation
invariant pseudometric which generates the topology?

The set B is called totally bounded if for every neighborhood O of 0 there
are a finite number of elements b1, . . . , bn in B for which B ⊂

⋃n
i=1(bi + O).

6.9. Lemma. Totally bounded sets are bounded.
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Proof. Suppose B to be totally bounded and let O be a neighborhood of 0.
Select open balanced D for which D + D ⊂ O. Find members b1, . . . , bn in B for
which B ⊂

⋃n
i=1(bi +D). Select number n so that |t| ≥ n implies bi ∈ tD for all i.

Require, if necessary, that n be at least 1. So for t ≥ n
B ⊂ tD +D = tD + t(1/t)D ⊂ tD + tD ⊂ tO.

�

6.10. Exercise. (i) If c is a scalar, v a vector and sets A and B are (totally)
bounded then cA, v +A, A+B and A	B are (totally) bounded.

(ii) If O is a neighborhood of 0, since B ⊂ B +O we easily conclude that every
compact set is totally bounded.

(iii) In an infinite dimensional NLS the unit ball is bounded but not totally
bounded.

6.11. Exercise. In an SNLS a set B is bounded when it is absorbed by the
unit ball D. B is totally bounded if, for every ε > 0, there are a finite number of
elements b1, . . . , bn in B for which B ⊂

⋃n
i=1(bi + εD).

A function between two topological vector spaces is called bounded if the
image of every bounded set is bounded. This does agree with the definition in
semi-normed spaces, where bounded sets are just those inside some ball defined by
the semi-norm.

6.12. Exercise. (i) Continuous functions (not necessarily linear) between topo-
logical vector spaces are bounded.

(ii) A uniformly continuous function (again, not necessarily linear) between
topological vector spaces takes totally bounded sets to totally bounded sets in the
image space.

7. Locally Convex and Frechét Spaces

There are various ways that topologies can be defined on a vector space. Earlier
we examined semi-norms. In important cases, a vector space V comes equipped
with a family F of semi-norms rather than a single semi-norm which, together,
define convergence in the space.

The family of semi-norms generates a family SF of pseudometrics and family
BF of open unit balls, one pseudometric and one ball for each semi-norm.

The topology we intend is the one whose open sets are all unions of finite inter-
sections of open balls of all possible radii produced by any of these pseudometrics.

A topology of this kind, which comes from (or could have come from) a family
of semi-norms will be called a locally convex topology.

Since each pseudometric is translation invariant, the topology can be given by
specifying a neighborhood base or subbase S at 0. Members of a neighborhood
base or subbase at x are then given as x+B where B ∈ S.
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Since the semi-norms (and, analogously, the pseudometrics) are homogeneous,
any open ball of radius r > 0 created from a semi-norm can be given as r B where
B ∈ BF.

Note that any ball B (open or closed) from semi-norm g is an absorbing disk.
If B is open of radius 1, this semi-norm is the Minkowski gauge for B and internal
point 0.

The set of finite intersections of open disks formed from different members of
F with rational radius 1/n, n ≥ 1 would constitute one neighborhood base at 0.

7.1. Lemma. Suppose g is a semi-norm with open unit disk B and r > 0.
The Minkowski gauge for the open disk rB of radius r
and internal point 0 is just (1/r) g.

Proof. See the remarks above. �

7.2. Proposition. A vector space with a locally convex topology is a topological
vector space: that is, a topological group with addition, and scalar multiplication is
jointly continuous

Proof. Suppose vector space V has family of semi-norms and B is the open
unit disk with respect to one of the semi-norms, g.

Suppose 0 < ε < 1 and s = (s1, s2) is a net on directed set ∆ that is eventually
in subbasic open set (a+ Sε)× (x+ εB) in the product space F× V . Suppose too
that t = (t1, t2) is a net that is eventually in subbasic open set (x+ εB)× (y+ εB)
in the product space V × V .

So for large enough members of ∆

g(s1s2 − ax) ≤ g(s1s2 − as2) + g(as2 − ax) ≤ |s1 − a| g(s2) + |a| g(s2 − x)

≤ ε(g(x) + ε) + |a|ε ≤ ε(g(x) + 1 + |a|).
That is, s1s2 ∈ ax+ ε(g(x) + 1 + |a|)B.

Similarly, for large enough members of ∆

g( (t1 + t2)− (x+ y) ) ≤ g(t1 − x) + g(t2 − y) ≤ ε+ ε.

So t1 + t2 ∈ x+ y + 2εB.

By adroit choice of ε and B, the nets s1s2 and t1 + t2 are seen to be, eventually,
in any specified subbasic open neighborhood of ax and x + y, respectively. The
desired conclusions follow. �

So the open sets provided by the semi-norms are rich enough (in the right way)
to allow the vector operations to be continuous.

7.3. Exercise. In any vector space V each absorbing disk can be used to create
a semi-norm through its Minkowski gauge, so the set of all absorbing disks is a
neighborhood base at 0 for the finest possible locally convex topology on V . This
is called the fine topology on V . Every fine topology is T2 and, of course, every
locally convex topology is a subset of the fine topology. For the fine topology, among
locally convex topologies, it is hardest for nets to converge, hardest for a given set
to be compact, easiest for sets to be open.
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The initial topology for a particular semi-norm g, the weakest topology with
respect to which g is continuous, consists of unions of open disks and complements
of closed disks and their intersections (open “annuli” centered at 0) and will never
be T2. It fails to distinguish between x and y if g(x) = g(y). However this initial
topology does contain the open neighborhood base of disks for the metric created
from g. And—this is important—if f : X → V is any function from topological
space X to V with the topology produced by the family of semi-norms as above
and if f(p) = 0, then f is continuous at p exactly when g ◦ f is continuous at p for
every semi-norm g ∈ S.

This will be pertinent for linear f , for which f(0) = 0, and for which continuity
at 0 implies continuity everywhere.

7.4. Proposition. A linear function f : V → W from topological vector space
V to topological vector space W , where W has a locally convex topology generated
by family of semi-norms F, is continuous if and only if g ◦f is continuous for every
g ∈ F.

Proof. Examine the remarks above. �

7.5. Exercise. Suppose that V has a locally convex topology and there is a
bounded open disk B in V . Then the Minkowski gauge for B with internal point 0
is a single semi-norm on V that generates the original locally convex topology.

In spaces with locally convex topology every neighborhood of 0 contains an open
disk. So in such spaces, unless V is actually an SNLS no open set can be bounded.

Two families of semi-norms on the same vector space are called topologically
equivalent if they generate the same topology.

When gi is a semi-norm on V for i = 1, . . . , n, define gmax and gsum for each
x ∈ V by

gmax(x) = sup{ g(x)1, g(x)2, . . . , g(x)n } and gsum(x) = g(x)1 + · · ·+ g(x)n.

Both are, themselves, semi-norms, and

1

n
gmax ≤ 1

n
gsum ≤ gmax ≤ gsum.

So there is a multiple of the unit disk Bsum for gsum inside any multiple of the
unit disk Bmax for gmax, and conversely. Specifically, for unit disks,

nBmax ⊃ nBsum ⊃ Bmax ⊃ Bsum.

That means gmax and gsum are interchangeable in the formation of all open sets
from a family of semi-norms for a locally convex topology.

Now suppose F is a family of semi-norms on V with family of open unit disks
BF. Let G = {n f | f ∈ F and n is a positive integer }. And let H be the set of all
finite sums of members of G.

We will call a family of semi-norms sufficient if the open unit disks of the
family constitute a neighborhood base for the topology at 0.
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Note that if B ∈ BF then 1
n B ∈ BG for every positive integer n. So BG is a

subbase for the topology at 0. That means finite intersections of members of BG

form a neighborhood base at 0.

A finite intersection
⋂n
i=1Bi of such unit disks is exactly the unit disk for the

semi-norm gmax, as discussed above. We can swap out all such disks in this base
for unit disks for the related gsum without affecting the resulting topology. But
these “swapped” disks are exactly the disks for semi-norms in H.

In an LCS, the interior of a disk, if nonempty, is also a disk. A barrel in an
LCS is a closed absorbing disk. In an LCS many barrels have nontrivial interior
(see the proposition below) but in some rather common spaces some barrels have
empty interior. An example may be found in Exercise 8.6.

7.6. Proposition. Suppose F is a family of semi-norms on V and H is the fam-
ily of semi-norms consisting of finite sums of positive integer multiples of members
of F, with open unit disks BH.

(i) Then H is a sufficient family of semi-norms, and topologically equivalent
to F: that is, BH constitutes an open neighborhood base at 0 for the
topology generated by F.

(ii) Moreover, for each B ∈ BH there is a member D of BH for which
D +D ⊂ B and D ⊂ B.

(iii) The closed unit disks, the collection of neighborhoods formed by closing
each disk in BH, forms a neighborhood base at 0 consisting of barrels.

Proof. The justification is in the remarks above and Lemma 6.6. �

A locally convex topology on a vector space V need not be T2. We now discuss
a condition that guarantees the T2 property.

A family F of semi-norms on V is said to be separating if the set of pseudo-
metrics they generate is separating. We mean by this that for each pair of distinct
points x, y ∈ V there is a semi-norm which can tell they are different: that is,
∃g ∈ F with g(x − y) 6= 0. This amounts to saying that for each non-zero v there
is a g for which g(v) 6= 0.

7.7. Exercise. Suppose F is the family of semi-norms for a locally convex
topology on V and for each g ∈ F define Og = { v ∈ V | g(v) = 0 }. Each Og is
a closed subspace of V . That means O =

⋂
g∈F Og is a closed subspace too. Give

V/O the quotient topology. Create a family of semi-norms on V/O that generates
this quotient topology, and show that this family is separating.

A vector space equipped with a separating family of semi-norms, together with
the locally convex topology generated by these semi-norms, is called a locally
convex space. The abbreviation LCS is used for these.

We emphasize that, by definition, locally convex spaces are topological
vector spaces with a T2 locally convex topology.

For each LCS we will presume given a separating family F of semi-norms with
unit disks BF, and the sufficient family H of semi-norms, the finite sums of pos-
itive integer multiples of members of F. The open unit disks BH then form a
neighborhood base of open disks at 0.
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A normed linear space is a locally convex space with a separating family con-
sisting of a single norm, and this will be a common type of locally convex space.

For normed spaces, boundedness is equivalent to continuity. The replacement
for that result can be found below.

7.8. Proposition. Suppose Ψ ∈ HF
(
V LCS,WLCS

)
, where V has separating

family of semi-norms S and W has separating family of semi-norms T. The follow-
ing are equivalent:

(i) Ψ is continuous at 0.
(ii) Ψ is uniformly continuous.
(iii) For each t ∈ T there are members s1, s2, . . . , sn ∈ S

and real K > 0 for which

t(Ψ(v)) ≤ K(s1(v) + · · ·+ sn(v)) ∀v ∈ V.

Proof. The equivalence of (i) and (ii) follows as in Proposition 5.6 for each
semi-norm.

It is obvious that (iii) implies (i): For each t ∈ T, if (iii) holds t(Ψ(ν)) must
converge to 0 whenever ν is a net in W converging to 0.

We now assume Ψ to be continuous and t ∈ T.

Let B be the open unit disk for t. Then Ψ−1(B) is open. So there is a closed
unit disk D for some semi-norm p in H, where H is the sufficient family of semi-
norms built from S, with D ⊂ Ψ−1(B). That is, Ψ(D) ⊂ B.

Translating from subsets to semi-norms, t(Ψ(v)) < 1 whenever p(v) ≤ 1.

If p(v) = 0 then kv ∈ D for any positive number k. But then t(Ψ(kv)) =
k t(Ψ(v)) < 1 for all such k requires t(Ψ(v)) = 0 and we conclude (since both are
0) that t(Ψ(v)) ≤ p(v).

On the other hand if p(v) 6= 0 then

t

(
Ψ

(
v

p(v)

))
≤ 1 so t (Ψ (v)) ≤ p(v) here too.

Every p is of the form k1 s1 + · · · + kn sn for certain positive integers ki and
members si of S. Letting K be the maximum of the ki, the inequality of (iii)
follows. �

7.9. Exercise. Suppose V is an LCS and W is a vector subspace of V .

(i) W with subspace topology is also an LCS. (hint: Restrict the members of
the family of semi-norms on V to W .)

(ii) If T ∈ W ′ there is at least one member S ∈ V ′ with S|W = T . (hint: By
Proposition 7.8 there is a constant K and members s1, s2, . . . , sn of the family of
semi-norms on V so that Tw ≤ |Tw| ≤ K(s1(w) + · · · + sn(w)) for all w ∈ W .
By the Hahn-Banach Theorem T can be extended to all of V while preserving this
relationship.)

(iii) Suppose h is any semi-norm on V , not necessarily from the specified family
of semi-norms S, with open unit disk D. h will be continuous at 0 if for each r > 0
the set rD contains a basic open neighborhood of 0. Actually, if D itself contains
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basic open disk B then rD contains rB, so only one basic open set B must be found
to check continuity at 0.

Examining the leftmost inequality for semi-norms below

|h(x)− h(y) | ≤ h(x− y) ≤ h(x) + h(y)

we see that continuity at 0 is sufficient to find h to be continuous everywhere,
uniformly, in V .

Show that h is continuous if it is dominated by any continuous semi-norm. In
particular, h is continuous if and only if there is a positive integer n and members
s1, . . . , sn of S and positive constant K for which

h ≤ K(s1 + · · ·+ sn).

7.10. Exercise. Different topologies compatible with vector space operations
pop up in applications. Here are two.

Let H denote the set of those real valued sequences which form absolutely
convergent series: that is, those a : N → R for which

∑
n∈N |an| < ∞. Then

‖a‖ =
∑
n∈N |an| is a norm on the real vector space H.

For each k ∈ N define ‖a‖k to be |ak|. Each ‖ · ‖k is a semi-norm on H and
the family F = { ‖ · ‖k | k ∈ N } is separating but this family does not generate
the same topology as does the single norm ‖ · ‖: each F-open neighborhood of 0 is
‖ · ‖-open, but not conversely as we shall see.

Consider the sequence δk defined by δk(n) = 1 if n = k but δk(n) = 0 if n 6= k.
So δk converges to 0 in the F topology, but it does not converge in the norm topology.

Let I : (H,F) → (H,norm) denote the identity function from H with the F-
topology to H with the norm topology.

Using the example above, δk converges in the domain to the zero sequence but
I(δk) = δk does not converge in the range of I. So this function fails to be contin-
uous: there are actually more open sets in the range than in the domain.

Suppose B is any set bounded in the domain space. So for each n, the set of
numbers { bn | b ∈ B } must be bounded. But that doesn’t imply that B is norm-
bounded. For instance the set of sequences { k δk | k ∈ N } is not norm bounded.

We mentioned above that boundedness is not sufficient to guarantee continuity
for functions from one LCS to another, and gave a similar but more complicated
equivalent condition in Proposition 7.8. It would be nice to know that this is actu-
ally necessary: that even in fairly nice cases boundedness does not imply continuity.
We discuss this in the next exercise.

7.11. Exercise. Suppose V is an infinite dimensional NLS with dual V ′. Give
V a second topology generated by the family of all semi-norms |f | for f ∈ V ′. This
is called the weak topology on V , and is a T2 locally convex topology. (We discussed
a similar example in Exercise 7.10, which has an an even weaker topology than this
one.)

In Lemma 8.2 we conclude that this is strictly weaker than the norm topol-
ogy: there are norm open sets that are not weakly open, the open unit ball for the
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norm being an example. In Exercise 9.4 we conclude that weakly bounded sets must
be norm bounded, relying on an important theorem we will prove later called the
Banach-Steinhaus Theorem for this. (In the even weaker example in Exercise 7.10
this is not the case: we find there a bounded set that is not norm bounded.)

Let I : (V,weak)→ (V, norm) denote the identity map between these two topo-
logical spaces. I is bounded but not continuous.

A net in a locally convex space is called Cauchy if it is Cauchy with respect
to every one of the pseudometrics. Rephrasing, a net ν is Cauchy if, for every open
disk A in neighborhood base BH, there is a member d of the directed set of the net
so that ν(s)− ν(t) ∈ A whenever both s and t exceed d.

The net is called bounded if its range is a bounded set.

An LCS is called complete if every Cauchy net converges.

The concepts of Cauchy and completeness are not purely topological concepts.
In a metric space setting, topologically equivalent metrics can have different Cauchy
sequences. Here that is not the case. Topologically equivalent families of semi-
norms produce the same Cauchy nets and bounded Cauchy nets.

7.12. Exercise. The concept of bounded net requires a different intuition than
that provided by bounded sequence. In particular it is possible to have a convergent
(and therefore Cauchy) net which is not bounded and, in fact, for which no tail net
is bounded.

Consider again the real sequence space H with separating family of semi-norms
F from Example 7.10. Let H be an equivalent but sufficient family of semi-norms.
BH is the set of unit disks for H.

Direct the set D = N × BH by (n,Bf ) ≥ (m,Bg) when Bf ⊂ Bg. Each Bg
contains a non-zero vector xg and subspace Rxg. Define the net ν(m,Bg) = mxg.

If A is any open neighborhood of 0 there is a Bg ⊂ A and so ν
(
T(0,Bg)

)
⊂ A;

that is, this net converges to 0.

Now select specific (m,Bg) ∈ D producing tail T(m,Bg) of those members of D
greater than or equal to (m,Bg). Since H is separating there is an h ∈ H with
h(xg) 6= 0. But then h

(
ν
(
T(0,Bg)

) )
is not bounded.

7.13. Proposition. In a complete LCS a set B is compact when and only when
it is closed and totally bounded.

Proof. In any T2 space compact sets must be closed, and since B + V can
be thought of as an open cover of B for any open V , compactness implies total
boundedness.

We need to show that B totally bounded and closed implies B compact. We
will proceed to show that, under those conditions, any universal net in B is Cauchy.
Since the LCS is complete, that net must converge. Since B is closed the limit point
must be a point of B. Our conclusion, that B is compact, will then follow from what
is (essentially) a version of the Bolzano-Weierstrass Theorem. See Exercise ??
for more on this.
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Suppose ν is a universal net in B and A is an open disk. We have seen that
there is an open disk D with D 	D ⊂ A. Then there is an integer n and elements
x1, . . . , xn in B for which

B ⊂
n⋃
i=1

(xi +D).

Since ν is universal and entirely in B, it must be, eventually, in either x1 + D or
its complement, and in the latter case it is eventually in(

n⋃
i=2

(xi +D)

)
− (x1 +D).

If not eventually in x1 +D it must, then, eventually be in x2 +D or(
n⋃
i=3

(xi +D)

)
− ( (x1 +D) ∪ (x2 +D)) .

Proceeding in this manner (at most n− 1 steps) we find that the net is eventually
in some (xi +D). So for large enough indices s and t we have

ν(s) = xi + ds and ν(t) = xi + dt for certain ds, dt ∈ D.

Then ν(s)− ν(t) = ds − dt ∈ D 	D ⊂ A. So ν is Cauchy. �

7.14. Exercise. By Lemma 6.5, if V is an open neighborhood of 0 in any TVS
then B + V contains B. So if B is totally bounded, so too will be B.

On the other hand, suppose B is totally bounded and V is an open neighborhood
of 0. There is a symmetric open neighborhood D of 0 for which D +D ⊂ A. Then
there are vectors qi, . . . , qn in B with B ⊂ B ⊂

⋃n
i=1 (qi +D). In every set qi +D

there is a vector pi = qi+di ∈ B. And so qi−pi ∈ D. So qi+D ⊂ pi+D+D ⊂ pi+A.
So B ⊂

⋃n
i=1 (pi +A). So B is totally bounded too.

Conclude that in a complete LCS a set B is compact when and only
when B is totally bounded.

Locally convex spaces have appealing separation properties as shown in the
next proposition, following the discussion in Reed and Simon [?].

7.15. Proposition. Suppose V is an LCS and S and T are disjoint nonempty
convex subsets.

(i) If S is open then S and T can be separated.

(ii) If S and T are open then S and T can be strictly separated.

(iii) If S is compact and T is closed then S and T can be strictly separated.

(iv) If S and T are both compact then S and T can be strongly separated.

Proof. The proof of (i) follows by appeal to Exercise 4.7, since every point of
an open set is internal.

If both S and T are open, we use (i) to infer that there is a real linear functional
Ψ separating open S and T . Easily, both Ψ(S) and Ψ(T ) are open intervals and
cannot overlap: Ψ(S) ∩Ψ(T ) = ∅ and we have (ii).
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Now suppose S is compact and T closed. So T 	 S is closed, convex and does
not contain 0. So there is an open disk Y and so that Y +Y is disjoint from T 	S.

The sets S̃ = S + Y and T̃ = T 	 Y are convex and open and contain S and T
respectively, and can be strictly separated by a hyperplane by (ii). So we have
shown (iii).

If both S and T are compact (hence closed in T2 V ) we apply (iii) to find real
linear Ψ that strictly separates S and T . So there is a real c with S and T in
different sets Ψ−1( (−∞, c) ) and Ψ−1( (c,∞) ). But Ψ(S) and Ψ(T ) are compact
and connected in R: one must be of the form [a, b] and the other of the form [s, t]
with b < c < s. (iv) now follows. �

We now consider the issue of metrizability.

Since metrizable spaces are first countable, there is a countable base at 0 for the
topology of any metrizable LCS, and this countable base can be chosen to consist
of absorbing disks. If F = { gi | i ∈ N } is the set of corresponding Minkowski
gauges, this must be a separating family of semi-norms. The set of unit disks BF

constitute the neighborhood base.

Even better, we can let, for i ∈ N, the semi-norm hmaxi be given by

hmaxi (v) = max{ g0(v), . . . , gi(v) }.

Then Fmax = {hmaxi | i ∈ N} is a topologically equivalent set of semi-norms,
hmaxi+1 ≥ hmaxi for all i ∈ N, and the unit disks for this set form a nested neighborhood
base at 0.

Any countable set { ‖ · ‖i | i ∈ N } of semi-norms which is topologically equiv-
alent to the specified family can be used to produce a metric defined by

d(x, y) =
∑
i∈N

‖x− y‖i
2i(1 + ‖x− y‖i)

.

Though translation invariant, this metric is not homogeneous, so cannot be
used to produce a single generating semi-norm.

This metric does not tell us everything we might want to know about V . For
instance the diameter of V itself is 2 in this metric, so the metrical notion of
boundedness is not pertinent. We stick with the TVS notions of boundedness for
sets and functions.

Suppose D is a finite intersection (ε0B0) ∩ · · · ∩ (εnBn) where each Bi is the
unit disk for the ith semi-norm and 0 < εi ≤ 1 for each i. Suppose for each δ > 0
that Aδ is the metric ball of radius δ centered at 0.

If x ∈ D and εmax is the largest of the εi

d(x, 0) =
∑
i∈N

‖x‖i
2i(1 + ‖x‖i)

=

n∑
i=0

‖x‖i
2i(1 + ‖x‖i)

+
∑
i>n

‖x‖i
2i(1 + ‖x‖i)

<

n∑
i=0

εi
2i

+
∑
i>n

1

2i
≤
(

2− 1

2n

)
εmax +

1

2n
< 2 εmax +

1

2n
.
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So D is contained in Aδ where δ = 2 εmax + 1
2n . For any δ1 > 0, the εi and n can

be chosen so that δ < δ1, in which case D ⊂ Aδ ⊂ Aδ1 . This means that the locally
convex topology is at least as fine as the metric topology.

On the other hand, suppose given subbasic open εBn for some ε with 0 < ε ≤ 1.
For x ∈ V with d(x, 0) = δ < ε

2n+1 we find

ε

2n+1
> δ = d(x, 0) ≥ ‖x‖n

2n(1 + ‖x‖n)
so ε (1 + ‖x‖n) > 2 ‖x‖n.

It follows that ε > (2− ε)‖x‖n > ‖x‖n. So the metric ball of radius δ centered at 0
is contained in εBn, so the metric topology is at least as fine as the locally convex
topology.

The conclusion, then, is that this metric does generate the original locally
convex topology on V .

7.16. Proposition. A locally convex space V is metrizable if and only if there
is a countable set of semi-norms on V which generate the same topology.

Proof. The proof is contained in the remarks above. �

7.17. Exercise. Show that a net is metrically Cauchy, with the metric described
above, exactly when it is Cauchy in the TVS sense.

The fact of metrizability, even without use of an explicit metric, makes a space
easier to work with. For instance, in a metrizable space the concepts of sequence
and subsequence are sufficient to define all topological entities: open sets, closed
sets, boundaries, compact sets and so on. Nets are not required.

A Frechét space V is a complete metrizable LCS. Banach spaces provide
examples, but not the only ones. Arguments that depend on the Baire Category
Theorem, as many of our most important theorems do, hold for Frechét spaces.

8. Duality and Various Topologies on a Locally Convex Space

We now suppose V to be any LCS with topology T generated by family F of
semi-norms and with continuous dual V ′.

If A is a nonempty subset of V ′, we define σ(V,A) to be the weakest topology
on V for which |h| (and therefore h itself) is continuous for each member h of A.
This is a locally convex topology on V : for each h ∈ A, |h| is the Minkowski gauge
for the set |h|−1( [0, 1) ).

8.1. Exercise. If A is a nontrivial subspace (rather than a subset) of V ′ then
the set of all |h|−1( [0, 1) ) for h ∈ A is an open neighborhood subbase of absorbing
disks for the locally convex topology. Finite intersections of these form a base. In
fact all finite sums |h0|+ · · ·+ |hn| for hi ∈ A and n ∈ N form a sufficient family
of semi-norms for this topology.
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σ(V,A) is called the weak topology on V generated by subspace A of V ′.

Note that if A ⊂ B then σ(V,A) ⊂ σ(V,B) ⊂ T. Weak topologies are coarser
that the original topology, so convergence is easier, there are fewer open sets, more
bounded sets. Though there are fewer closed sets too, it is easier for those that
remain closed to be compact.

A linear functional is a pretty crude instrument for exploring the detailed topol-
ogy on V . Each |h|−1( [0, 1) ) is a “slab” in which only one dimension is restricted.
So finite intersections of these, the neighborhood base for σ(V,A) at 0, control
finitely many dimensions.

No set can be a neighborhood of 0 in this topology unless it contains a sub-
space of finite codimension. But open sets in a semi-norm topology face no such
restrictions. They can be confined in (potentially, depending on the dimension of
V ) uncountably many independent directions.

8.2. Lemma. Suppose V is an infinite dimensional NLS. The weak topology
on V is strictly weaker than the norm topology.

Proof. See the remarks above. �

The weak topology on V is, specifically, σ(V, V ′).

Even though the weak topology on an infinite dimensional normed space con-
tains fewer open sets than norm topology, the semi-norms that generate the weakly
open sets can, in some important cases, be used to deduce norm convergence to a
specified member of the space.

Recall Section ??, where we determined that the set of absolutely summable
sequences `1 with norm ‖ f ‖ =

∑∞
k=0 |f(k)| has dual `∞, the set of bounded

sequences with supremum norm.

8.3. Proposition. Suppose given a sequence f(n) of members of `1. The se-
quence converges weakly to the 0 sequence exactly when it converges to 0 in `1

norm.

Proof. If the sequence converges to 0 in `1 norm then, of course, it must
converge to 0 weakly: that is, for each g ∈ `∞ we must have

g(f(n)) =

∞∑
k=0

gkfk(n)→ 0.

Suppose, conversely, that g(f(n)) converges to 0 for every bounded sequence
g. Choosing for g the sequence that is 1 in the “mth spot” and zero elsewhere,
we see that for each m the numerical sequence fm(n) converges to 0, and in fact∑m
k=0 |fk(n)| → 0 for each m.

The same fact is true for each subsequence of the f(n).

Now suppose that our sequence fails to converge to 0 in norm. So there is a
number a > 0 so that ‖ 0− f(n) ‖ =

∑∞
k=0 |fk(n)| > a for infinitely many n.

By moving to a subsequence if necessary and multiplying by a−1 we may assume
that

∑∞
k=0 |fk(n)| > 1 for every n.

Let L0 = 0 = M0.
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Having found Mj−1 select Lj > Lj−1 so large that
∑Mj−1

k=0 |fk(z)| < 1/5 for all
z ≥ Lj and select Mj > Mj−1 so large that

∑∞
k=Mj+1 |fk(Lj)| < 1/5.

Consider

∞∑
k=0

|f(Lj)| =
Mj−1∑
k=0

|fk(Lj)|+
Mj∑

k=Mj−1+1

|fk(Lj)|+
∞∑

k=Mj+1

|fk(Lj)|.

The magnitude of the middle term on the right is at least 1/5 greater than the
sum of the other two terms on the right, and all terms are positive. That means for
any sequence of complex numbers αk for which |αk| ≤ 1 for all k the magnitude of

Mj−1∑
k=0

αk fLj (k) +

Mj∑
k=Mj−1+1

|fLj (k)|+
∞∑

k=Mj+1

αk fLj (k)

must be at least 1/5.

Define bounded sequence g by

g(k) =


fLj (k)

|fLj (k)| if fLj (k) 6= 0 and Mj−1 + 1 ≤ k ≤Mj

0 if fLj (k) = 0 and Mj−1 + 1 ≤ k ≤Mj .

The numerical series g (fLn) is a series of the type considered above for each n.
We conclude that there is a subsequence fL0 , fL1 , fL2 , . . . for which the magnitude
of g (fLn) > 1/5. So the sequence f(n) does not converge to 0 weakly. �

8.4. Proposition. Suppose V is an LCS and A is a subspace of V ′ that sepa-
rates points: that is, if x 6= 0 in V there is a member g of A for which g(x) 6= 0.

(i) σ(V,A) is a T2 topology on V .

(ii) A member h of V ∗ is continuous with the topology σ(V,A) on V when
and only when it is in A. So when V is given the topology σ(V,A) its
continuous dual is A and this is the coarsest topology for which this is true.

Proof. Suppose x 6= y in V and select g ∈ A for which g(x− y) = ε > 0. So
x− y /∈ C where C = g−1( [0, ε/2) ) ∈ σ(V,A). There is an open disk D ∈ σ(V,A)
with D+D ⊂ C. Then x+D and y+D are disjoint open sets in σ(V,A) which is,
therefore, T2 and we have (i).

By Proposition 7.8 h continuous with respect to σ(V,A) for each h ∈ A. It
remains to show that any function which is continuous with respect to σ(V,A) must
be in A.

Suppose h is continuous in this topology. Then there are members f1, . . . , fn in
A for which |h| ≤ c1|f1|+ · · ·+cn|fn| on all of V , again by Proposition 7.8. We may,
and will, assume the fi are linearly independent: if one of the fi is a combination
of the rest we can, using the triangle inequality, modify the other cj and eliminate
fi, retaining domination of |h| by a new combination involving the remaining |fj |.

Observe that the inequality |h| ≤ c1|f1|+ · · ·+ cn|fn| implies that the kernel of
h contains

⋂n
i=1Ker(fi). And to avoid triviality assume we can select x ∈ V with

h(x) = 1.
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We now define Z : V → Fn+1 by

Z(v) = (h(v), f1(v), . . . , fn(v) ) for v ∈ V.

So Z is not onto Fn+1: we know, for example, that ( 1, 0, . . . , 0 ) /∈ Z(V ). So there is
a non-zero vector p in Fn+1 which is perpendicular to every vector in the nontrivial
subspace Z(V ) of Fn+1. This gives, for every v ∈ V ,

p0 h(v) + p1 f1(v) + · · ·+ pn fn(v) = 0.

If p0 = 0 we would have a nontrivial relation among the fi, contrary to as-
sumption.

So h =

n∑
i=1

−pi
p0

fi ∈ A.

�

8.5. Exercise. Note the results from Exercises 7.12 and 9.4. A weakly con-
vergent net in a locally convex space need not be weakly bounded. Must a weakly
convergent sequence be weakly bounded?

8.6. Exercise. Suppose V is an infinite dimensional NLS with closed unit ball
B and unit sphere S. By the Hahn-Banach theorem, for each x ∈ S there is an
fx ∈ V ′ whose real part rx satisfies rx(x) = 1 and for which B is contained in the
halfspace Hx = r−1

x ( (−∞, 1] ). That means B = ∩x∈SHx.

Give V the weak topology. B has empty weak interior, because it contains no
nontrivial subspace. B is weakly closed: each halfspace Hx is closed because each rx
is weakly continuous. And B is absorbing and balanced. We have shown that this
barrel in the weak topology has empty weak interior.

We’ve also shown that the weak closure of the sphere S is all of B.

Every member v of the locally convex space V can be regarded as a member
of V ∗∗ by defining v(f) = f(v) for all f ∈ V ∗. Appealing to the Hahn-Banach
theorem, if f(v) = f(w) for all f ∈ V ′ then v = w.

So the evaluation map given by E(v)(f) = f(v) can be construed as a one-
to-one map

E : V →
(
V
′
)∗
.

The weak∗ topology on V′ is defined to be σ(V ′, V ). This is the coarsest
topology on V ′ for which all the members of V , or rather the members E(v) for
v ∈ V , are continuous.2

2There are a dozen or more topologies on various function spaces in common use and the

naming scheme for these topologies is not the model of clarity one should emulate, were one
starting from scratch. It features a variety of combinations of the words and symbols: strong,
weak, ∗, norm, operator, uniform, ultra, and σ, among others.

As an example, the strong topology on V ′ is the operator norm topology. But the set of
continuous linear operators CLF (V ) on the NLS V with topology given by operator norm is called

the uniform operator topology. The strong operator topology on this set is weakest topology for
which the evaluation map f → f(v) is continuous for every v ∈ V . By analogy with the situation
with V ′ described above we would be tempted, erroneously, to call this the weak∗ topology.
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Suppose D is a directed set and fd ∈ V ′ for all d ∈ D. So this net in V ′ is
Cauchy when and only when the net of numbers fd(x) form a Cauchy net for each
x ∈ V . Since F is complete a Cauchy net in F converges to some value h(x) for
each x. Since each fd is linear, it is easy to see that h is linear. This is nothing
more than the topology of pointwise convergence of a net of functionals.

Without more conditions on V that limit function might fail to be continuous.
Even if V is normed, so that V ′ is Banach with operator norm, this weak∗ limit
functional might be discontinuous.

8.7. Exercise. Let c00 be the set of real sequences which are non-zero at only
finitely many places. Give this set the norm ‖x ‖sup = sup{x(n) | n ∈ N }. For
each n ∈ N define gn : c00 → R by

gn(x) =

n∑
i=0

x(i).

Each gn is in c′00 and the sequence of functionals is weak∗ Cauchy since, for each
x, the sequence of numbers gn(x) is eventually constant. But the limit functional
is not continuous. c′00 is not weak∗ complete.

Note also that the operator norm of each gn is n + 1 so this sequence is not
norm bounded.

As weak as it is, the weak∗ topology is still T2 since if f(x) = g(x)∀x ∈ V then
f = g.

V ′ with its weak∗ topology is called the weak dual of V. In case of possible
confusion with other topologies on V ′ we will denote V ′ with this locally convex
topology by V′w.

By Proposition 8.4, the dual of V ′w is exactly V , or rather E(V ) ⊂ (V ′)∗.

If D is a directed set a net fd, d ∈ D, of continuous functionals converges in
this topology precisely if fd(x) converges for every x ∈ V .

This locally convex topology is generated by semi-norms of the form ‖ · ‖x
where for each φ ∈ V ′ we have ‖φ ‖x = |φ(x)|.

8.8. Theorem. The Banach-Alaoglu Theorem
If V is an NLS the operator norm closed unit ball in V ′ is weak∗ compact.

Proof. For each v ∈ V define Kv to be the compact interval [−‖v‖, ‖v‖ ].
Give the product space

P = Πv∈VKv

the product topology. By Tychonoff’s Theorem this product space is compact.

P consists of all functions f from V to F for which |f(v)| ≤ ‖v‖ for every
v ∈ V . The linear members of P , that is those whose values are coordinated so
that f(av+w) = a f(v) + f(w) for every scalar a and v, w ∈ V , automatically have
operator norm bound not exceeding 1.

Let B′ denote the operator norm closed unit ball in V ′. We give B′ the topology
it inherits from the weak∗ topology, the topology from V ′w.
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For φ ∈ B′ define I : B′ → P by I(φ) = φ. So I is one-to-one (obviously): as a
function between these two sets I is the identity function on B′. But it is not onto
P and we will be interested in its topological properties.

A generic weak∗ basic neighborhood of φ restricted to B′ consists of all those
members τ in B′ for which |φ(vi)− τ(vi) | < ε for some ε > 0 and some finite list
v1, . . . , vn of members of V .

Give I(B′) the subspace topology inherited from the product space P . A
generic basic neighborhood of I(φ) in I(B′) consists of those points I(τ) for which
|φ(vi)− τ(vi) | < ε for some ε > 0 and some finite list v1, . . . , vn of members of V .

In other words, the relatively open basic neighborhoods of φ in B′ and I(φ) in
I(B′) are taken to each other by the functions

I : B′ → I(B′) and I−1 : I(B′)→ B′

which are, therefore, homeomorphisms between these two topological spaces.

The point is that the two restriction topologies, B′ situated in V ′w and B′

situated in P , match.

So suppose fd is a net in B′ with directed set D converging to a point p ∈ P .

If a is a scalar and v, w ∈ V then for every d we have fd(av + w) = a fd(v) +
fd(w). The left side converges to p(av+w) while the right converges to a p(v)+p(w).
In other words, p is linear. We have already mentioned that every linear member
of P has operator norm not exceeding 1. So p ∈ B′ which is, therefore, a closed
subset of compact P . This implies B′ is itself compact. �

8.9. Exercise. If V is separable then the operator norm closed unit ball B′ in V ′

with the weak∗ topology is metrizable. Since B′ is weak∗ compact, every sequence
in B′ has a subsequence that is weak∗ convergent. (hint: Suppose xi, i ∈ N, is
dense in V . For any x ∈ V let ‖ · ‖x denote the semi-norm ‖φ‖x = |φ(x)| on
V ′. Let Bε,x denote the ball in V ′ centered at the origin of radius ε > 0 produced
by this semi-norm. Show that for each Bε,x there is a δ > 0 and an i so that
Bδ,xi ∩B′ ⊂ Bε,x ∩B′. Then apply Proposition 7.16.)

Note also that this metric does not produce the weak∗ topology on all of V ′

unless V is finite dimensional: the unit ball of a metric on V ′ cannot contain an
infinite dimensional subspace and so cannot be open in infinite dimensional V ′ with
weak∗ topology.

The strong topology, β(V′,V) on V ′ is the topology of uniform convergence
on bounded sets in V .

If B is a bounded subset of V we define gB on V ′ by

gB(y) = sup{ |y|(x) | x ∈ B }.

Each gB is a semi-norm on V ′, and the set G of all these semi-norms generates
the strong topology and makes V ′ into an LCS, the strong dual of V.

Unless otherwise mentioned, we will always give V ′ this strong dual topology.
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Since points in V are definitely bounded, there are more semi-norms involved
in defining the strong topology than used to define the weak∗ topology; β(V ′, V )
contains the weak∗ topology σ(V ′, V ).

If V is a normed space the strong topology is the topology of the operator
norm: this single norm is equivalent to the whole family of semi-norms.

If fd ∈ V ′ for all d in directed set D, the net of functionals converges in
the strong topology on V ′ when and only when the net of numbers gB(fd) =
sup{ |fd| (x) | x ∈ B } converges for every bounded subset B of V .

With the strong topology, V ′ itself has a strong dual, called the strong bidual
of V and denoted V′′.

Since every weak∗ continuous functional is strongly continuous, E(V ) ⊂ V ′′.
So we can and will consider E to have V ′′ as range space, rather than (V ′)∗:

E : V → V ′′.

The image of V under the evaluation map is, generally, a proper subspace of
V ′′ so σ(V ′, V ) ⊂ σ(V ′, V ′′). Any members of V ′′ not in V are not continuous
when V ′ is given the weak∗ topology.

So the weak∗ topology on V ′ is strictly coarser than the weak topology on V ′

unless E(V ) = V ′′.

There are (many) interesting topologies on V and V ′ and, now, V ′′ created for
specific purposes, and we will only touch lightly on these matters.

If E happens to be onto V ′′ then it does have a linear inverse function. If V ′′ is
given its strong topology, it may be that E is continuous with continuous inverse:
E may be a homeomorphism.

Locally convex spaces for which E is a homeomorphism onto the strong bidual
V ′′ are very important, and are called reflexive.

V and V ′′ are not usually distinguished when V is reflexive. We shall see that
Hilbert spaces are reflexive, but other Banach spaces may not be.

We will now walk through this material again in a common case to see how
these new ideas interact with what we have seen before.

Suppose V is an NLS with norm ‖ · ‖.
Then V ′ is Banach with operator norm, which corresponds to the strong topol-

ogy mentioned above: in the normed case bounded sets are nothing more than sets
which can be absorbed by the unit ball.

Suppose x is non-zero in this NLS. The linear transformation Λ defined on Fx
by Λ(a x) = a ‖x‖ satisfies the condition of Theorem 4.1 (or its Corollary) where
‖ · ‖ is the norm on V . In this one dimensional case we have equality:

|Λ(a x) | = |a| ‖x‖ = ‖a x‖.
So Λ can be extended to linear Ψ defined on all of V and for which

|Ψ(v)| ≤ ‖v‖ for all v ∈ V.
This means that the operator norm ‖Ψ‖ cannot exceed 1.

But Ψ(x/‖x‖) = Λ(x/‖x‖) = 1, So ‖Ψ‖ = 1.
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To recap, for each x ∈ V there is a functional Ψ in V ′ with

‖Ψ‖ = 1 and Ψx = ‖x‖.
With operator norm (that is, with the strong topology) V ′ also has an algebraic

dual (V ′)∗ and continuous dual V ′′ ⊂ (V ′)∗ which is also a normed space.

Every member of (V ∗)∗ produces a member of (V ′)∗ by restriction and the
evaluation map E(x) applied to x ∈ V is such a member.

And if f ∈ V ′ and ‖f‖ = 1 then |E(x)(f)| = |f(x)| ≤ ‖f‖ ‖x‖ = ‖x‖.
So each E(x) is bounded as a function from Banach space V ′ with operator

norm to F. In other words, E(V ) ⊂ V ′′ and we may and will consider the evaluation
map E to be a function

E : V → V ′′.

But by the result above there is a functional Ψ ∈ V ′ with operator norm 1 for
which |Ψ(x)| = ‖x‖. So |E(x)| actually attains its maximum value, ‖x‖, on the
members of V ′ with operator norm 1.

8.10. Proposition. If V is an NLS the evaluation map E is not only
continuous and one-to-one. In fact

E : V → V ′′ is an isometry.

Proof. See the remarks above. �

The image of E with operator norm and V itself with its norm are not only
isomorphic as vector spaces but are interchangeable in any calculation involving
norms as well.

But the proposition above does not imply that V is reflexive: the
function E might not be onto V′′.

8.11. Exercise. (i) A reflexive NLS must be Banach. If V is not complete in
the discussion above then E is not onto V ′′ and V cannot be reflexive.

(ii) If V is a reflexive normed space, the weak and weak∗ topologies coincide. In
such spaces the closed unit balls in V and V ′ are both compact with weak topology.

(iii) In a reflexive space every norm bounded sequence has a weakly
convergent subsequence.

The following construction is an example of how reflexiveness and our other
constructs comes into play.

Suppose F ∈H (V,W ), where domain V and range W are vector spaces. These
functions themselves comprise a vector space.

Define for each w∗ ∈W ∗ the member F ∗(w∗) ∈ V ∗ given by

F ∗(w∗)(v) = w∗(F (v)).

So F ∗ ∈ H (W ∗, V ∗), and F ∗ is called the adjoint of F . This is a very
common and useful type of operation on functions, appearing in topology, group
theory, differential geometry and in many other contexts.

We will primarily be interested in the case where V and W are normed spaces
and we will assume that now.
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Suppose F ∈ CL
(
V NLS,WNLS

)
, the bounded linear functions with domain V

and range W . These functions themselves comprise a normed linear space with
operator norm, and a Banach space when W is Banach.

We will further restrict attention by defining F ∗ solely on members of the
continuous dual W ′ rather than the whole algebraic dual W ∗.

So if w′ ∈W ′ and v ∈ V we have ‖F ∗(w′)(v)‖ ≤ ‖w′‖ ‖F‖ ‖v‖.
So, in fact

‖F ∗(w′)‖ ≤ ‖w′‖ ‖F‖

and this means F ∗(w′) is actually in V ′, not just V ∗: that is, F ∗ ∈ CL (W ′, V ′).

Looking at the same line again, we see that ‖F ∗‖ ≤ ‖F‖.

8.12. Exercise. Review the following calculation to conclude ‖F ∗‖ = ‖F‖.

‖F ∗‖ = sup{ ‖F ∗(φ)‖ = ‖φ ◦ F‖ | φ ∈W ′ and ‖φ‖ = 1 }.

Find sequence xn of members of V with ‖xn‖ = 1 for each n ≥ 1 and

‖F‖ − 1

n
< ‖F (xn)‖ ≤ ‖F‖.

As we’ve seen before, by Hahn-Banach there is, for each n, a member φn ∈W ′
with ‖φn‖ = 1 and φn(F (xn)) = ‖F (xn)‖. So

‖F‖ − 1

n
< φn (F (xn)) = F ∗(φn)(xn) ≤ ‖F‖.

8.13. Exercise. (i) If F is an isomorphism of normed spaces (i.e. a continuous

linear mapping with continuous inverse) then so is F ∗, and
(
F−1

)∗
= (F ∗)

−1
.

(ii) If F is an isometry onto W then F ∗ is an isometry onto V ′.

The map F ∗ : W ′ → V ′ is called the Banach adjoint of F and we have just
shown (among other things) that for normed spaces the Banach adjoint operator
is an isometry.

8.14. Proposition.
∗ : CL (V,W )→ CL (W ′, V ′) is an isometry onto its range.

Proof. The proof is from the last exercise. �

8.15. Exercise. Since it is an isometry, the adjoint operator ∗ is continuous
when
CL (V,W ) and CL (W ′, V ′) are given operator norm.

Generally, the adjoint operator might not be onto CL (W ′, V ′), but if V and
W are reflexive it is, and we note the very important facts below.

For the normed spaces V and W in the statement of the proposition below
let E(V ) and E(W ) denote the embedded images of V and W in V ′′ and W ′′,
respectively, using the evaluation isometry E.
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8.16. Proposition. If V and W are normed spaces and F ∈ CL (V,W )
then the restriction of F ∗∗ to E(V ) is F ◦ E−1.
When V and W are reflexive (and hence Banach) we may therefore
identify F ∗∗ with F , and the adjoint operator is an isomorphism
of normed linear spaces.

Proof. For x ∈ V let x be the member of V ′′ corresponding to x and let F (x)
denote the member of W ′′ corresponding to F (x).

We want to show that F ∗∗(x) = F (x), which will mean, essentially, that
F ∗∗ : V ′′ →W ′′ “is” F , at least when evaluated on E(V ).

By definition, F ∗∗(x) = x ◦ F ∗ so if φ ∈W ′

F ∗∗(x)(φ) = x ◦ F ∗(φ) = x(φ ◦ F ) = φ(F (x)) = F (x)(φ).

The remaining remarks are the content of the exercise above. �

8.17. Proposition. Suppose Ψ ∈ CL
(
V Banach,WNLS

)
.

The following are equivalent conditions on Ψ.

(i) Ψ ∈ CL (V,W ) has an inverse function Ψ−1 ∈ CL (W,V ).

(i) Ψ∗ ∈ CL (W ′, V ′) has an inverse function (Ψ∗)
−1 ∈ CL (V ′,W ′).

(iii) Both Ψ and Ψ∗ are bounded below.

Proof. You proved in Exercise 8.13(i) that if Ψ is invertible so is Ψ∗: that is,
(i) implies (ii).

Also, we know by Proposition 5.14 that a linear transformation between normed
spaces with Banach domain, such as V (by assumption) or W ′ (always) has an
inverse if and only if it is bounded below and has image dense in its range.

Now suppose Ψ∗ has an inverse. So Ψ∗ is one-to-one. That means if φ◦Ψ = τ◦Ψ
for φ, τ ∈ W ′ then φ = τ. If Ψ(V ) were not dense in W there would be a vector x

not in closed Ψ(V ) and a functional φ ∈W ′ with φ(Ψ(V )) = { 0 } but φ(x) 6= 0 so
φ is not the zero functional. This contradiction implies that Ψ has dense range.

We need to show that if Ψ∗ has an inverse then Ψ is bounded below. If x is
any non-zero member of V there is a functional λ ∈ V ′ for which ‖λ‖ = 1 and
λ(x) = ‖x‖. But now

‖x‖ = λ(x) = Ψ∗ ◦ (Ψ∗)
−1

(λ)(x) = (Ψ∗)
−1

(λ)(Ψ(x))

≤
∥∥∥(Ψ∗)

−1
∥∥∥ ‖Ψ(x)‖.

That means ‖Ψ‖ ≥
∥∥∥(Ψ∗)

−1
∥∥∥−1

and so Ψ is bounded below.

So with these two facts in hand we know that Ψ has an inverse, and have shown
that (ii) implies (i).

It is obvious now that either (i) or (ii) implies (iii).

Finally, we suppose that (iii) holds. We know that Ψ∗ and Ψ are both one-
to-one, else they would not be bounded below. And in the calculation above we
used only the fact that Ψ∗ was one-to-one to show that Ψ(V ) was dense. Now (i)
follows. �
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8.18. Exercise. Suppose V and W are Banach spaces and V is reflexive.

The adjoint operator ∗ : CL (V,W )→ CL (W ′, V ′) is continuous when CL (V,W )
and CL (W ′, V ′) are both given weak operator topologies.

To see this, suppose Tν is a net in CL (V,W ) converging to S in weak operator
topology. That means for each φ ∈ W ′ and each x ∈ V the sequence of numbers
|φ(S(x))− φ(Tν(x))| converges to 0.

Members of V ′′ are just E(x) where E is the evaluation map and x ∈ V .
So T ∗ν will converge top S∗ in the weak topology on CL (W ′, V ′) if the numbers
|E(x)(S∗(φ))− E(x)(T ∗ν (φ))| converge to 0 for each x ∈ V and φ ∈W ′. But

|E(x)(S∗(φ))− E(x)(T ∗ν (φ))| = |φ(S(x))− φ(Tν(x))|
which converges to 0 by assumption.

8.19. Exercise. Suppose V and W are Banach spaces and T : V → W is
continuous and of finite rank. Then T ∗ : W ′ → V ′ is also continuous and of finite
rank.

In the following, we see that the adjoints of compact maps are compact.

8.20. Proposition. If V and W are Banach and F ∈K(V,W )
then F ∗ ∈K(W ′, V ′).

Proof. Let DV and D′W be the open unit disks in V and W ′, respectively.

We know F (DV ) is totally bounded in W and we need to show F ∗(D′W ) =
{φ ◦ F | φ ∈ D′W } is totally bounded in V ′.

That means we need to find φ1, . . . , φk in D′W so that for each φ◦F ∈ F ∗(D′W )
the operator norm of φ ◦ F − φt ◦ F does not exceed ε for some t.

That means we need to have, for this t,

sup{ |φ ◦ F (v)− φt ◦ F (v)| | v ∈ DV } < ε.

Suppose ε > 0 and let v1, . . . , vn be members of D for which each member of
F (DV ) is within ε/3 of one of the F (vi).

Define H : W ′ → Fn by H(φ) = (φ(F (v1)), . . . , φ(F (vn)) ).

Each of the finitely many coordinate functions of H is the composition of the
evaluation map and F and so is continuous. Therefore H itself is continuous when
Fn is given the usual Euclidean norm. A set has compact closure in Fn with this
norm if it is bounded and H is a bounded linear function, and so H is a compact
mapping.

That tells us that H(D′W ) is totally bounded, so there are functionals φ1, . . . , φk
in D′W so that every H(φ) ∈ H(D′W ) is within ε/3 of one of H(φ1), . . . ,H(φk).

Writing this out explicitly we have for some t

‖H(φ)−H(φt)‖2 =

k∑
i=1

|φ(F (vi))− φt(F (vi))|2 =

k∑
i=1

|(φ− φt)(F (vi))|2 <
(ε

3

)2

and in particular none of the |(φ− φt)(F (vi))| can exceed ε/3.
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Now suppose v ∈ DV and φ ∈ D′W . Select i so that F (v) is within ε/3 of F (vi).
Select φt for this φ as above. Recall that the operator norms of both φ and φt are
limited by 1. We now have

|(φ− φt)(F (v))|
≤ |φ(F (v))− φ(F (vi))|+ |φ(F (vi))− φt(F (vi))|+ |φt(F (vi))− φt(F (v))|
≤ ‖φ‖ ‖F (v)− F (vi)‖+ |(φ− φt)(F (vi))|+ ‖φt‖ ‖F (v)− F (vi)‖

None of the three terms in the last line exceed ε/3.

So |(φ−φt)(F (v))| = |(φ ◦F (v)−φt ◦F (v)| is no more than ε for any v ∈ DV .

That was what we needed to show to conclude that F ∗(D′W ) is totally bounded,
and finally that F ∗ is compact. �

9. The Open Mapping, Banach-Steinhaus and Closed Graph Theorems

The results of this section are direct consequence of the Baire Category Theo-
rem. There are numerous generalizations and variations on these theorems, positing
combinations of properties on domain and range spaces of the linear transforma-
tions to which they refer. We prove the results in typical generality, and mention
a few extensions with references.

9.1. Proposition. The Open Mapping Theorem

If Ψ ∈ CLF
(
V Banach,WBanach

)
and Ψ(V ) = W then Ψ is an open map.

Proof. Let BV (x, ε) and BW (y, ε) denote open balls of radius ε centered at
x and y in V and W , respectively.

Since
⋃
n∈N ΨBV (0, n) = W , the Baire Category Theorem implies that there

exists an integer n, y ∈W and δ > 0 so that BW (y, δ) ⊂ ΨBV (0, n).

Pick an element x of Ψ−1(−y) and integer k > ‖x‖+ n. So

BW (0, δ) ⊂ Ψx+ ΨBV (0, n) = ΨBV (x, n) ⊂ ΨBV (0, k).

Let ε = δ/k. BW (0, ε) ⊂ ΨBV (0, 1) so for each integer n,

BW

(
0,

ε

2n

)
⊂ ΨBV

(
0,

1

2n

)
.

Now suppose z is any member of BW (0, ε). We will show that z ∈ ΨBV (0, 2),
and conclude that BW (0, ε) ⊂ ΨBV (0, 2).

Select x1 ∈ BV (0, 1) for which z−Ψx1 ∈ BW
(
0, ε2
)
. Having selected x1, . . . , xn

for which

z −
n∑
i=1

Ψxi = z −Ψ

(
n∑
i=1

xi

)
∈ BW

(
0,

ε

2n+1

)
find xn+1 ∈ BV

(
0, 1

2n+1

)
with

z −
n+1∑
i=1

Ψxi = z −Ψ

(
n+1∑
i=1

xi

)
∈ BW

(
0,

ε

2n+2

)
.
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The sequence yn =
∑n
i−1 xi constructed by this process is Cauchy and converges

to a point p in BV (0, 2). The sequence Ψ(yn) was constructed to converge to z.
Continuity of Ψ requires that z = Ψ(p).

Let O be a nonempty open subset of V with p ∈ O. Select µ so small that
p+BV (0, µ) ⊂ O.

So Ψp+BW

(
0,
εµ

2

)
⊂ Ψp+ ΨBV (0, µ) = ΨBV (p, µ).

So ΨO is a neighborhood of Ψp for each p ∈ O, and is therefore open in W . �

A typical variation on this theorem is the following. If Ψ ∈HF(V Frechét,W barreled)
has a closed graph (a necessary condition for continuity, see Proposition 9.8 below)
and is onto W then Ψ is an open map. For a proof go to Narici and Beckenstein
[?] p. 468.

9.2. Corollary . Any bounded one-to-one linear map Ψ: V Banach →WBanach

onto W has a continuous linear inverse function.

Proof. The proof is an immediate consequence of the last proposition, and
will hold whenever a version of that theorem holds. �

9.3. Proposition. The Banach-Steinhaus Theorem, also called
The Principle of Uniform Boundedness

Suppose A ⊂ CLF
(
V Banach,WNLS

)
.

Then one of two alternatives apply.

Either ∃M <∞ for which ‖Ψ‖ ≤M ∀Ψ ∈ A

or the function λ : V → [0,∞] given by λ(x) = supΨ∈A ‖Ψx‖
is infinite on a dense Gδ subset of V .

Proof. Since λ is the supremum of continuous functions, it is lower semicon-
tinuous. So the sets An = λ−1( (n,∞] ) are open.

If every An is dense then, once again by the Baire Category Theorem, so is the
Gδ set

⋂∞
n=1An.

On the other hand, if some An is not dense, then ∃ε > 0 and y ∈ V for which
An ∩BV (y, ε) = ∅. So λ (BV (x, ε)) ⊂ [0, n]. So for any z ∈ BV (0, ε) we find

λ(z) ≤ sup
Ψ∈A

(‖Ψ(y + z)‖+ ‖Ψy‖) ≤ sup
Ψ∈A
‖Ψ(y + z)‖+ sup

Ψ∈A
‖Ψy‖ ≤ 2n.

So if M = 2n
ε , then ‖Ψ‖ ≤M ∀Ψ ∈ A. �

A variation of this result (see Narici and Beckenstein [?] p. 400) is the following.
If A ⊂ CLF

(
V barreled,WLCS

)
and λ(x) = supΨ∈A ‖Ψx‖ < ∞ for each x ∈ V then

A is equicontinuous: that is, for any open neighborhood R of 0 in the range there
is an open neighborhood D of 0 in the domain for which Ψ(D) ⊂ R ∀Ψ ∈ A.
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9.4. Exercise. Weakly bounded sets in an NLS are norm bounded.
Suppose V is an NLS with continuous dual V ′. Suppose nonempty subset B

of V is bounded when V is given the weak topology: that is, |g|(B) is a bounded
set of numbers for all g ∈ V ′. Then B is norm-bounded in V . (hint: The dual V ′

is Banach with operator norm. The evaluation functionals Ex : V ′ → F given by
Ex(f) = f(x) have norm ‖x‖ as members of Banach space V ′′, by an application
of the Hahn-Banach theorem. And λ(f) = sup{ |Ex(f)| = |f(x)| | x ∈ B } is just
sup(|f |(B)) which is finite for each f by assumption. We invoke Banach-Steinhaus
to conclude that there is a real M for which ‖Ex‖ = ‖x‖ ≤M for all x ∈ B.)

9.5. Exercise. Pointwise limits of sequences of continuous operators
from a Banach space to an NLS are continuous.

(Note: Some sources refer to this application as the Banach-Steinhaus The-
orem, and reserve the name Uniform Boundedness Principle for the earlier
more general theorem.)

Suppose fn ∈ CLF
(
V Banach,WNLS

)
for each n ∈ N and the sequence (fn(x))

converges to a member g(x) ∈ W for each x ∈ V . (That means the sequence (fn)
is Cauchy in the strong operator topology, the topology of pointwise convergence of
these operators, though this property is not enough to imply pointwise convergence
unless W is Banach.) It is easy to show that the function g produced by these
pointwise limits is linear, but we want to show that g is continuous so the sequence
converges to g in CLF (V,W ) with strong operator topology. Though this is the only
operator the sequence might converge to in operator norm, we specifically are not
implying that operator norm convergence is present.

Define λ(x) = supn∈N ‖fn(x)‖ for each x ∈ V . By assumption, the sequence of
numbers used to form λ(x) converges, so each λ(x) is bounded. That implies, by the
Uniform Boundedness Principle, that there is a number M for which ‖fn‖ ≤ M .
That is, the operator norms of these operators are uniformly bounded. But then for
each x ∈ V, ‖g(x)‖ ≤ supn∈N ‖fn(x)‖ ≤ M ‖x‖. So g is bounded, and therefore
continuous.

9.6. Exercise. If g is the pointwise limit of a sequence of continuous
operators with Banach domain and NLS range, then convergence to g is
uniform on compact subsets of the domain.

Suppose fn ∈ CLF
(
V Banach,WNLS

)
for each n ∈ N and that the sequence

converges to g in strong operator topology, as in the last exercise. We showed there
that g is continuous, and ‖g‖ and all the ‖fn‖ are uniformly bounded by a number
M . Suppose K is a compact subset of V and ε > 0. K is totally bounded so there are
a finite number of members x1, . . . , xn of K for which K ⊂

⋃n
i=1 (xi + εB) where

B is the unit ball in V . Choose N so large that ‖g(xj) − fi(xj)‖ < ε whenever
i ≥ N and for every j. If x ∈ K pick xj for which x ∈ xj + εB. Then if i ≥ N

‖g(x)− fi(x)‖ ≤ ‖g(x)− g(xj)‖+ ‖g(xj)− fi(xj)‖+ ‖fi(xj)− fi(x)‖
≤ M ε+ ε+M ε.

9.7. Exercise. A bilinear functional on the product of a Banach space
with an NLS which is continuous in each factor separately is jointly
continuous.
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Suppose V is an NLS and W is Banach space, both over the field F. Give V ×W
the product norm, ‖(x, y)‖ = ‖x‖+ ‖y‖, which generates the product topology.

Suppose Ψ: V × W → F and for each v ∈ V and w ∈ W the functions
Ψ( · , w) : V → F and Ψ(v, · ) : W → F are F-linear. A function of this kind is
called bilinear on the product space.

Show that if every Ψ( · , w) is in V ′ and every Ψ(v, · ) is in W ′ then Ψ itself is
continuous on the product space.

Ψ is continuous precisely when the convergence of the two sequences xn to 0 in
V and yn to 0 in W implies that Ψ(a+ xn, b+ yn) converges to Ψ(a, b) in F. But

Ψ(xn + a, yn + b) = Ψ(xn, yn) + Ψ(xn, b) + Ψ(a, yn) + Ψ(a, b)

by the bilinearity condition, and our assumptions imply that the two middle terms
on the right converge to 0. So Ψ will be continuous exactly when the convergence of
those two sequences to their respective zero vectors implies that Ψ(xn, yn) converges
to the number 0.

For each fixed y ∈ W the convergence of the sequence (xn) and continuity of
Ψ( · , y) implies that supn∈N ‖Ψ(xn, y)‖ is finite. The Principle of Uniform Bound-
edness implies there is a constant M for which supn∈N ‖Ψ(xn, y)‖ ≤ M‖y‖ for all
y ∈W . The result now follows.

Recall that a relation is defined to be a set of ordered pairs. The domain of the
relation is the set of all first components of any pair in the relation. And a function
is a relation for which there is exactly one pair in the set with any domain member
as first component.

If f : X → Y where X and Y are topological spaces, the graph of f is the set
{ (x, f(x)) | x ∈ X } ⊂ X ×Y with subspace topology from the product topological
space. The graph of f will be denoted γ(f).

So the difference between a function f and its graph γ(f) is simply the addi-
tional structure of a topological space possessed by the latter. As sets they are the
same and the properties of γ(f) as a topological space can usually be phrased in
terms of properties of X and Y , and we will take that approach in the following
proposition.

If Y is T2 and f is continuous, then f must be closed as a subset of X × Y ,
essentially by definition of continuity. Sometimes the converse implication holds.

9.8. Proposition. The Closed Graph Theorem

Suppose Ψ ∈HF(V Banach,WBanach).

Ψ ∈ CLF(V,W ) if and only if
Ψ is a closed subset of V ×W with product topology.

Proof. As implied by Exercise 9.7 the graph of continuous Ψ must be closed.

We now assume Ψ to be a closed subset of V ×W .

Consider the coordinate projections π1 : Ψ→ V defined by π1(x,Ψx) = x and
π2 : Ψ→W defined by π2(x,Ψx) = Ψx. Both coordinate projections are continuous
when Ψ has subspace topology from V ×W . π1 is one-to-one and onto V so the
Open Mapping Theorem has π−1

1 continuous. So π2 ◦ π−1
1 = Ψ is continuous. �
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We remark that the theorem remains valid if the domain of Ψ is a barreled
LCS and the range is Frechét. See Narici and Beckenstein [?] p. 465.

10. Closed Operators

Some of the main applications of functional analysis will involve linear functions
defined on a subspace, and not all of, a particular normed space. Many of these
cannot be extended to a continuous function defined on the whole ambient space
but have other properties that will, nonetheless, give us some traction.

To that end we consider linear T : DT → W where DT = Domain(T ) is a
subspace of V and both V and W are normed spaces. Let RT denote the range
T (DT ) of T . So DT and RT are themselves normed spaces with restriction norms.

Recall the nature of a function: in our case, a function T is a set of ordered
pairs of the form (x, T (x) ) ∈ V ×W where x is restricted to come from DT . We
will not distinguish here between a function and its graph.

T is called a closed linear operator if T , thought of as this set of ordered
pairs, is a closed subset of V ×W where V ×W is given product norm. That means
that whenever (xn, yn) ∈ T for all n ∈ N, and if this sequence converges to (a, b) in
V ×W , then a ∈ DT and b = T (a).

If T is closed, this does not imply that DT is closed.

It implies that if each xn is in DT and if this sequence converges to a limit
a ∈ V then a must be in DT provided that the sequence T (xn) converges to a limit
in W . Only in that case does the requirement that a belong to DT and b = T (a)
apply.

This definition does not involve sequences xn for which T (xn) is not Cauchy,
or when T (xn) has no limit because W fails to be complete, whether or not xn
converges. If there are two sequences xn and yn which both converge to a and
T (xn) converges to b but T (yn) fails to converge it is only the limit of convergent
T (xn) that is involved in this definition.

10.1. Corollary . Suppose T : DT →W is linear where DT is a subspace
of V , and both V and W are normed spaces.

(i) If T is closed and DT and W are Banach then T is continuous.

(ii) If T is closed and continuous and W is Banach
then DT is closed in V .

(iii) If T is continuous and DT is closed then T is closed.

(iv) Continuity of T alone does not imply T is closed.

Proof. (i) restates (half of) Proposition 9.8. (ii) and (iii) are left to the reader.
A counterexample showing (iv) is given by the identity map restricted to a dense
subspace of infinite dimensional V . (Can you produce such a subspace? The finite
linear combinations of members of any Schauder basis will do it, but we don’t
investigate these until a later section.) �
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10.2. Exercise. Suppose T : DT → RT where DT and RT are subspaces of
normed spaces.

The Inverse of a One-to-One Closed Operator is Closed
(i) If T is one-to-one and closed then T−1 : RT → DT is closed.

The Kernel of a Closed Operator is Closed
(ii) If T is closed then Ker(T ) is a closed subspace of the domain space.

10.3. Corollary . Suppose T : DT →W is linear where
DT is a subspace of V , and both V and W are normed spaces.

T can be extended to a closed operator whose graph is T
if and only if (0, y) ∈ T implies y = 0.

In terms of T and the original domain, the second condition is
equivalent to: For every sequence xn converging to 0 in DT ,
either T (xn) converges to 0 or T (xn) fails to converge at all.

Proof. The necessity of the second condition is obvious.

So suppose (0, y) ∈ T implies y = 0. Since the norm closure of a subspace is
itself a subspace, this condition implies that if (a, b) and (a, d) are in T then b = d:
that is, T is the graph of some function, which must then be an extension of T .
Since T is a subspace that function is linear. �

10.4. Lemma. The Open Mapping Theorem for Closed Operators

Suppose T : DT →W is linear where DT is a subspace
of Banach V , and suppose also that W is Banach.

If T is closed and RT is closed in W then T takes relatively open
subsets of DT to relatively open subsets of RT .

In particular, if T as above is also one-to-one then T−1 is continuous.

Proof. The proof of the Open Mapping Theorem, Proposition 9.1, used lin-
earity of the operator and the fact that the image was second category to construct
a sequence xn in the domain and corresponding T (xn) in the range which were
both Cauchy and invoked continuity and completeness of domain to conclude that
xn → x and T (xn)→ T (x).

We assume that that RT is closed, and therefore a Banach space in its own
right, and for purposes of the proof we may then assume that RT = W . With
that assumption we use relatively open balls in domain in place of the open balls of
that theorem. We use closedness of T in place of continuity to deduce the required
convergence of xn to a member x of DT and T (xn)→ T (x). The rest of that proof
is unchanged.

The comment about T−1 is now immediate. �

10.5. Lemma. The Closed Range Theorem for Closed Operators

Suppose T : DT → RT is linear where
DT is a subspace of Banach V , and RT is a subspace of NLS W .
If T is closed and bounded below then RT is closed in W .
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Proof. Since T is bounded below, there is a positive number c for which
‖T (x) ‖ ≥ c ‖x ‖ ∀x ∈ DT . Suppose T (xn) is a sequence in RT converging to a
point y ∈W . The bounded below condition implies xn is Cauchy in Banach V and
so converges to a point x ∈ V . The closedness assumption on T implies x ∈ DT

and T (x) = y. So RT is closed in W . �

10.6. Exercise. If T : DT → RT is linear, closed and one-to-one and DT and
RT are subspaces of Banach spaces V and W , respectively, we know that T−1 : RT →
DT is also closed. So if we know that RT is closed then it is Banach so T−1 is
continuous.

If, on the other hand, T−1 is continuous, which is equivalent to T bounded
below, we know that RT is closed. So if, somehow, we know that RT is dense in W
we know that RT = W ; that is, T is onto W .

10.7. Exercise. Suppose T : DT → W where DT is a subspace of V , and both
V and W are Banach spaces.

(i) Show that T is closed if and only if DT is Banach when given the norm

‖x ‖∗ = ‖x ‖+ ‖T (x) ‖.
(ii) Show that ‖ · ‖# defined on DT by

‖x ‖# =
√
‖x ‖2 + ‖T (x) ‖2

is also a norm and T is closed if and only if DT is Banach when given this norm.
Are these two norms equivalent?

An operator T for which T is a function, T : S →W , is called closeable. T is
called the closure of T . We emphasize that for closeable T the subspace S = DT

need not be closed in V .

10.8. Exercise. Suppose T : DT → W where DT is a subspace of V , and both
V and W are Banach spaces.

(i) Show that T is closeable if whenever sequence xn in DT converges to 0 and
T (xn) converges to y ∈W then y = 0.

(ii) If T is closeable and DT = V then T (and hence T itself) is bounded.

(iii) If T is closeable and DT = DT can you conclude that T is bounded?

We finish this section with an interesting example of a particular operator, the
derivative operator. Operators of this general type are, arguably, among the most
important operators from the applications.

Let C[a, b] denote the space of continuous functions on a closed interval [a, b].
For any function, continuous or not, we define supremum norm ‖ · ‖ by ‖ f ‖ =
sup{ f(x) | x ∈ [a, b] }. Convergence in this norm is called uniform convergence.

Suppose (fn) is a sequence of bounded functions on interval [a, b] and suppose
(fn) is Cauchy in supremum norm. This means that

∀ε > 0 there is an integer N so that m,n ≥ N ⇒ ‖fn − fm‖ < ε.
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If (fn) is Cauchy in supremum norm then (fn(x)) is a Cauchy sequences of
numbers for each x, so there is a functions f with

fn −−→
sup

f

where the indicated “sup” convergence means uniform convergence.

We will review several proofs (these are special cases of more general facts
proved elsewhere in the appendices) involving continuity, uniform continuity and
equicontinuity.

Continuity on a compact interval implies uniform continuity: that is, if v : [a, b]→
R is continuous, then for each ε > 0 there is a δ > 0 so that x, y ∈ [a, b] and
|x− y| < δ implies |v(x)− v(y)| < ε.

Proof: For each x ∈ [a, b] find δx > 0 so that y ∈ [a, b] and |x− y| < δx implies
|v(x) − v(y)| < ε/2. The set of intervals of the form [x − δx/2, x + δx/2] covers
[a, b]. Extract a finite subcover [xi − δxi/2, xi + δxi/2] for i = 1, . . . , k. Let δn
be the least of the δxi/2 and suppose |x − y| < δn.The number y is in one of the
[xi − δxi/2, xi + δxi/2] so both x and y are in [xi − δxi , xi + δxi ].

Then |v(x)− v(y)| ≤ |v(x)− v(xi)|+ |v(xi)− v(y)|
< ε/2 + ε/2 = ε.

Next we show that the limit f of a sequence (fn) of continuous functions defined
on a compact interval is continuous.

Proof: Choose N so large that ‖f − fN‖ < ε/3. Choose δ so small that
x, y ∈ [a, b] and |x− y| < δ implies |fN (x)− fN (y)| < ε/3.

Now we have the necessary inequality: for x, y ∈ [a, b] and |x− y| < δ

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

We have just shown that C[a, b] is a Banach space with supremum norm.

It will be convenient to know that convergence of a sequence (fn) of continuous
functions on a compact interval implies that the sequence is equicontinuous: that
is, for each x ∈ [a, b] we can find δx > 0 so that y ∈ [a, b] and |x − y| < δx then
|fn(x)− fn(y)| < ε for every n.

In fact, we have more. Each convergent sequence of continuous functions de-
fined on a compact interval is uniformly equicontinuous: the same number δ can
be chosen for each x ∈ [a, b] and every n.

Proof: Choose N so large that n,m ≥ N implies ‖fn − fm‖ < ε/3. Choose δ∗

so small that if x, y ∈ [a, b] and |x − y| < δ∗ then |fN (x) − fN (y)| < ε/3. Now we
have for m ≥ N

|fm(x)− fm(y)| ≤ |fm(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− fm(y)|
< ε/3 + ε/3 + ε/3 = ε.

Each one of the f1, . . . , fN−1 is uniformly continuous, so there are positive
numbers δi so that x, y ∈ [a, b] and |x − y| < δi implies |fi(x) − fi(y)| < ε for
each i = 1, . . . , N − 1. So now let δ be the least number in { δ∗, δ1, . . . , δN−1 } and
uniform equicontinuity of (fn) follows from this.
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Let d
dx be the differentiation operator defined here, specifically, on the subspace

C1[a, b] of C[0, 1], consisting of continuously differentiable functions on [a, b], where
we use one-sided limits to calculate derivatives at the endpoints.

Suppose (fn) is a sequence of continuously differentiable functions on inter-
val [a, b] and suppose that (f ′n) is Cauchy in supremum norm. Suppose further
that (fn(c)) is a Cauchy sequence of numbers for some c ∈ [a, b], which therefore
converges to some number which we denote f(c).

(f ′n(x)) is a Cauchy sequence of numbers for each x so there is a function g,
which we saw above must be continuous, for which

f ′n −−→
sup

g.

We note that, for any continuous v : [a, b] → R, if ‖v‖ < ε then basic facts
about the Riemann integral imply that for every x, c ∈ [a, b]∣∣∣∣∫ x

c

v(y) dy

∣∣∣∣ < ε |x− c|.

Now consider the situation with our sequences of functions and derivatives. For
each n

fn(x) = fn(c) +

∫ x

c

f ′n(y) dy

Since f ′n converges uniformly to continuous g, and fn(c) converges to the num-
ber f(c), the right hand side converges (using the remark of the preceding para-
graph) to f(c) +

∫ x
c
g(y) dy. That implies the sequence of numbers on the left side

converges to a number we denote f(x) for each x ∈ [a, b].

By the Fundamental Theorem of Calculus, f is differentiable and f ′(x) = g(x).

Also |fn(x)− f(x)| =
∣∣∣∣∫ x

c

f ′n(y) dyfn(x)−
∫ x

c

g(y) dy

∣∣∣∣
=

∣∣∣∣∫ x

c

( f ′n(y)− g(y) ) dy

∣∣∣∣ ≤ ‖f ′n − g‖ (b− a).

Since the last term converges to 0 we have limn→∞ ‖fn − f‖ = 0.

So under the indicated circumstances both (fn) and (f ′n) converge uniformly
to continuous functions f and g, respectively. The function f is continuously dif-
ferentiable, and in fact f ′ = g. Thus

f ′n −−→
sup

f ′.

We have just shown that the operator d
dx : C1[a, b]→ C[a, b] is closed.

Actually, we have shown more: closure requires only that in case fn −−→
sup

f for

a sequence fn of continuously differentiable functions and some continuous function
f and if we know the sequence (f ′n) converges to a continuous function g, then f
must be continuously differentiable and f ′ = g.

We actually showed that for any sequence of continuously differentiable func-
tions, if the derivative sequence is just Cauchy then we concluded that the derivative
sequence must converge uniformly to a continuous limit g. And if the derivative
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sequence is Cauchy and the sequence (fn) converges at just a single domain value
then we concluded it converges uniformly to a continuous function f . We then
showed the pertinent point: f is differentiable and f ′ = g.

The calculations above show that γ
(
d
dx

)
is closed in C[a, b] × C[a, b], but of

course C1[a, b], the domain of d
dx , is not closed in C[a, b]. The Weierstrass Approxi-

mation Theorem tells us that C1[a, b] is a dense subspace of C[a, b] with supremum
norm.

10.9. Exercise. The sequence of functions given by fn(x) = sin(nx)
n converges

uniformly to 0 but dfn
dx = cos(nx) does not converge to 0 uniformly. There are

plenty of sequences gn of continuously differentiable functions converging uniformly
to 0 (the sequence that is constantly the zero function, for instance) and for which
dgn
dx also converges to 0. Why does this not interfere with our conclusion that this

operator is closed?

Now that we are here, we might as well gather in the following interesting fact
involving term-by-term differentiation of a convergent series. The following would
apply directly, for instance, to Taylor series on a closed subinterval of their interval
of convergence and to trigonometric series whose coefficients are known to converge
to zero “fast enough.”

Suppose (hn) is a sequence of continuously differentiable functions on [a, b] and∑∞
i=1 hi(c) converges for some c ∈ [a, b].

Suppose also that the numerical series
∑∞
i=1 ‖h′i‖ converges.

Define sequences fn =
∑n
i=1 hi and then f ′n =

∑n
i=1 h

′
i for each n.

If n > m we have

‖f ′n − f ′m‖ =

∥∥∥∥∥
n∑

i=m+1

h′i

∥∥∥∥∥ ≤
n∑

i=m+1

‖h′i‖

which implies that the sequence of derivatives (f ′n) is Cauchy with supremum norm,
and therefore converges to a continuous g : [a, b]→ R.

And by assumption (fn(c)) converges.

So by the last section
∑∞
i=1 hi converges uniformly to a continuously differen-

tiable function and ( ∞∑
i=1

hi

)′
=

∞∑
i=1

h′i.

10.10. Exercise. Suppose ‖ · ‖∗ is defined on C1[a, b] by

‖ f ‖∗ = |f(c)|+ ‖ f ′ ‖

where the norm indicated on the right is the supremum norm on the interval [a, b]
and c is some fixed element of [a, b].

(i) Show that ‖ · ‖∗ is a norm on C1[a, b], and with this norm C1[a, b] is a
Banach space.
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(ii) Consider the derivative operator d
dx : C1[a, b] → C[a, b] where C1[a, b] is

given this new norm while C[a, b] retains the usual supremum norm. Show that d
dx

is bounded with operator norm.

(iii) Consider a second norm ‖ · ‖# on C1[a, b] given by

‖ f ‖# = ‖ f ‖+ ‖ f ′ ‖

where again the norm indicated on the right is the supremum norm on the interval
[a, b]. Show that this norm is equivalent to ‖ · ‖∗ but not equivalent to ‖ · ‖.

11. Schauder Bases in a Banach Space

The Baire category theorem implies that no infinite dimensional Banach space
can have a countable Hamel basis. However, if we can’t have a countable Hamel
basis, we can do almost as well with a Schauder basis, defined below, which uses
concepts of limit and continuity provided by a norm to get most of what a true
basis provides in the finite dimensional setting.

The ideas to follow make sense in more general settings but we will confine
consideration here to Banach spaces. Much of what we do follows the discussion in
Singer, Bases in Banach Spaces I [?].

We will first prove some results about the convergence of series. We will use
(si) to denote a sequence of members of Banach space X.

The symbol
∑∞

n=1 sn denotes the limit in norm of the sequence of partial

sums Sk =
∑k
n=1 sn, when that limit exists.

The sequence of partial sums is called the series created from (si). When the
limit exists we say the series converges. Otherwise the series is said to diverge.

Since Banach spaces are complete, the limit will exist exactly when the series
is Cauchy; that is, ∀ε > 0 ∃ integer N so that

‖Sn − Sm ‖ =

∥∥∥∥∥
n∑

i=m+1

si

∥∥∥∥∥ < ε whenever n > m ≥ N.

The series is called absolutely convergent provided the series of numbers
∞∑
n=1

‖sn‖

converges. And the series is said to converge unconditionally if
∞∑
n=1

sσ(n)

converges for every permutation σ of the positive integers. The series is said to
converge conditionally if it converges, but there is a permutation of terms for
which the resulting series does not converge.

11.1. Exercise. Absolute convergence implies unconditional convergence.
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We are going to direct the set F of all nonempty, finite subsets of positive
integers by inclusion: that is, B ≥ A provided B ⊃ A.

We use F with this order to define a limiting process on series. Specifically, we
say y = limF

∑
si when,

∀ε > 0 ∃ A ∈ F so that

∥∥∥∥∥y −∑
n∈B

sn

∥∥∥∥∥ < ε whenever B ⊃ A.

For each A ∈ F let min(A) and max(A) denote the least and greatest elements,
respectively, of the nonempty finite set A.

11.2. Lemma. Suppose (sn) is a sequence in Banach X.

The following are equivalent.

(i) There is a y ∈ X with y = limF

∑
si.

(ii) ∀ε > 0 ∃ integer N

so that

∥∥∥∥∥∑
n∈B

sn

∥∥∥∥∥ < ε whenever B ∈ F and min(B) > N.

(iii)
∑∞
n=1 sn is unconditionally convergent.

Proof. (i)⇒(ii). Suppose y = limF

∑
si. Select A so that∥∥∥∥∥y −∑

n∈B
sn

∥∥∥∥∥ < ε

2
whenever B ⊃ A.

For any B ⊃ A let Bhigh = {n ∈ B | n > max(A) } and let Blow = B − Bhigh.
Presume, to avoid triviality below, that Bhigh is nonempty. A ⊂ Blow, so Blow is
also nonempty. Then

0 ≤

∣∣∣∣∣∣
∥∥∥∥∥ y − ∑

n∈Blow

sn

∥∥∥∥∥−
∥∥∥∥∥∥
∑

n∈Bhigh

sn

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤

∥∥∥∥∥ y −∑
n∈B

sn

∥∥∥∥∥ < ε

2
.

That means
∥∥∥∑n∈Bhigh sn

∥∥∥ cannot exceed ε, and Bhigh could be any finite set of

positive integers whose least member exceeds max(A). Since ε was an arbitrary
positive number, we have used (i) to show (ii).

(ii)⇒(iii). Assume (ii). Suppose σ is any permutation of positive integers.

For ε > 0 select N so that
∥∥∑

n∈B sn
∥∥ < ε whenever B ∈ F and min(B) > N .

Let M be the greatest value of j for which σ(j) ≤ N . Now suppose n > m > M .

If B = {σ(m+ 1), . . . , σ(n) } then min(B) > N .

So
∥∥∥∑n

j=m+1 sσ(j)

∥∥∥ =
∥∥∥∑j∈B sj

∥∥∥ < ε.

Then
∑∞
n=1 sσ(n) is Cauchy and must converge. We have shown that (iii) holds.

(iii)⇒(i). We will assume that
∑∞
n=1 sn is unconditionally convergent and, in

particular, converges in the unpermuted order to y =
∑∞
n=1 sn. We will assume

that the limit limF

∑
si fails to exist. We will then produce a permutation σ for
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which
∑∞
n=1 sσ(n) fails to exist, which contradicts our first assumption, and our

conclusion must be that (i) holds.

Since limF

∑
si fails to exist, there is t > 0 with the property that whenever

A ∈ F there is a member B ∈ F with A ⊂ B and∥∥∥∥∥ y −∑
n∈B

sn

∥∥∥∥∥ > t.

However, there does exist an N1 for which∥∥∥∥∥ y −
n∑
i=1

sn

∥∥∥∥∥ < t

2
whenever n ≥ N1.

Let A1 = { 1, . . . , N1 } and findB1 ∈ F with A1 ⊂ B1 and
∥∥ y −∑n∈B1

sn
∥∥ > t.

Having found Ak and Bk where Ak is an interval of positive integers containing
A1 (so automatically

∥∥ y −∑n∈Ak sn
∥∥ < t/2) and Bk ∈ F and Ak ⊂ Bk and∥∥ y −∑n∈Bk sn

∥∥ > t define Ak+1 = { 1, . . . ,max(Bk) } and select Bk+1 ∈ F for

which Ak+1 ⊂ Bk+1 and
∥∥∥ y −∑n∈Bk+1

sn

∥∥∥ > t.

The values of the norms in this definition oscillate between “greater than t”
and “less than t/2” so each Ak+1 has at least one extra integer not possessed by
Bk, and similarly Bk+1 is strictly larges than Ak.

So the listing of nonempty finite sets of integers

A1, B1 −A1, A2 −B1, B2 −A2, A3 −B2, B3 −A3, . . .

has every positive integer listed somewhere on it, once and only once. Create finite
ordered lists of integers using the natural order on each of these sets. Then create
permutation σ by appending these lists to each other in order starting with A1.

We observe that for each k∣∣∣∣∣
∥∥∥∥∥ y −∑

i∈Ak

si

∥∥∥∥∥−
∥∥∥∥∥ y −∑

i∈Bk

si

∥∥∥∥∥
∣∣∣∣∣ ≤

∥∥∥∥∥ ∑
i∈Bk−Ak

si

∥∥∥∥∥
and the left hand expression is at least ε/2 by choice of Ak and Bk.

So let’s consider the series
∑∞
i=1 sσ(i), and in particular the integer n where

σ(n) is the last member of Bk and integer m where σ(m) is the last member of Ak.∥∥∥∥∥
n∑
i=1

sσ(i) −
m∑
i=1

sσ(i)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
i∈Bk−Ak

si

∥∥∥∥∥ > t/2.

We conclude that the series
∑∞
i=1 sσ(i) is not Cauchy and therefore cannot converge.

�

11.3. Proposition. If a series in a Banach space is unconditionally convergent,
then the limit of the series is the same for every permutation of terms.
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Proof. Suppose
∑∞
i=1 si is unconditionally convergent and σ is a permutation

of the positive integers.

By Lemma 11.2 there is a y for which for every ε > 0 there is a set A with∥∥∥∥∥ y −∑
n∈B

sn

∥∥∥∥∥ < ε whenever B ⊃ A.

On the other hand, since
∑∞
i=1 sσ(i) converges to some w there is an N , which

we may choose to be so large that every member of A is of the form σ(i) for some
i ≤ N , so that ∥∥∥∥∥w −

N∑
n=1

sσ(n)

∥∥∥∥∥ < ε.

But then we have

‖w − y ‖ ≤

∥∥∥∥∥w −
N∑
n=1

sσ(n)

∥∥∥∥∥+

∥∥∥∥∥ y −
N∑
n=1

sσ(n)

∥∥∥∥∥ < 2 ε.

We conclude that w = y.

The limit is the same (that is, it is y) for every permutation. �

A Schauder basis for Banach X is a countable ordered set of vectors v0, v1, . . .
for which every member x of X can be written in a unique way as

x =

∞∑
n=0

an(x) vn for certain an(x) ∈ F.

The convergence of the sequence of partial sums is in norm for each particular
x . The uniqueness refers to the values of the coordinate functionals an, which
are therefore linear.

We define, for each k and x ∈ X

Sk(x) =

k∑
n=0

an(x) vn.

The pointwise convergent operators Sk are called the partial sum operators
for this Schauder basis.

Uniqueness of coefficients implies that 0 is not among the vectors in a Schauder
basis, and in fact the vectors in a Schauder basis must constitute a linearly inde-
pendent list of vectors.

Other useful facts follow immediately for each x from convergence of the series
and uniqueness of coordinate functionals, such as

x−
k∑

n=0

an(x) vn =

∞∑
n=k+1

an(x) vn

and

∥∥∥∥∥
n∑

i=m

ai(x) vi

∥∥∥∥∥ < ε for any ε > 0 for sufficiently large m,n
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and lim
k→∞

∥∥∥∥∥
k∑

n=0

an(x) vn

∥∥∥∥∥ = ‖x ‖ and lim
k→∞

∥∥∥∥∥
∞∑
n=k

an(x) vn

∥∥∥∥∥ = 0.

When referring to a sequence of vectors in vector space X or X∗ the notation

v = (vn) ⊂ X or a = (an) ⊂ X∗

will be used. Thus, for Schauder basis as above we have the paired sequences

v ⊂ X with unique associated coordinate functionals a ⊂ X∗.

The coordinate functionals and basis vectors described above satisfy the relation
an(vn) = 1 for all n and an(vm) = 0 whenever m 6= n.

Any Banach space with a Schauder basis is separable, so there are Banach
spaces without Schauder bases. In fact, there are reflexive separable Banach spaces
without a Schauder basis3. Still, Banach spaces that have these bases are common
in practice. More to the point, “practice” may concentrate on these spaces because
they can be more readily understood.

A Schauder basis is called unconditional if, for any x ∈ X, the series obtained
by any permutation of the terms in the series representation for x in this Schauder
basis also converges.

We saw in Proposition 11.3 that if, in fact, every permutation of terms for a
given convergent series (formed from a Schauder basis or not) for some particular
x ∈ X produces a series that converges to something, then they all must converge
to x.

Conditional bases (i.e. those that are not unconditional) are common. Albiac
and Kalton in Topics in Banach Space Theory [?] develop a number of interesting
facts about such things, producing an example of a space with a Schauder basis
but with no unconditional basis at all and along the way producing an example
of a separable Banach space which is isometrically isomorphic to its bidual, yet is
not reflexive. (The evaluation map is not, of course, the isometric isomorphism to
which they refer.)

They also show that every Banach space with any Schauder basis at all has one
of these conditional bases and provide examples.

For instance if c0 is the Banach space of sequences that converge to 0 with
supremum norm ‖x‖ = sup{x(n) | n ∈ N }, define for each k the sequence δk by
δk(k) = 1 and δk(n) = 0 if n 6= k. Define fk = δ0 + · · ·+ δk for each k. The set of
these sequences fk constitute a conditional basis for c0 with this norm.

Or if `1 is the Banach space of sequences x for which
∑∞
i=0 |x(i)| converges,

with norm ‖x‖ =
∑∞
i=0 |x(i)|, the sequence b0 = δ0 together with bk = δk − δk−1

for k > 0 form a conditional Schauder basis.

We refer to Albiac and Kalton [?] for further discussion of these matters.

3Per Enflo’s rather surprising paper A counterexample to the approximation property in

Banach spaces, Acta Math. 130, 309-317 (1973), provided the first examples. Until then math-
ematicians (in particular Grothendieck and his followers) had thought it likely, or hoped, there

would be none.
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A Schauder basis is called bounded if there are positive constants A and B
for which

A ≤ ‖vn‖ ≤ B ∀n ∈ N.

If (vn) is a Schauder basis, so is (vn/‖vn‖) and the latter Schauder basis is
called normalized.

In the finite dimensional setting a basis is used to create a coordinate repre-
sentation of a vector space in Fn, and something similar can be done here.

Let Cv consist of those members c of FN for which K(c) =
∑∞
i=0 c

ivi converges.
By definition, the sequence of vectors Sn(K(c)) =

∑n
i=1 c

ivi converges to K(c).

By uniqueness of the coordinate functionals K is one-to-one, and since every
x ∈ X has a representation of this form K is onto X. It is also easy to show that
K is linear (uniqueness again, and linearity of the partial sum operators) and so
has linear inverse function.

We will now create a norm on Cv by

‖ c ‖1 = sup{ ‖Sn(K(c))‖ | n ∈ N }.

Each convergent sequence is norm bounded so ‖ c ‖1 < ∞ for each c, and homo-
geneity is immediate as is the fact that ‖ c ‖1 = 0 implies c = 0.

If c and d are in Cv then

‖ c+ d ‖1 = sup{ ‖Sn(K(c)) + Sn(K(d))‖ | n ∈ N } ≤ ‖ c ‖1 + ‖ d ‖1.

So ‖ · ‖1 is in fact a norm on Cv.

Further, K : Cv → X is a bounded map, and so continuous, because for any c

‖K(c)‖ =

∥∥∥∥∥
∞∑
i=0

civi

∥∥∥∥∥ = lim
k→∞

‖Sk(K(c))‖ ≤ sup{ ‖Sn(K(c))‖ | n ∈ N } = ‖ c ‖1.

This implies that the operator norm of K cannot exceed 1, and by examining
the specific c for which K(c) = v0/‖v0‖ we see that ‖ c ‖1 = 1 and ‖K(c) ‖ = 1 so
the operator norm of K actually attains this upper bound.

We will now show that Cv is complete with norm defined above.

Suppose Θ is a Cauchy sequence in Cv.

For each i the sequence of numbers Θi is Cauchy too: when N > M and i > 0

|Θi(N)−Θi(M)| ‖ vi ‖ = ‖
(
Θi(N)−Θi(M)

)
vi ‖

=

∥∥∥∥∥
(

i∑
k=0

(
Θk(N)−Θk(M)

)
vk

)
−

(
i−1∑
k=0

(
Θk(N)−Θk(M)

)
vk

)∥∥∥∥∥
≤ ‖Θ(N)−Θ(M)‖+ ‖Θ(N)−Θ(M)‖.

It follows that Θi is Cauchy in F, and Θ0 is Cauchy by an even easier argument.
So for each i and some number ci we have limn→∞Θi(n) = ci. For now, all we
know is that c ∈ FN.

We need to show that
∑∞
i=0 c

ivi converges so c ∈ Cv.

And also we must show that limn→∞ ‖ c−Θ(n) ‖1 = 0.
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Since Θ is Cauchy, for each ε > 0 we can find N so that j > i ≥ N implies

‖Θ(j)−Θ(i) ‖1 = sup

{∥∥∥∥∥
n∑
t=0

(
Θt(j)−Θt(i)

)
vt

∥∥∥∥∥ | n ∈ N

}
< ε.

For each fixed n and every j larger than i in the set above∥∥∥∥∥
n∑
t=0

(
ct −Θt(i)

)
vt

∥∥∥∥∥ =

∥∥∥∥∥
n∑
t=0

(
ct −Θt(j) + Θt(j)−Θt(i)

)
vt

∥∥∥∥∥
≤

(
n∑
t=0

| ct −Θt(j) | ‖ vt ‖

)
+

∥∥∥∥∥
n∑
t=0

(
Θt(j)−Θt(i)

)
vt

∥∥∥∥∥
The first term in the bottom line can be made as small as we like and the second
can never be as large as ε.

This means that ‖
∑n
t=0 ( ct −Θt(i) ) vt ‖ ≤ ε for any n provided i ≥ N . If we

knew at this point that c is in Cv we could then conclude that Θ converged to c
and we would be done.

We will finish off by showing this remaining fact.

For any m and n with m < n we have∥∥∥∥∥
n∑

t=m+1

ct vt

∥∥∥∥∥ =

∥∥∥∥∥
n∑
t=0

(
ct −Θt(N)

)
vt −

m∑
t=0

(
ct −Θt(N)

)
vt +

n∑
t=m+1

Θt(N) vt

∥∥∥∥∥
≤

∥∥∥∥∥
n∑
t=0

(
ct −Θt(N)

)
vt

∥∥∥∥∥+

∥∥∥∥∥
m∑
t=0

(
ct −Θt(N)

)
vt

∥∥∥∥∥+

∥∥∥∥∥
n∑

t=m+1

Θt(N) vt

∥∥∥∥∥ .
For any n and m at all the first two terms cannot exceed ε. And since Θ(N)

is assumed to be in Cv, the sequence of partial sums for
∑∞
t=0 Θt(N) vt is Cauchy

so by requiring n and m to be sufficiently large the last term can be made small as
well.

So the sequence of partial sums for
∑∞
t=0 c

t vt is Cauchy too, and therefore
converges in Banach X.

So c ∈ Cv and we conclude that Cv is complete.

Since K : Cv → X is a continuous one-to-one function from one Banach space
onto another, the open mapping theorem tells us that K has continuous inverse
K−1 : X → Cv. Because the operator norm of K is 1, the operator norm M of
K−1 cannot be less than 1:

‖v‖ = ‖K ◦K−1(v)‖ ≤ ‖K‖ ‖K−1‖ ‖v‖ = ‖K−1‖ ‖v‖ = M ‖v‖.

The number M = ‖K−1‖ ≥ 1 is called the basis constant for v. The basis
constant does depend on the particular norm used for X, and would differ if a
different but equivalent norm was used there.

The function K−1 can be used to create an equivalent norm on X. Specifically,
define

‖x‖2 = sup{ ‖Sn(x)‖ | n ∈ N } = ‖K−1(x)‖1 for each x ∈ X.

Since ‖K−1(x)‖1 ≤M‖x‖ we have ‖x‖ ≤ ‖x‖2 ≤M‖x‖.
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Examining the supremum with which ‖ · ‖2 is defined we note for later that
‖Sn(x)‖ ≤ M‖x‖ for every x in X: that is to say every partial sum operator is
bounded by M , and therefore continuous.

‖Sn‖ ≤M ∀n ∈ N

and M is exactly the least upper bound of the operator norms ‖Sn‖.

Further, the members of the sequence of linear functionals (an) are all contin-
uous, because a0 v0 = S0 and an vn = Sn − Sn−1 for n > 0. So for Schauder basis
v ⊂ X we have a ⊂ X ′, not just a ⊂ X∗.

Actually, we get a bit more out of this: for any x ∈ X

|an(x)| ‖vn‖ = ‖an(x) vn‖ = ‖Sn(x)− Sn−1(x)‖ ≤ ‖Sn(x)‖+ ‖Sn−1(x)‖
≤ M ‖x‖+M ‖x‖ = 2M‖x‖.

Since 1 = an(vn) we conclude that

1 ≤ ‖an‖ ‖vn‖ ≤ 2M

identifying a relationship between the operator norms of the functionals an, the
magnitudes of the corresponding basis vectors, and the basis constant for the entire
basis.

This shows that if the Schauder basis v for X is bounded, so too are the
coordinate functionals:

A ≤ ‖vn‖ ≤ B ∀n ∈ N ⇐⇒ 1

B
≤ ‖an‖ ≤ 2M

A
∀n ∈ N.

We will collect all these accumulated related results in the following proposition.

11.4. Proposition. Suppose X is a Banach space with norm ‖ · ‖ and Schauder
basis v and associated coordinate functionals a.

Let (Sn) denote the sequence of partial sum operators for this
Schauder basis.

Let Cv denote the subspace of FN consisting of those sequences c
for which

∑∞
i=0 c

ivi converges.

Define K : Cv → X by K(c) =
∑∞
i=0 c

ivi.

Finally define the function ‖c‖1 = sup{ ‖Sn(K(c))‖ | n ∈ N } on Cv.

(i) Cv is Banach with norm ‖ · ‖1.

(ii) K is an isomorphism of normed spaces, ‖K‖ = 1 and ‖K−1‖ = M ≥ 1.

(iii) Each Sn is continuous and ‖Sn‖ ≤M . So the sequence (Sn) converges
to the identity function I : X → X in the strong operator topology.

(iv) a ⊂ X ′.

(v) 1 ≤ ‖an‖ ‖vn‖ ≤ 2M.

(vi) A ≤ ‖vn‖ ≤ B ∀n ∈ N ⇐⇒ 1

B
≤ ‖an‖ ≤ 2M

A
∀n ∈ N.

Proof. See the remarks above. �
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The partial sum operator Sk =
∑k
n=0 a

n vn is bounded (in fact the whole lot of
them is uniformly bounded) and linear from X onto the finite dimensional subspace
of X spanned by v0, . . . , vk. Each operator is finite rank.

Sk is a projection onto its image: Sk ◦ Sk = Sk and, more generally, if i ≤ j
then Si ◦ Sj = Sj ◦ Si = Si.

This sequence of projections obviously converges pointwise to the identity op-
erator. However a bit more is true.

Suppose Q has compact closure in X. We saw in Exercise 7.14 that Q must
be totally bounded: for each ε > 0 there are members q1, . . . , qn in Q for which
Q ⊂

⋃n
i=1 (qi +Bε) where Bε is the ball centered at 0 of radius ε.

Select N so large that j ≥ N implies ‖qi − Sj(qi)‖ < ε for each i. If x is any
member of K then x = qi + yε for some yε ∈ Bε. But now if j ≥ N

‖x− Sj(x)‖ = ‖qi − Sj(qi) + yε − Sj(yε)‖
≤ ‖qi − Sj(qi)‖+ ‖yε‖+ ‖Sj‖ ‖yε‖ ≤ ε+ ε+Mε.

In other words, the sequence of finite rank operators Sj converges to the identity
uniformly on totally bounded subsets of X.

11.5. Proposition. If Banach space X has a Schauder basis then X has the
approximation property. Specifically, the sequence of partial sum operators for this
Schauder basis converge to the identity uniformly on totally bounded subsets of X.

Proof. The proof is found in the calculations above. �

Suppose T : W → X is a compact mapping from Banach space W to X. The
unit ball B1 in W is, of course, bounded so T (B1) has compact closure. If ε > 0
choose N so large that if j ≥ N we have ‖x − Sj(x)‖ < ε for every x ∈ T (B1).
Then if y ∈ B1

‖T (y)− Sj ◦ T (y)‖ = ‖(T − Sj ◦ T )(y)‖ < ε

so the supremum of such numbers over y ∈ B1 cannot exceed ε. We have shown
then that the finite rank mapping Sj ◦ T converges uniformly to T .

11.6. Proposition. If W and X are Banach spaces and if X has a Schauder
basis then any compact mapping from W to X has the approximation property.
Specifically, if T ∈ K(W,X) and (Sj) is the sequence of partial sum operators for
the Schauder basis in X then Sj ◦ T converges to T in operator norm.

Proof. We showed this in the last paragraph. �

For Schauder basis (vn) of X with associated coordinate functionals (an) a
natural question involving the symmetry of the situation arises.

Identify (vn) with members of X ′′ using the evaluation isometry. Define, for
any subset A of any Banach space, span(A) to be the norm closure of the set of
finite linear combinations of members of A.

Is a = (an) a Schauder basis of the Banach space span(a) ⊂ X ′, using the
restriction of operator norm from X ′, with coordinate functionals (vn)?
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Recall the Banach adjoint operator from Exercise 8.12. We decided there that
if T : X → X is continuous so is T ∗ : X ′ → X ′ defined by (T ∗φ)(x) = φ(T (x)), and
in fact the operator norms of T and T ∗ coincide.

That means that, for partial sum operator Sk, the operator S∗k : X ′ → X ′ is
continuous, and the supremum of the operator norms ‖S∗k‖ is M , the basis constant
for (vn). Actually, M can be defined as the supremum of the numbers ‖Sk‖, the
operator norms of the partial sum operators for the basis.

Note that

(S∗kφ)(x) = φ(Sk x) = φ

(
k∑
i=1

ai(x) vi

)
=

k∑
i=1

φ(vi) a
i(x) =

(
k∑
i=1

vi(φ) ai

)
(x).

So if (an) with coordinate functionals (vn) turns out to be a Schauder basis for
some Banach subspace of X ′, these operators S∗k are the partial sum operators for
that basis.

An easy calculation shows that if φ is any finite linear combination of members
of (an) then for sufficiently large k we have S∗kφ = φ.

Define the subset Y of X ′ to be the set

Y = {φ ∈ X ′ | lim
k→∞

‖φ− S∗k φ ‖ = 0 }

Y is easily seen to be a vector subspace of X ′ and contains the finite linear
combinations of members of (an).

It is also an operator norm closed subspace of X ′, and so contains span(a).

To see this, we suppose φi is in Y for each i ∈ N and limi→∞ φi = τ .

‖ τ − S∗k τ ‖ = ‖ τ − φi + φi − S∗k φi + S∗k φi − S∗k τ ‖
≤ ‖ τ − φi‖+ ‖φi − S∗k φi‖+ ‖S∗k‖ ‖φi − τ ‖

‖S∗k‖ cannot exceed M , the middle term converges to 0 by assumption, and
‖ τ − φi‖ can be made as small as we like.

Our conclusion must be that limk→∞ ‖ τ − S∗k τ ‖ = 0 and therefore τ ∈ Y .

Now suppose τ is a generic member of Y .

Since τ is continuous, if x = limn→∞
∑n
j=1 a

j(x)vj ∈ X we know

τ(x) = lim
n→∞

τ

 n∑
j=1

aj(x)vj

 = lim
n→∞

n∑
j=1

aj(x)τ(vj) = lim
n→∞

(S∗nτ)(x).

So the series converges to τ(x) for each x ∈ X. Rephrasing, the sequence of
partial sums S∗n(τ) converges to τ in the weak∗ topology. This is not news: the
weak∗ topology is weaker than the norm topology and we have already shown norm
convergence.

For n > k and any coefficient sequence c(i)

S∗n(τ)(vk) =

(
n∑
i=1

c(i)ai

)
(vk) = c(k)
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and since this (eventually) constant sequence must converge to τ(vk) we have
uniqueness of the representation. The coefficient on each ak must be τ(vk).

We have a final remark about the basis constant for (an) on the Banach sub-
space span(a) of X ′. It will be the supremum over all n of the operator norms of
the S∗n, which are defined on all of X ′, but restricted to span(a). Operator norms
are defined in terms of suprema, over those τ in the unit ball, of the numbers
‖S∗n(τ)‖. But the unit ball of span(a) is a smaller set than the unit ball in X ′, so
the restricted operator norm cannot exceed the unrestricted operator norm. The
least upper bound over all n of those unrestricted operator norms is M .

11.7. Theorem. The Dual Basis Theorem

Suppose v is a Schauder basis for XBanach with
associated coordinate functionals a ⊂ X ′.

(i) Then a is a Schauder basis for span(a) with associated
coordinate functionals v.

(ii) The basis constant for a will not exceed that for v.

(iii) If v is bounded so is a.

(iv) If v is unconditional so is a.

Proof. We have addressed, in the preceding paragraphs, all the issues of this
theorem except for the last. As for the last, none of the conclusions of the para-
graphs preceding this theorem are altered if the basis vectors are permuted in any
way, assuming that the permuted vectors still constitute a Schauder basis. �

The cleanest case, of course, is when X is reflexive. Then X ′ = span(a) and
so we have complete correspondence between Schauder bases with their coefficient
sequences for X and those for X ′, with matching basis constants.

12. Projections and Orthogonality in a Banach Space

Suppose P : V → V is linear and V is a vector space. The function P is called
idempotent, or a projection, if P 2, defined to be P ◦ P , is P .

Let K be the kernel of P and M the image of P . Both are subspaces of V .

If P is a projection and P 2(x) = 0 then P (x) = 0 so x ∈ K. That means
K ∩M = {0}.

Now suppose x is any member of V . Then P (x − P (x)) = P (x) − P 2(x) = 0.
So x = P (x) + x− P (x) represents x as the sum of a member of M and a member
of K. So V = M ⊕K.

Every member v of M is of the form P (x) for some x ∈ V . But then P (v) =
P 2(v) = P (x) = v. So P is the identity on M .

P is called a projection onto M.

So any projection on any vector space is the identity function on its image and,
of course, the zero function on its kernel, and the domain space is the direct sum
of image and kernel.
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Given V = M⊕K for projection P onto M with kernel K define linear function
Q = I − P , where I is the identity map on V . So K is the image of the map Q,
and the kernel of Q is M . So Q is a projection onto K.

For any x ∈ V we have x = P (x) +Q(x).

12.1. Lemma. Given any two subspaces K and M of vector space V for which
V = M ⊕ K there is one and only one projection with image M and kernel K.
Projections and corresponding ordered pairs of subspaces for which V = M ⊕ K
carry the same information.

Proof. The argument is given above. �

12.2. Lemma. Suppose P and W are projections defined on vector space
V onto MP and MW with kernels KP and KW , respectively.
Suppose further that P and W commute: P W = WP .

Then PW is a projection onto MPW = MP ∩MW with kernel

KPW = span(KP ∪KW ).

Proof. (PW )2 = PWPW = PPWW = PW so PW is in fact a projection
under the conditions of this lemma.

Also, PW (V ) ⊂ P (V ) and PW (V ) = WP (V ) ⊂ W (V ) so MPW is contained
in MP ∩MW . On the other hand if x ∈ MP ∩MW then PW (x) = P (x) = x so
x ∈MPW and we conclude MPW = MP ∩MW .

If x ∈ KW then PW (x) = P (0) = 0 and if x ∈ KP then PW (x) = WP (x) =
W (0) = 0 so span(KP ∪KW ) ⊂ KPW .

Finally, suppose x ∈ KPW . So x = a + b where a ∈ MP , so P (a) = a, and
b ∈ KP . But then 0 = PW (x) = WP (x) = W (a) so a ∈ KW . Our conclusion
is that x ∈ span(KP ∪KW ) and the containment KPW ⊂ span(KP ∪KW ) holds
too. �

12.3. Exercise. We will suppose V is a Banach space.

(i) If the dimension of V is at least 2 and k ≥ 1 there is a projection defined
on V with operator norm k.

(ii) If V is infinite dimensional there is an unbounded projection defined on V .

We will now focus on the case where V is a Banach space.

Suppose A and B are subspaces of V and both are closed and V = A ⊕ B.
Following Lorch, Spectral Theory [?] we define (A,B) to be a complementary
pair.

The function P : V → V given by P (x) = a whenever x = a+ b and a ∈ A and
b ∈ B is a continuous projection onto A with kernel B.

Continuity follows from the closed graph theorem.

The graph γ(P ) of P is

γ(P ) = { (x, P (x)) | x ∈ V } = { (a+ b, a) | a ∈ A and b ∈ B }.
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Suppose xi = ai + bi is a sequence converging to a point x in X, where ai
and bi are drawn from the closed sets A and B, respectively. Suppose also that ai
converges to a. Since A is closed a ∈ A.

Since bi = xi−ai converges to x−a and B is closed we have bi converging to a
point b ∈ B and b = x− a. So P (x) = a which means that the graph of P is closed
and therefore P is continuous.

Note that we specifically used the closed nature of both A and B, though we
never used the fact that X is complete. This result holds for any normed space.

It is a (perhaps) surprising fact that the direct sum of two complete subspaces
might fail to be complete. We can have a situation where A is a normed space
with subspaces B and C which are Banach spaces (i.e. complete) and for which
A = B⊕C, yet A is not Banach. This can happen even in the nice situation where
A is an inner product space so B and C are Hilbert spaces. See Exercise 14.13 for
an example.

One of our goals later will be to try to understand the structure of members T
of CLF (V ), and one way of doing that will be to restrict attention to subspaces of
V upon which T is simple, or simpler, and then put the pieces together to re-form
T .

A complementary pair (A,B) is said to reduce T if T (A) ⊂ A and T (B) ⊂ B.

If P is the projection described above, the pair will reduce T exactly when
PT = TP : that is, T commutes with the projection P .

Then T = T ◦ P + T ◦ (I − P ) and T can be thought of as the sum of two
functions confined to these simpler domains.

We will be concerned, in later sections devoted to spectral theory, with finding
a rich class of projections that commute with T . Our intent will be to write T
as a “giant sum” (that is, an integral) of operators that are as simple as possible:
scalar multiples of projections if we can, by analogy with diagonalization results
from finite-dimensional linear algebra.

We will now consider the concept of orthogonality in a Banach space setting,
a concept that is closely related to, but distinct from, the concept of orthogonality
we will deal with later in a Hilbert space. Since Hilbert spaces are Banach spaces
we have a clash of vocabulary which may be clarified by context.

Suppose V is Banach and u ∈ V and φ ∈ V ′. Vector v and functional φ are
said to be orthogonal if φ(u) = 0. The zero functional is orthogonal to every
member of V . If u is non-zero and V has dimension exceeding 1 then there is a
non-zero member of V ′ orthogonal to u. And by application of the Hahn-Banach
theorem, unless u and v are dependent there is a non-zero member φ ∈ V ′ which
is orthogonal to u but not orthogonal to v.

We say nonempty sets A ⊂ V and B ⊂ V′ are orthogonal provided every
φ ∈ B is orthogonal to every x ∈ A.

Suppose M is any nonempty subset of Banach V . We denote by M⊥ the set
of all members of V ′ which are orthogonal to every member of M .

M⊥ is a subspace of V ′ and easily seen to be closed, called the orthogonal
complement of M.
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12.4. Exercise. Suppose V is an NLS and M is a closed subspace of V . Verify
that the function ‖ · ‖ defined on V/M = { v + M | x ∈ V } by ‖ v + M ‖ =
inf{ ‖v + m‖ | m ∈ M } is a norm on V/M and V/M is complete with this norm
provided V is Banach. This norm is called the quotient norm on V/M .

We suppose now that V is Banach, and make V ′/(M⊥) into a Banach space
in a similar way using operator norm on V ′.

(i) If f ∈ V ′ and g ∈M⊥ then (f + g)(m) = f(m)∀m ∈M . So the restriction
of f to M is the same as the restriction of f + g to M . Both correspond to the
same member of M ′.

(ii) If f+M⊥ ∈ V ′/(M⊥) define A(f+M⊥) to be f restricted to M , a member
of M ′. By (i), A : V ′/(M⊥) → M ′ is well defined, and by Hahn-Banach this map
is onto M ′. Show that A is linear and an isometry.

(iii) Suppose φ ∈ M⊥. If x + M = y + M ∈ V/M then x and y differ by a
member of M so φ(x− y) = 0 and then φ(x) = φ(y). Define B : M⊥ → (V/M)′ by
B(φ)(x + M) = φ(x). You must verify that B is well defined and linear and also
that each B(φ) is continuous.

(iv) If Ψ ∈ (V/M)′ and v ∈ V define φ(v) = Ψ(v+M). If v ∈M then φ(v) = 0
so φ ∈ M⊥ if it is continuous. And by definition then B(φ) = Ψ. So B is onto
(V/M)′. Show that each φ is continuous and B is an isometry.

12.5. Exercise. Suppose T : DT →W is a closed operator where DT ⊂ V and
both V and W are Banach. Provide V/Ker(T ) with quotient norm.

Define T̃ : DT /Ker(T )→W by

T̃ (x+Ker(T ) ) = T (x) for x ∈ DT .

Then T̃ is closed and invertible and RT = RT̃ .

The set
(
M⊥

)⊥
= M⊥⊥ is in V ′′. If V is reflexive, the second dual of V is

(identified with) V , so in that case we may, and will, consider M⊥⊥ to be a subset
of V .

Suppose V is reflexive and M is a closed subspace of V . If x ∈ M then, of
course, x ∈ M⊥⊥. But if x /∈ M then by Hahn-Banach there is a continuous
functional φ that is 0 on every vector in closed M but non-zero on x so x /∈M⊥⊥.
In other words, if M is a closed subspace of reflexive Banach V then M = M⊥⊥.

Suppose now that T ∈ CLF (V ). The Banach adjoint of T is T ∗ : V ′ → V ′

defined by T ∗(φ) = φ ◦ T . We saw earlier that the adjoint operator is operator
norm continuous and an isometry onto its range in CLF (V ′), which will be all of
CLF (V ′) if V is reflexive.

The kernel of T ∗ consists of those continuous functionals that are zero on all of

the image space T (V ) so Ker(T ∗) = T (V )⊥ = T (V )
⊥

, the last equality established
by continuity of members of V ′.

Now suppose V is a reflexive Banach space.

We define N = Ker(T ) and N∗ = Ker(T ∗) and M = T (V ) and M∗ = T ∗(V ′).

We are going to establish some relationships among these subspaces.
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First, we already have (even in spaces that are not reflexive) that N∗ = M⊥.

Since in reflexive spaces T ∗∗ = T this gives also N = N∗∗ = (M∗)
⊥

.

If φ = τ ◦ T for some τ ∈ V ′ then φ(x) = 0 for every x ∈ N so φ ∈ N⊥ and so

(again by continuity of members of V ′) we find that M∗ = T ∗ (V ′) ⊂ N⊥.

On the other hand, suppose φ ∈ N⊥ but φ is not in M∗. Since M∗ is closed
there must be a member x of V ′′ (identified with reflexive V ) for which

x(T ∗(V ′)) = { τ(T (x)) | τ ∈ V ′ } = {0} but x(φ) = φ(x) 6= 0.

Since φ ∈ N⊥ we cannot, therefore, have x ∈ N . So T (x) 6= 0 and there
must be a member τ ∈ V ′ which is non-zero on T (x). But this contradicts the
assumption that τ(T (x)) = 0 for any τ ∈ V ′.

Therefore N⊥ −M∗ is empty and we conclude that M∗ = N⊥.

Using, again, the fact that T ∗∗ = T in our context, we also get M = (N∗)
⊥

.

12.6. Lemma. Suppose V is a reflexive Banach space and T ∈ CLF (V ).

Define N = Ker(T ) and N∗ = Ker(T ∗) and M = T (V ) and M∗ = T ∗(V ′).

Then:

N∗ = M⊥ and N⊥ = M∗ and (N∗)⊥ = M and (M∗)⊥ = N.

Proof. The proof can be found in the preceding discussion. �

Getting back to projections, suppose P is the projection on Banach V for
complementary pair (M,N) as above. By definition both the image M = P (V )
and N = Ker(P ) are closed and V = M ⊕N , and this implies P is continuous.

Under these conditions the Banach adjoint P ∗ : V ′ → V ′ is also a continuous
projection.

(P ∗)2(φ) = φ ◦ P 2 = φ ◦ P = P ∗(φ)

shows that it is idempotent.

And P ∗(V ′) = M∗ = N⊥ and Ker(P ∗) = N∗ = M⊥ by the remarks from
above, so M∗ ∩N∗ = {0} and V ′ = M∗⊕N∗. This means P ∗ has closed range and
kernel and is, therefore, continuous too.

The following result is Edgar Lorch’s 1939 generalization to “power bounded”
operators on reflexive Banach spaces of a result proved initially in 1931 by von
Neumann for contractions on a Hilbert space, and we adapt the following proof
from Lorch [?].

12.7. Theorem. The Mean Ergodic Theorem
Suppose V is a reflexive Banach space and T ∈ CLF (V ) and ‖Tn‖ ≤ k for some
fixed k ≥ 1 and all integers n ≥ 0, with T 0 defined to be the identity operator I on
V . Define for each integer n ≥ 1 the operator

Pn =
1

n

(
I + T + T 2 + · · ·+ Tn−1

)
.

Let A consist of those members g ∈ V for which g = Tg. A is the kernel of
I − T . Let B be the closure of (I − T )(V ), the image of I − T .
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Then (A,B) is a complementary pair, and Pn converges to the projection P for
this complementary pair in the strong operator topology. The operator norm of P
will not exceed k.

Proof. If f ∈ A then f = Tf and generally f = Tnf and so Pnf = f for all
n. So for members of A, we have the constant sequence Pnf converging, obviously,
to f .

On the other hand, suppose f ∈ B, the closure of (I − T )(V ). So there is a
member g of V for which ‖f − (I − T )g‖ < ε. Let h = f − (I − T )g. Then

Pnf =
1

n

(
f + Tf + · · ·+ Tn−1f

)
=

1

n

(
(h+ (I − T )g) + T (h+ (I − T )g) + · · ·+ Tn−1(h+ (I − T )g)

)
=

1

n

(
h+ Th+ T 2h+ · · ·+ Tn−1h+ g − Tng

)
.

Noting that ‖h‖ < ε and ‖Tn‖ ≤ k for all n, the triangle inequality gives

‖Pnf‖ ≤
1

n

(
‖h‖+ ‖T‖ ‖h‖+ · · ·+ ‖Tn−1‖ ‖h‖+ ‖g‖+ ‖Tn‖ ‖g‖

)
≤ ε

n
+
ε

n
k(n− 1) +

1 + k

n
‖g‖ ≤ kε+

1 + k

n
‖g‖.

The last term converges to 0 for each g, and g can be chosen to make the
previous term as small as we want. We conclude that Pnf converges to the zero
vector for each f ∈ B.

It is now obvious that the intersection of A and B is the zero vector, so the
sum A+B is direct and Pnf converges for each f in A⊕B to Pf ∈ A where P is
the projection for the complementary pair (A,B), defined on A⊕B.

Applying the triangle inequality to Pn = 1
n

(
I + T + T 2 + · · ·+ Tn−1

)
we ob-

serve that the operator norm of Pn cannot exceed k for any n ≥ 1.

If f is any member of A⊕B then for any ε > 0 and sufficiently large n we have
‖Pf‖ ≤ ‖Pnf‖+ ε ≤ k ‖f‖+ ε.

We conclude that the operator norm of P on A⊕B cannot exceed k.

Suppose fn = an + bn is a Cauchy sequence in A ⊕ B, with each an ∈ A and
bn ∈ B, converging to a limit f in Banach V . Then

‖ an − am ‖ = ‖P (fn)− P (fm) ‖ ≤ ‖P ‖ ‖ fn − fm ‖

so the sequence an is Cauchy, converging to a in closed A. But then fn − an = bn
is Cauchy converging to some b in closed B, and it follows that f = a+ b ∈ A⊕B.
So A⊕B is closed in V .

It only remains to show that A⊕B = V . We have not used, yet, the reflexiveness
condition on V , and here is where that assumption is needed.

We first note that the norms of the adjoint powers ‖(T ∗)n‖ = ‖(Tn)∗‖ = ‖Tn‖
are also bounded by the same k for each n ≥ 0 so the convergence procedure can be
carried out in just the same way as before, except this time using T ∗ and I∗ − T ∗
and P ∗n .
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By the preceding lemma B⊥ is the kernel A∗ of (I − T )∗ = I∗ − T ∗ and A⊥ is
B∗, the closure of the range of I∗ − T ∗.

That means for each φ ∈ A∗ we have P ∗n(φ) = φ and so this constant se-
quence, just as before, converges. For φ ∈ B∗ we have P ∗n(φ) converging to the zero
functional. As before, A∗ ∩B∗ = {0}.

Now suppose that x ∈ V − A⊕ B. Since A⊕ B is closed there is a functional
φ ∈ V ′ with φ(A⊕B) = {0} but φ(x) 6= 0.

But then φ ∈ A⊥ and φ ∈ B⊥ so

0 6= φ ∈ B⊥ ∩A⊥ = A∗ ∩B∗ = {0}.
This contradiction allows us to conclude V −A⊕B = ∅ so V = A⊕B. �
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13. Inner Product Spaces

A sesquilinear form on an F-vector space V is a map S : V × V → F for
which, for all α ∈ F and x, y, z ∈ V

(i) S(αx+ y, z) = αS(x, z) + S(y, z) and

(ii) S(z, αx+ y) = αS(z, x) + S(z, y).

Item (i) is called linearity in the first factor and item (ii) is called conjugate
linearity in the second factor. If the field is real, an inner product is a covariant
tensor of order 2. But if the field is complex it is not quite multilinear: in Latin
sesqui means “one and a half.”

A pre-inner product is a sesquilinear form S for which, for all x, y ∈ V
(iii) S(x, x) ≥ 0 and

(iv) S(x, y) = S(y, x).

Item (iii) is called positivity, while item (iv) is called symmetry.

A pre-inner product is called an inner product provided

(v) S(x, x) = 0 implies x = 0.

The additional feature is called nondegeneracy.

V together with a specified inner product is called an inner product space. It
is customary to use a notation such as 〈x,y 〉 rather than S(x, y) for inner products,
with different inner products distinguished by subscripts if necessary. The inner
product itself, if it must be referred to without arguments, would be denoted 〈 · , · 〉.

The norm associated with an inner product is given by

‖ v ‖ =
√
〈 v , v 〉.

The fact that this actually is a norm, that it has the properties required of a norm,
are immediate.

So an inner product space is also a normed linear space and, through the norm,
a metric space. An inner product space is given the topology generated by this
metric.

The norm from an inner product has two additional properties: for any vectors
v and w

| 〈u , v 〉 | ≤ ‖v‖ ‖w‖
and also

2 ‖u‖2 + 2 ‖v‖2 = ‖u+ v ‖2 + ‖u− v ‖2.

The first of these is the Schwarz inequality. Or the Cauchy-Schwarz in-
equality. Or the Bunyakovsky-Cauchy-Schwarz inequality. It depends on
who you talk to. The second is called the parallelogram law.

We will prove the BCS inequality.

First, if either u or v is the zero vector the result is obvious, so presume neither
are 0. We note that if

w = u− 〈u , v 〉
〈 v , v 〉

v then 〈w , v 〉 = 0.
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We write u = w + 〈u , v 〉
〈 v , v 〉v and expand ‖u ‖2 = 〈u , u 〉 and the inequality we are

looking for falls out.

It is not hard to show from the BCS inequality that the inner product is con-
tinuous on V × V where the product space has the product topology. Note for
comparison Exercise 9.7.

Norms can come from various sources but only norms that come from (or could
have come from) an inner product satisfy the parallelogram law. And an inner
product can be built from any norm satisfying the parallelogram law.

If F = R then a norm satisfying the parallelogram law comes from the inner
product given by

〈u , v 〉 =
‖u+ v ‖2 − ‖u− v ‖2

4
.

If F = C then a norm satisfying the parallelogram law comes from the inner
product given by

〈u , v 〉 =
‖u+ v ‖2 − ‖u− v ‖2

4
+ i
‖u+ i v ‖2 − ‖u− i v ‖2

4
.

This last equality is called the polarization identity and comes in handy now
and then.

13.1. Lemma. Suppose V is a complex normed linear space with norm ‖ · ‖
that satisfies the Parallelogram Law. Define the real inner product 〈x, y 〉R on V as
shown above. Then define the function 〈 ·, · 〉C by

〈x, y 〉C = 〈x, y〉R + i〈x, iy〉R.
〈 ·, · 〉C is a complex inner product on V and 〈x, x 〉C = ‖x‖2 for each x ∈ V .

Proof. Show that i〈x, y 〉C = 〈 ix, y 〉C and 〈 y, x 〉C = 〈x, y 〉C . The rest of
the required properties are immediate. �

The ordinary dot product on R3 is the inner product everyone knows about.
Here 〈u , v 〉 = u · v.

It is important to note that the properties of dot product in Rn not only let us
define length of a vector, as

‖v‖ =
√
v · v

but also lets us define angle between two vectors by

u · v = ‖u‖‖v‖ cos(θ).

Angle is defined in an analogous way for any real inner product: it is given by
the equation

〈u , v 〉 = ‖u‖‖v‖ cos(θ)

and the BCS inequality guarantees that θ can be defined by this equation. That
it behaves as an angle should, that it corresponds to our intuition provided by
our experience with Euclidean geometry, is a different matter. You might satisfy
yourself about this by looking at the two dimensional space R2 and the lengths of
the edges of the triangle in this space with corners at 0, u and v.

The notion of angle is the additional element the inner product supplies beyond
the homogeneous and translation invariant “length” idea given by the norm: in
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particular, a notion of perpendicularity. Perpendicularity can be defined in any
inner product space, real or complex.

Two vectors u and v are said to be orthogonal if 〈u , v 〉 = 0. If both vectors
are nonzero and they are orthogonal we sometimes call them perpendicular. A
set of vectors is called orthonormal if each vector in the set has norm 1 and any
two vectors from the set are orthogonal.

We have previously discussed (Section 12) the concept of orthogonality in a
Banach space. There it referred to vectors and continuous functionals. φ and v
were said to be orthogonal if φ(v) = 0. Our usage here is different, referring to a
relationship between vectors. We will see in Section 16 that in a Hilbert space the
concepts are very close to coincident.

14. Geometry in Hilbert Spaces

A Hilbert Space is a complete inner product space, and therefore a type of
Banach space. We will assemble some basic facts about these special spaces.

A vector v is called orthogonal to a vector w or orthogonal to a nonempty
set of vectors B if v is orthogonal to, respectively, w or every vector in B. Two
sets of vectors are called orthogonal if every vector in one set is orthogonal to
every vector in the other set.

If B is a nonempty set of vectors in an inner product space, B⊥ denotes the
set of all members of the space orthogonal to every member of B. It is called the
orthogonal complement of B. “Orthogonal complement” may be shortened to
“orthocomplement.”

14.1. Theorem. If M is any subset of a Hilbert space
then M⊥ is a closed subspace.

Proof. That M⊥ is a subspace follows immediately by linearity properties of
the inner product. Closure follows by continuity: suppose sequence (xi) in M⊥ is
Cauchy and converges to y. Then for each i we have 0 = 〈xi,m 〉 for any m ∈ M .
Since the inner product is continuous 〈 y,m 〉 = 0 too, for each m ∈M . That means
y ∈M⊥. �

14.2. Lemma. If M is a nonempty closed convex subset of Hilbert space H

and x /∈M then there is a unique member y of M closest to x.

Proof. Consider the number

α = inf{ ‖x−m‖ | m ∈M }.
Suppose (mi) is a sequence of members of M for which ‖x −mi‖ → α. Note

that if ‖x−mi‖ < α+ ε and ‖x−mj‖ < α+ ε then for any t ∈ [0, 1]

α ≤ ‖x− (tmi + (1− t)mj)‖ = ‖t(x−mi) + (1− t)(x−mj)‖
≤ t ‖x−mi‖+ (1− t)‖x−mj‖ < t(α+ ε) + (1− t)(α+ ε) = α+ ε.

In other words, the whole line between mi and mj is in convex M and similarly
close to x.
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By the parallelogram law

2‖x−mi‖2+2‖x−mj‖2 = ‖x−mi + x−mj‖2 + ‖mj −mi‖2

= 4

∥∥∥∥x− mi +mj

2

∥∥∥∥2

+ ‖mj −mi‖2.

The first expression approaches 4α2 and the last is near 4α2 + ‖mj − mi‖2,
which means that (mi) is Cauchy and so converges to some y in closed M . By
continuity of the norm, ‖x− y‖ = α.

As for uniqueness, no condition was made on the sequence (mi) other than
it be drawn from M and ‖x − mi‖ → α. If there were another point z ∈ M
with ‖x − z‖ = α we could create a new sequence (wj) with wj = mj with j odd
and wj = z for j even. This new sequence is also Cauchy, and has subsequences
converging to both y and z, hence y = z. �

14.3. Lemma. If M is a closed subspace of a Hilbert space H

and M 6= H then M⊥ 6= {0}.

Proof. Pick a member x of H −M . Since M is convex, by the last lemma
there is a unique point w in M closest to x.

Now suppose m is any member of M for which 〈x − w,m〉 6= 0. Replacing m
by the appropriate multiple, we may assume that 〈x− w,m〉 = 1. Suppose a is an
arbitrary real number. Then w+am is also in M , and by the minimality condition
on w we have

〈x− w, x− w〉 ≤〈x− w − am, x− w − am〉
=〈x− w, x− w〉+ 〈x− w,−am〉+ 〈−am, x− w〉+ 〈am, am〉
=〈x− w, x− w〉 − a〈x− w,m〉 − a〈m,x− w〉+ a2〈m,m〉
=〈x− w, x− w〉 − 2a+ a2〈m,m〉.

This means that for any positive real number a we have 2
a ≤ 〈m,m〉, an obvious

contradiction.

Our conclusion must be that 〈x − w,m〉 = 0 for any member m of M , and so
x− w is a nonzero member of M⊥. �

14.4. Lemma. If M is a closed subspace of a Hilbert space H

then H = M ⊕M⊥. It follows that M⊥⊥ = M .

Proof. Suppose x ∈ M ⊕M⊥. So there is a sequence (yi) in M ⊕M⊥ that
converges to x. Then there exists unique sequences (ai) ∈M and (bi) ∈M⊥ so that
yi = ai+bi. The sequence (yi) is Cauchy. So for any ε > 0 and any correspondingly
large subscripts i and j we have

ε >‖ ai + bi − aj − bj ‖2 = 〈 ai + bi − aj − bj , ai + bi − aj − bj 〉
=〈 (ai − aj) + (bi − bj) , (ai − aj) + (bi − bj) 〉
=〈 ai − aj , ai − aj 〉+ 〈 bi − bj , bi − bj 〉
=‖ ai − aj ‖2 + ‖ bi − bj ‖2.
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which implies that both ‖ ai − aj ‖ and ‖ bi − bj ‖ can be made arbitrarily small
by requiring i and j to be large enough. That means both sequences are Cauchy
in their respective closed subspaces. So ai → c ∈ M and bi → d ∈ M⊥ and
x = c+ d ∈M ⊕M⊥. We find, therefore, that M ⊕M⊥ itself is closed.

By Lemma 14.3, if H 6= M ⊕M⊥ then there would be a nonzero member of(
M ⊕M⊥

)⊥
and this vector would necessarily be orthogonal to both M and M⊥.

A contradiction follows easily. �

14.5. Lemma. Suppose B and C are nonempty subsets of a Hilbert space H.

B ⊂ C⊥ =⇒ span(B) ⊂ span(C)⊥.

Also,
(
B
)⊥

= B⊥.

B⊥⊥ is the smallest closed subspace containing B.

Proof. Using linearity and continuity of inner product, show in turn that B ⊂
span(C)⊥, then B ⊂ span(C)⊥, then span(B) ⊂ span(C)⊥ and finally span(B) ⊂
span(C)⊥.

The second and third lines are left entirely to the reader. �

An orthonormal basis for an inner product space is a maximal orthonormal
subset of that space: that is, a set of unit vectors, each one orthogonal to all other
members of the set, and contained in no larger set of this kind. It is an easy
exercise to verify that any orthonormal subset constitutes a linearly independent
set of vectors, so its cardinality cannot exceed the Hamel dimension of the inner
product space.

14.6. Lemma. The closure of the span of an orthonormal basis B
of a Hilbert space H is all of H.

Proof. Let HB = span(B). Since H = HB ⊕ H⊥B , if H⊥B is anything but
{0} we could add a normalized nonzero member of H⊥B to B, increasing the size of
maximal orthonormal B, a contradiction. So HB = H. �

14.7. Lemma. If B and C are disjoint and nonempty and B ∪ C = A for
orthonormal basis A of a Hilbert space H, we define

HB = span(B) and HC = span(C).

Then H = HB ⊕HC .

We find that C⊥ = HB and B⊥ = HC . So we could rewrite the line above as

H = C⊥ ⊕B⊥.

Proof. Any member v of HB ∩HC is the limit of two sequences (bi) and (ci)
where each bi is a finite linear combination of members of B, and each ci is a finite
linear combination of members of C. Since 〈 bi, ci 〉 = 0 for all i, continuity of inner
product requires that v = 0 and the sum HB + HC is direct.

Now by an argument identical to Lemma 14.4 we find that this direct sum
is closed. If it is not all of H we could produce, by Lemma 14.3, a unit vector
orthogonal to every vector in B ∪ C = A, which could then be used to create an
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orthonormal subset of H larger than A. This is a contradiction. The necessary
conclusion for the first equality of the lemma follows.

The second observation of the lemma now follows from Lemma 14.5. �

14.8. Lemma. If B and C are disjoint and B ∪ C = A for orthonormal
basis A of a Hilbert space H and if 〈x, b 〉 = 0 for all b ∈ B
then x ∈ span(C).

Proof. Easy. �

14.9. Theorem. Every nontrivial Hilbert space has an orthonormal basis.
In fact, if A is an orthonormal subset of a Hilbert space,
there is an orthonormal basis containing A.

Proof. If A is given, let S denote the set of all orthonormal subsets of Hilbert
space H containing orthonormal subset A. S is not empty: A itself is in S.

If A is not specified, define it to be {v/‖v‖} where v is any nonzero member of
H and proceed as above.

The union of any chain in S (containment order) is also orthonormal and con-
tains A, and so constitutes an upper bound for the chain. So by Zorn’s Lemma
there is a maximal member of S: an orthonormal set not contained in any other.
This is the orthonormal basis we sought. �

14.10. Proposition. The cardinalities of any two
orthonormal bases of a Hilbert space coincide.

Proof. Suppose A and B are two orthonormal bases of Hilbert space H. If
the cardinality of either is finite, results from finite dimensional linear algebra imply
these cardinalities are equal. So suppose both are infinite and the cardinality of A
is not larger than that of B. Every a ∈ A is the limit of finite linear combinations
of members of B. Let Ba denote all the members of B involved in one sequence of
this kind, for each a ∈ A. The set Ba is countable, so if C is the union of all these
Ba the cardinality of C does not exceed that of A. If C does not contain some
b ∈ B then b ∈ C⊥ = span(C)⊥ = span(C)⊥. But A ⊂ span(C) so b ∈ A⊥ = { 0 },
a contradiction. So C = B and the cardinality of B cannot exceed that of A: that
is, the two cardinalities are equal. �

The cardinality of any orthonormal basis for a Hilbert space is called the
Hilbert dimension of the space. The content of the last proposition is (essen-
tially) that Hilbert dimension is well defined.

14.11. Proposition.
Suppose H and M are Hilbert spaces and Ψ: H→M is linear.

(i) If Ψ is an isometry then Ψ takes any orthonormal basis of H to an or-
thonormal basis of Ψ(H), which is closed in M and therefore itself a Hilbert space.

(ii) On the other hand, suppose Ψ is continuous and linear and B is an or-
thonormal basis of H. If Ψ(b) is a unit vector for each b ∈ B and ψ(b) is orthogonal
to Ψ(c) whenever c 6= b where both c and b are in B then Ψ is an isometry.
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Proof. (i) Suppose Ψ is an isometry. Isometries must take vectors of length 1
to vectors of length 1, so we need to check that an isometry takes orthogonal vectors
to orthogonal vectors. Suppose a, b ∈ H are orthogonal. Expand 〈 a− b, a− b 〉 =
〈Ψ(a)−Ψ(b), Ψ(a)−Ψ(b) 〉 to find that the real part of 〈Ψ(a), Ψ(b) 〉 is 0. If the
field is C expand 〈 a− i b, a− i b 〉 = 〈Ψ(a)− iΨ(b), Ψ(a)− iΨ(b) 〉 to find that the
complex part of 〈Ψ(a), Ψ(b) 〉 is 0 too. So an isometry does take an orthonormal
basis to an orthonormal set in the range space.

Any Cauchy sequence Ψ(xn) in Ψ(H) corresponds to a Cauchy sequence xn in
H which converges to some x ∈ H. Since isometries are continuous Ψ(xn) converges
to Ψ(x) so Ψ(H) is closed and therefore itself a Hilbert space, a subspace of M. If
B is an orthonormal basis for H and Ψ(B) is not an orthonormal basis for Ψ(H)
then there must be a member Ψ(x) of Ψ(B)⊥ in Ψ(H). This vector is orthogonal
to every member of Ψ(B) so (by an argument identical to the one above) x is
orthogonal to every member of B which implies x = 0. So Ψ(B)⊥ = { 0 } and so
Ψ(B) is an orthonormal basis for Ψ(H).

(ii) Now suppose Ψ is continuous and the other conditions of (ii) apply. If Ψ is
not an isometry there there is an x for which ‖x ‖ 6= ‖Ψ(x) ‖. But then there would
be a sequence of finite linear combinations yn of members of B for which yn → x
but ‖ yn ‖ = ‖Ψ(yn) ‖ does not converge to ‖Ψ(x) ‖, which contradicts continuity
of Ψ. So Ψ is an isometry. �

14.12. Exercise. Suppose S is any countable subset of Hilbert space H and
suppose S contains more than the zero vector. Adapt the usual Gram-Schmidt
process to deduce that there is an orthonormal set B for which span(S) = span(B).
The orthonormal set B might be finite or, at most, countably infinite. B can be
extended to an orthonormal basis A of H by adding, if necessary, elements in an
orthonormal basis C = A−B for S⊥ = B⊥. Then we would have

H = C⊥ ⊕B⊥ = HB ⊕HC .

A closed subspace S of any Banach space X is called complemented if there is
a closed subspace T of X for which X = S⊕T . Earlier (see page 74) we referred to
(S, T ) as a complementary pair. When in possession of such a pair, the projection
onto S with kernel T is continuous.

If S is complemented as above and if F : X → Y is continuous and linear where
Y is also Banach then S and T are also Banach spaces and F induces continuous
linear maps F |S : S → Y and F |T : T → Y by restriction. The operator norms of
F |S and F |T cannot exceed that of F .

On the other hand, suppose Q : S → Y and R : T → Y are continuous. Let P
be the projection onto S with kernel T . So I − P is the projection onto T with
kernel S. We can define function F : X → Y by

F (x) = Q ◦ P (x) +R ◦ (I − P )(x) = Q(s) +R(t)

where s and t are the unique members of S and T , respectively, for which x = s+ t.

F is continuous, with operator norm not exceeding ‖Q‖ ‖P‖+ ‖R‖ ‖I − P‖.
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Any finite dimensional subspace is complemented, but Lindenstrauss and Tzafriri4

proved that any Banach space for which every closed subspace is complemented has
an equivalent norm with which it is Hilbert.

Philips5 showed that in the Banach space `∞ of bounded sequences with supre-
mum norm the closed subspace c0 of sequences that converge to 0 is not comple-
mented, so there are common examples that do not have this nice property.

If you let A be a Hamel basis of c0 and add members B of `∞ − c0 to create a
Hamel basis for `∞ we have `∞ = span(A)⊕ span(B). But span(A) = c0 is closed
and, according to this result of Philips, span(B) is not. So the Banach space `∞ is
the direct sum of two subspaces, one of which is closed and the other is not closed.

But every closed subspace of a Hilbert space is complemented. If S is a closed
(nontrivial) subspace of Hilbert H then S is, itself, a Hilbert space with restriction
inner product. Find an orthonormal basis B of S, add additional vectors C to
create an orthonormal basis for H, and then S = HB and H = HB ⊕HC .

Note that we actually showed more: every closed subspace is complemented by
an orthogonal closed subspace, and HC is called the orthocomplement of HB .

14.13. Exercise. Consider the Hilbert space `2 and the product Hilbert space
X = `2 × `2 with inner product produced by norm ‖ (u, v) ‖2 = ‖u ‖2 + ‖ v ‖2.
Consider the operator F : `2 → `2 given by

F (v1, v2, v3, . . . ) = (v1/1, v2/2, v3/3, . . . ) .

Note that F (`2) is dense in `2 but is not all of `2.

Also F is bounded and therefore γ(F ) = { (v, F (v)) | v ∈ `2 }, the graph of F ,
is a closed subspace of X.

Consider also the graph of the zero operator on `2, γ(0) = `2 × { 0 }. It too is
closed in X.

These two subspaces share only the vector (0, 0) ∈ X and are, themselves,
Hilbert spaces. Consider now the direct sum Y = γ(0)⊕ γ(F ).

Show { 0 }×F (`2) ⊂ Y . Since there are members of `2 which are limits points
of F (`2), but not members of F (`2), decide that Y is not closed in X.

Conclusion: Even in a Hilbert space, the direct sum of two closed
infinite dimensional subspaces might fail to be complete.

This cannot happen when the direct summands involved are orthogonal. Could
this happen if one of the spaces is finite dimensional?

4Lindenstrauss, J. and Tzafriri, L. On the Complemented Subspaces Problem Israel J. Math.

9 263-269 (1971)
5Phillips, R. S. On Linear Transformations Trans. Amer. Math. Soc. 48 516-541 (1940)
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15. Using an Orthonormal Basis

Suppose (bi) is a countable orthonormal sequence of vectors (no repeats,
each vector normal and orthogonal to all the others) in an inner product space and

consider the sequence yk =
∑k
i=1 a

ibi for certain numbers ai defined for i > 0.

We are going to find a condition on the ai which is equivalent to the Cauchy
condition on the sequence (yk).

In our context, (yk) is Cauchy precisely when, for any ε > 0 there is an integer
k > 0 so that whenever j > i > k we have ‖ yj − yi ‖2 < ε. Expanding, the square

norm on the left equals
∑j
k=i+1

∣∣ak∣∣2 . We record the important implication in the
following result.

15.1. Lemma. If (bi) is a countable orthonormal sequence of vectors
(no repeats) in an inner product space and (ai) is a sequence of numbers,

the sequence (yk) defined by yk =
∑k
i=1 a

ibi is Cauchy precisely when the

series
∑∞
i=1

∣∣ai∣∣2 converges.

Proof. Examine the discussion above. �

15.2. Theorem. The Riesz-Fisher Theorem: Hilbert Space Version

If A is an orthonormal basis of Hilbert space H and x ∈ H

only countably many of the numbers 〈x, p 〉 for p ∈ A are nonzero.
These numbers are called the Fourier coefficients for x in basis A.

There is a countable sequence of distinct vectors (bi) from A
and, for this sequence, a unique sequence of constants (ai)
with x =

∑∞
i=0 a

ibi. In fact, ai = 〈x, bi 〉 for each i and this list
contains all the nonzero Fourier coefficients for x in basis A.

The convergence of the sequence of partial sums is absolute
in the sense that any re-ordering of the terms of the series also
converges to x, and ‖x‖2 =

∑∞
i=0 |ai|2.

Proof. Since convergence in H is given by a metric, a member x of span(A)
is the limit of a sequence (si) of finite linear combinations of members of A. Only a
countable number of members of A are involved in any of these linear combinations
for this specific x.

Let (bi) denote a sequence formed from all these members of A without repeats.
Define B to be the set of these bi, a subset of A. Since 〈 si, w 〉 = 0 whenever
w ∈ C = A − B, by continuity of inner product we have 〈x,w 〉 = 0 whenever
w ∈ C.

Each sum si =
∑∞
j=1 γ

j
i bj is in span(B) and so only finitely many of its terms

are nonzero. Examining 〈 si, bj 〉 = γji , linearity and continuity of inner product

implies that for each j the sequence
(
γji

)
converges to a number aj and, in fact,

aj must be 〈x, bj 〉.

Consider the series
∑∞
j=1 a

jbj with aj as above with partial sums yk =
∑k
j=1 a

jbj .
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Expanding 0 ≤ 〈 x −
∑k
j=1 a

jbj , x −
∑k
j=1 a

jbj 〉 yields
∑k
j=1

∣∣aj∣∣2 ≤ ‖x‖2
which means that

∑∞
j=1

∣∣aj∣∣2 converges which means (Lemma 15.1) that (yk) is

Cauchy in complete H, and therefore converges to some vector z =
∑∞
j=1 a

jbj .

By continuity of inner product, 〈 z, w 〉 = 0 for all w ∈ C, and 〈x − z, w 〉 = 0
for all w ∈ B by definition of z. So (Lemma 14.8) x−z = 0: that is, x =

∑∞
j=1 a

jbj .

The remaining comments of the Theorem are immediate. �

The reader is invited to recall and reflect upon the relationship between this
theorem and Theorem ??, another result commonly referred to as “the” Riesz-
Fisher Theorem, which states that Lp is a complete metric space for 0 < p ≤ ∞.

In any case, it appears that orthonormal bases may be good for something.

15.3. Theorem. Suppose B and C are disjoint subsets of orthonormal basis A
of Hilbert space H and B ∪ C = A. Suppose x and y are in H.

The numbers 〈x,w 〉 are nonzero for only countably many w ∈ A.

The number 〈x, y 〉 can be calculated using the absolutely convergent series6∑
w∈A
〈x,w 〉 〈w, y 〉 = 〈x, y 〉. (Parseval’s Identity)

The series
∑
w∈B | 〈x,w 〉 |2 converges and∑

w∈B
| 〈x,w 〉 |2 ≤ ‖x‖2. (Bessel’s Inequality)

The series
∑
w∈A | 〈x,w 〉 |2 converges and∑

w∈A
| 〈x,w 〉 |2 = ‖x‖2. (Plancherel’s Identity)

Further, the series
∑
w∈B〈x,w 〉w and

∑
w∈C〈x,w 〉w converge to vectors xB

and xC , respectively.

Finally, x = xB + xC and ‖x‖2 = ‖xB‖2 + ‖xC‖2. (Pythagorean Law)

Proof. We will show that the series
∑
w∈A〈x,w 〉 〈w, y 〉 converges absolutely

to 〈x, y 〉. The remaining parts of this theorem follow immediately from this fact
or Theorem 15.2.

Let (bj) denote the sequence composed (without repeats) of all the members w
of A where either 〈w, y 〉 6= 0 or 〈x,w 〉 6= 0.

By continuity of inner product, we know that the sequence〈
k∑
i=1

〈x, bi 〉 bi ,
k∑
i=1

〈 y, bi 〉 bi

〉
=

k∑
i=1

〈x, bi 〉 〈 bi, y 〉

6The two relations listed here as Parseval’s Identity and Plancherel’s Identity are ascribed to

Marc-Antoine Parseval (1755-1836) and Michel Plancherel (1885-1967). These men proved results

involving the particular case of trigonometric series. Investigating the literature, there seems to
be little doubt in anyone’s mind which result should be attributed to which man. Different minds,

however, disagree.
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converges to 〈x, y 〉. It remains to justify absolute convergence of these numbers.

Modify x to a new vector x̃ =
∑k
i=1 αi〈x, bi 〉bi, where each αi is a complex number

of norm 1 and for which each 〈 x̃, bi 〉 〈 bi, y 〉 = αi 〈x, bi 〉 〈 bi, y 〉 ≥ 0. The magnitude
of each coefficient is unchanged by this, and the sum of positive terms

k∑
i=1

〈 x̃, bi 〉 〈 bi, y 〉 =

k∑
i=1

| 〈x, bi 〉 〈 bi, y 〉 |

converges to the number 〈 x̃, y 〉. �

For any orthonormal set B in Hilbert space H we now officially define HB to
be

HB = span(B).

HB is a closed subspace and so is, itself, a Hilbert space. Note also that any
orthonormal set B, if it is not already an orthonormal basis, can be extended
by adding vectors from the orthogonal orthonormal set C, so that B ∪ C is an
orthonormal basis for H. Then H = HB ⊕HC = C⊥ ⊕B⊥.

We define for any x ∈ H the orthogonal projection vector onto HB to be

xB =
∑
w∈B
〈x,w 〉w.

We saw above that this sum has only countably many nonzero terms, converges,
and that ‖xB‖ ≤ ‖x‖ for any x ∈ H.

Finally, we define the orthogonal projection function

PB : H→ H by PB(x) = xB for any x ∈ H.

Orthogonal projection functions may be referred to as orthoprojections.

15.4. Corollary . The orthogonal projection function PB defined above
is linear and continuous, with ‖PB‖ = 1.

Proof. Follows immediately from the remarks above. �

15.5. Lemma. Suppose J and K are closed subspaces of Hilbert space H

and the Hilbert dimension of J is less than the Hilbert dimension of K.
Then there is a nonzero vector in J⊥ ∩K.

Proof. If the dimension of J is the finite number n let P : H → H denote
the orthogonal projection onto J . There are at least n + 1 linearly independent
vectors in K, and without loss we assume K is the span of these vectors, and so
has dimension n+1. If P restricted to K had no kernel the images in J of the n+1
basis vectors of K would be linearly independent, impossible since J has dimension
n. And any member of the kernel of P is in J⊥.

We now suppose that J has infinite dimension. Let A be an orthonormal basis
of J and B an orthonormal basis of K. For each a ∈ A the set Ba consisting of
those b ∈ B for which 〈 a, b 〉 6= 0 is countable. So the cardinality of

⋃
a∈ABa is no

more than that of A. So there is a member of B not in this union, and this member
of B is in J⊥. �
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15.6. Exercise. Suppose H is a Hilbert space with countable orthonormal basis
v = (vn). Define ai to be the functional 〈 ·, vi 〉 for each i. Then v is a Schauder
basis for H with associated coordinate functionals a = (an).

v is an unconditional bounded Schauder basis with basis constant 1. Also
‖vn‖ = 1 = ‖an‖ for all n. Further, a forms a Schauder basis on H′ with as-
sociated coordinate functionals v, and a also has basis constant 1.

The isomorphism K : Cv → H of Proposition 11.4 is an isometry onto H, so
H is isometrically isomorphic to the subspace Cv of FN which consists of all those

sequences c for which
√ ∑∞

i=0(c(i))2 <∞, with this expression as norm on Cv.

There is really just one Hilbert space with a countable orthonormal basis, and if
you want to visualize that Hilbert space as the space of square summable sequences
you will not be led astray.

We will now consider issues of compactness again.

If E is any totally bounded set in Hilbert space H (for instance a compact set)
then by Lemma 5.20 E has a countable dense subset S. By the result in Exercise
14.12 there is a countable orthonormal basis B for span(E) = span(S) which can
be extended to an orthonormal basis A of all of H by adding vectors C as in that
exercise.

Then H = HB ⊕HC where HB and HC are each, themselves, Hilbert spaces
with restriction inner product and B, with an appropriate well order, is an uncon-
ditional Schauder basis for HB .

We know that the identity map restricted to HB , the function IB : HB → HB ,
can be approximated pointwise by the finite rank partial sum operators for the
basis B, and the approximation is uniform on the compact set E.

And since HB and HC are both closed in H these finite rank operators on HB

can be extended to continuous finite rank mapping on all of H: define each to be
the zero map on the HC direct summand.

15.7. Proposition. Every Hilbert space H has the approximation property: for
each compact set in H there is a sequence of finite rank continuous operators that
converges to the identity uniformly on that compact set.

Proof. Suppose E is any totally bounded subset of H. The sequence of partial
sum operators for a Schauder basis for span(E) converges to the identity of span(E),
and the convergence is uniform on E. This can be carried out for any totally
bounded set. �

15.8. Proposition. If W is a Banach spaces and H is a Hilbert space and if
T ∈ K(W,H) then T has the approximation property: that is, T is the operator
norm limit of finite rank operators.

Proof. The range of T is span(T (B)) where B is the unit ball in W . The
set T (B) has compact closure, so the remarks of Proposition 15.7 apply with E =
T (B). There is a sequence of orthonormal vectors in H and sequence of partial
sum operators (Sj) for this sequence for which Sj ◦ T converges to T in operator
norm, as in Proposition 11.6. �
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16. Riesz Representation on a Hilbert Space

We confine our attention in this section to functionals defined on a Hilbert
space H or on vector subspaces of H.

We presume A is an orthonormal basis for H and B and C are disjoint with
A = B ∪ C.

16.1. Lemma. Each member φ of H∗ can be used to create unique members
φB of H∗B and φC of H∗C by restriction. If φ is continuous both φB
and φC will be continuous.

Conversely, any pair of members φB of H∗B and φC of H∗C can be
used to create a member φ of H∗ by

φ(x) = φB(xB) + φC(xC) for x = xB + xC ∈ H

where xB and xC are the projections of x onto the orthogonal subspaces
HB and HC , respectively.

φ is continuous exactly when both φB and φC are continuous.

Proof. Easy. �

16.2. Lemma. Each bounded member φ of span(B)∗ (i.e. a member of span(B)′)
can be extended in one and only one way to a member of H′B.

Proof. By the Hahn-Banach theorem, φ can be extended while preserving
the norm bound on φ: that is, extended to a continuous function on HB . Because
span(B) is dense in HB , values on limit points are determined as limits of values
on members of span(B). �

Suppose φ ∈ H∗ and B consists of those members of a of A for which φ(a) 6= 0.
For each b ∈ B let db = kbb where kb is a complex number of norm 1 for which
φ(db) > 0.

If B is uncountable then there is a positive number α for which φ(db) > α for
infinitely many b ∈ B. Let (hi) denote a sequence of distinct members of B with
this property, and define

wi =
1

β

i∑
j=1

hj
j

where β is the constant

√√√√ ∞∑
i=1

1/n2.

For each i, 〈wi, wi〉 = 1
β2

∑i
j=1

1
j2 < 1.

But φ(wi) = 1
β

∑i
j=1

φ(hj)
j > α

β

∑i
j=1

1
j . Since that sum can become unbound-

edly large, φ is not continuous. We enshrine this result as:

16.3. Lemma. If φ ∈ H′ then φ is nonzero on only countably many
members of orthonormal basis A.

Proof. The argument is given above. �
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This result concerning continuity is not a sufficient condition, however. A
functional for which B given above is countable could still fail to be continuous.
Let (bi) be a sequence formed from all the members of B without repeats.

Consider the sequence of vectors (yk) given by yk =
∑k
i=1 φ(bi) bi where φ(bi)

denotes the complex conjugate of φ(bi).

So ‖yk‖2 =
∑k
i=1 |φ(bi)|2.

The sequence of vectors is Cauchy and will converge to some vector w exactly
when the series

∑∞
i=1 |φ(bi)|2 converges.

Now suppose that in spite of the countability condition on B the functional φ
is unbounded. Then for any constant α > 0 we could find x in span(B) with norm

1 for which |φ(x)| > α. The vector x can be written as x =
∑k
i=1 a

ibi for some
finite k. Then we have, by linearity of φ and the BCS inequality,

|φ(x)| =

∣∣∣∣∣φ
(

k∑
i=1

aibi

)∣∣∣∣∣ =

∣∣∣∣∣
k∑
i=1

aiφ(bi)

∣∣∣∣∣
=

∣∣∣∣∣
〈

k∑
i=1

aibi ,

k∑
i=1

φ(bi)bi

〉∣∣∣∣∣ = | 〈x, yk〉 | ≤ ‖x ‖ ‖ yk ‖

≤

√√√√ ∞∑
i=1

|φ(bi)|2.

We conclude that
∑∞
i=1 |φ(bi)|2 must fail to converge, and so too must (yk).

On the other hand, suppose that
∑∞
i=1 |φ(bi)|2 does converge. So for each

x ∈ span(B) of norm 1 the same calculation has |φ(x)| ≤
√∑∞

i=1 |φ(bi)|2 so φ is
bounded on span(B), and therefore on its closure HB . φ is continuous there, and

zero on H
⊥

B , so it is continuous on all of H.

And φ agrees with the continuous function 〈 ·, w 〉 on the dense subset span(B)
of HB and therefore on all of H. We have just proven the following critical result.

16.4. Theorem. Suppose A is an orthonormal basis of Hilbert space H.
φ ∈ H∗ is continuous exactly when

∑
a∈A |φ(a)|2 converges, which will occur

exactly when
∑
a∈A φ(a) a converges.

That happens if and only if there is a vector w ∈ H for which

φ(·) = 〈 · , w 〉. (The Riesz Representation Theorem)

Nondegeneracy of inner product then requires uniqueness of w.

In case of continuity, w =
∑
a∈A φ(a) a and so ‖φ‖ = ‖w‖.

When H′ has operator norm, the association of φ ∈ H′ with w ∈ H is a
conjugate-linear isometry onto H.

Proof. The argument is found in the discussions above. �
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Let R : H′ → H be the conjugate linear isometry sending φ to w as above. And
let Z : H → H′ be its inverse function: Z(w) = 〈 ·, w 〉. So Z is also a conjugate
linear isometry.

16.5. Theorem. The operator norm on H′ satisfies the parallelogram law and
so H′ is itself a Hilbert space, and so then is H′′. The composition of two onto
conjugate linear isometries is a linear isometry onto H′′. If w ∈ H is associated
with member Ψ of H′′ under this linear isometry then Ψ(φ) = φ(w) for all φ ∈ H′:
in other words, the composition of these isometries is the evaluation map, E : H→
H′′, and is onto H′′.

Z1 : H→ H′, Z2 : H′ → H′′, Z2 ◦ Z1 = E : H→ H′′.

We conclude that any Hilbert space is reflexive.

Proof. The argument follows from the last theorem. �

16.6. Corollary . Suppose H is a Hilbert space and xn is a sequence in H.

(i) If xn is norm bounded then xn has a weakly convergent subsequence .

(ii) If xn is weakly convergent to x and ‖xn‖ converges to ‖x‖ then xn
converges to x in norm.

Proof. In Exercise 8.11 we saw that (i) holds in any reflexive normed space,
and by the last theorem we know any Hilbert space is reflexive.

On the other hand, suppose xn is weakly convergent to x and also ‖xn‖ con-
verges to ‖x‖. Then

〈x− xn, x− xn 〉 = 〈x, x 〉+ 〈xn, xn 〉 − 〈x, xn 〉 − 〈xn, x 〉

converges to 0 and (ii) follows. �

16.7. Exercise. (i) If (bi) is an orthonormal sequence of vectors in a Hilbert
space H and v ∈ H and c is any positive number. Then v + c bi converges weakly
to v but ‖ v + c bi ‖2 converges to ‖ v ‖2 + c2.

(ii) If sequence (wi) converges weakly to v then lim sup ‖wi ‖ ≥ ‖ v ‖. (hint:
〈wi, v 〉 ≤ ‖wi ‖ ‖ v ‖.)

16.8. Exercise. (i) Adapt Exercise 9.7 to apply to sesquilinear forms.

(ii) Define φ(x, y) = 〈A(x), B(y) 〉 for linear A,B : H→ H. If φ is continuous
in each coordinate separately, which will happen (for instance) if both A and B are
continuous, then φ is continuous.

(iii) Suppose A is continuous. If RB is the range of B there is unique linear
C : RB → H for which

φ(x, y) = 〈A(x), B(y) 〉 = 〈x, C(B(y)) 〉 ∀x, y ∈ H.
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16.9. Exercise. By Hölder’s inequality if x and y are in `2 we know that xy ∈
`1. We now suppose that x is a fixed sequence. Does the condition xy ∈ `1 whenever
y ∈ `2 actually imply x ∈ `2? (hint: For any sequence x define Gn : `2 → `1 by

(Gny)(k) = x(k) y(k) for k ≤ n and (Gny)(k) = 0 otherwise.

Each Gn is bounded from `2 to `1 with their usual norms. If x has the stated
property then for every y ∈ `2 the sequence Gn(y) converges to a limit in `1. The
uniform boundedness principle as described in Exercise 9.5 implies that the set of
operator norms { ‖Gn‖ | n > 0 } is bounded by some constant M , and this means

∞∑
k=1

|x(k) y(k) | ≤M‖ y ‖2.

The functional ψ : `2 → `2 given by ψ(y) =
∑∞
k=1 x(k) y(k) is therefore continuous

and any such functional on the Hilbert space `2 is given as inner product against a
member of `2, which obviously must be x.)

17. The Hermitian Adjoint and Normal Operators

The Hermitian adjoint of any continuous operator F on Hilbert space H is
the unique operator F† for which

〈F (x), y 〉 = 〈x, F †(y) 〉 for all x, y ∈ H.

The Riesz representation theorem applied to the continuous and linear function
〈F (·), y 〉 assures us that a vector F †(y) exists for each y, and properties of inner
product then assure us the resulting function is uniquely defined and linear.

Note that if G is also a continuous operator then (FG)† = G†F †.

The Hermitian adjoint operator is a combination of the conjugate linear isome-
tries provided in Theorem 16.4 with the Banach adjoint operator ∗. Specifically,

Z : H→ H′, ∗ : CL (H)→ CL (H′) , R : H′ → H.

So for F ∈ CL (H) we have F † = R ◦ F ∗ ◦ Z.

Since F ∗ is continuous and ‖F ∗‖ = ‖F‖ and both Z and R are conjugate linear
isometries onto their ranges we conclude that F † is continuous and∥∥F †∥∥ = ‖F‖ = ‖F ∗‖.

If α is a scalar and F and G are continuous operators then

(αF +G )
†

= αF † +G†.

It is worth comparing the following result to Lemma 12.6. That lemma in-
volves Banach adjoints and their associated subspaces. In fact most results about
Hermitian adjoints translate to/from similar results about Banach adjoints using
the Z and R isometries.
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17.1. Lemma. If F ∈ CL(H) then F = F †† and

Ker(F †)⊥ = F (H) and Ker(F )⊥ = F †(H).

Ker(F †) = F (H)
⊥

and Ker(F ) = F †(H)
⊥
.

Proof. Adapting Proposition 8.16 (or by direct proof) and using the fact that
any Hilbert space is reflexive, we have F = F ††.

Since 〈F (x), y 〉 = 〈x, F †(y) 〉 it is obvious that F (H) ⊂ Ker(F †)⊥, and since

Ker(F †)⊥ is closed we have also that F (H) ⊂ Ker(F †)⊥.

On the other hand, suppose y ∈ F (H)⊥. Then 〈F (x), y 〉 = 0 = 〈x, F †(y) 〉 for
all x, which means y ∈ Ker(F †). So F (H)⊥ ⊂ Ker(F †).

Recalling Lemma 14.5 we have Ker(F †)⊥ ⊂ F (H)⊥⊥ = F (H) and therefore

Ker(F †)⊥ = F (H).

The remaining set equalities are left as an easy exercise. �

17.2. Exercise. Adapt Exercises 8.15 and 8.18 to show that the Hermitian
adjoint † : CL(H)→ CL(H) is continuous when CL(H) is given either oper-
ator norm or weak operator topology. In the following example we show the adjoint
operator need not be continuous when CL(H) has strong operator topology.

Define Hx,y : H→ H by Hx,y(w) = 〈w, x 〉 y.

Note that

〈Hx,y(z), w 〉 = 〈 〈 z, x 〉 y, w 〉 = 〈 z, x 〉〈 y, w 〉
while

〈 z,Hy,x(w) 〉 = 〈 z, 〈w, y 〉x 〉 = 〈 y, w 〉〈 z, x 〉.
In other words, Hy,x and Hx,y are Hermitian adjoints to each other.

Now suppose (bn) is a countable orthonormal sequence in H. Defining, for
each x and n, numbers ζn = 〈x, bn 〉, Bessel’s Inequality implies that the numerical
sequence (ζn) converges to 0.

Let Tn = Hbn,b1 . So Tn(x) = 〈x, bn 〉 b1 = ζnb1. So the sequence (Tn) converges
to 0 in the strong operator topology.

But T †n = Hb1,bn and for given x, T †n(x) = 〈x, b1 〉 bn = ζ1bn. This sequence
of vectors will not generally converge in norm (never, unless ζ1 happens to be 0)
so this sequence (T †n) of Hermitian adjoints does not converge in strong operator
topology.

So Hermitian adjoint is not continuous when H is infinite dimensional and
CL(H) has strong operator topology.

17.3. Exercise. Adapt Proposition 8.20 or work directly to show that the Her-
mitian adjoint F † of a continuous operator F on a Hilbert space is compact or has
finite rank exactly when F is compact or, respectively, has finite rank.
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An operator F ∈ CL(H) is called normal if it commutes with its adjoint.

F F † = F † F.

In the finite dimensional setting, an operator is normal if the matrix that repre-
sents it in a basis commutes with the matrix of its adjoint. The adjoint of a matrix
is its conjugate transpose, and a matrix that commutes with its adjoint called nor-
mal. The adjoint of a matrix which represents an operator is the matrix of the
adjoint operator. Normal matrices are precisely those that can be diagonalized
(see Exercise 17.8) using matrix of transition whose adjoint and inverse coincide
(i.e. U†U = I) and we will be concerned with analogous results in this infinite
dimensional setting.

17.4. Lemma. Suppose F is a normal operator on Hilbert space H.

‖F (x) ‖ =
√
〈F (x), F (x) 〉 =

√
〈F †(x), F †(x) 〉 = ‖F †(x) ‖.

In particular, the kernels of F and F † coincide.

Also ∀x, y ∈ H 〈F (x), F (y) 〉 = 〈F †(x), F †(y) 〉.
So F (x) and F (y) are orthogonal exactly when F †(x) and F †(y) are,
and F is an isometry exactly when F † is an isometry.

Proof.

〈F (x), F (y) 〉 = 〈x, F † F (y) 〉 = 〈x, F F †(y) 〉 = 〈F †(x), F †(y) 〉.
�

See Corollary 18.4 for the converse implication, which holds when H is a com-
plex Hilbert space.

Not only do the kernels of a normal operator and its adjoint coincide, so too
do the images of these operators.

17.5. Lemma. Suppose F is a normal operator on Hilbert space H.
Then F (H) = F †(H).

Proof. Define linear D on F †(H) by Dz = Fy whenever z = F †y. If a second
vector w satisfies z = F †w then w − y ∈ Ker(F †) = Ker(F ) so Fw = Fy and we
conclude that D is well defined on F †(H).

Suppose z ∈ F †(H) and ‖z‖ = 1. So z is of the form F †
(
y/
∥∥F †y∥∥).

Then ‖Dz‖ =

∥∥∥∥F ( y

‖F †y‖

)∥∥∥∥ =
‖Fy‖
‖F †y‖

= 1.

So D is an isometry from F †(H) onto F (H) and therefore can be extended (Exercise

5.13) in a unique way to a continuous operator (an isometry, actually) from F †(H)

onto F (H). Every closed subspace of a Hilbert space is complemented so D can be
further extended to a continuous operator defined on all of H, an isometry when

restricted to F †(H) and the zero operator on F †(H)
⊥

. And using this extended D
we have DF † = F on all of H. We have factorized F as the composition of two
continuous operators.

So FD† = F † and therefore F †(H) ⊂ F (H). The reverse inclusion follows by
an identical argument, switching F and F †. �
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17.6. Corollary . Suppose F is a normal operator on Hilbert space H.

Ker(F ) = Ker
(
F †
)

and F †(H) = F (H).

Ker(F )⊥ = F (H) = Ker
(
F †
)⊥

= F † (H).

So the image of F is dense in H exactly when the kernel of F is trivial.

Proof. This collects earlier results. �

Actually, we can get a little more out of the proof of Lemma 17.5. By the
corollary above we see that the images of F and F † coincide when F is normal, as
do their kernels in any case.

And if X = Ker(F ) and Y = F (H) then X is closed and Y = X⊥ and Y
⊥

= X.

Both F and F † are one-to-one when restricted to Y and F
(
Y
)

= F †
(
Y
)

= Y .

So the complementary pair
(
X,Y

)
reduces both F and F †.

Note that if I is the identity operator and F is normal then F − λ I is also
normal. Any nonzero vector in the kernel of F − λ I is also in the kernel of (F −
λ I)† = F † − λ I, and conversely. Note that any member of this kernel must be in
Y . So eigenvectors for eigenvalue λ for normal F are exactly the eigenvectors for
eigenvalue λ for F †.

This implies that eigenvectors for distinct eigenvalues are orthogonal: if x is
an eigenvector for normal F for eigenvalue λ and y is an eigenvector for F for
eigenvalue α with λ 6= α then

λ 〈x, y 〉 = 〈λx, y 〉 = 〈F (x), y 〉 = 〈x, F †(y) 〉 = 〈x, α y 〉 = α 〈x, y 〉

which implies that 〈x, y 〉 = 0.

Since normal F is one-to-one when restricted to Y , it follows that for any
n > 1 the operator Fn is one-to-one when restricted to Y as well: if a, b ∈ Y and
Fn(a) = Fn(b) then F

(
Fn−1(a)− Fn−1(b)

)
= 0 so Fn−1(a) = Fn−1(b). We find,

after n− 1 such steps, that F (a) = F (b) so a = b.

And we have Ker (Fn) = Ker(F ) for any n > 1. To see this, suppose n > 1
and Fn(x) = F (Fn−1(x)) = 0. That means Fn−1(x) ∈ Y ∩ X = { 0 } so x ∈
Ker

(
Fn−1

)
and the proof follows by induction.

So the complementary pair
(
X,Y

)
reduces both Fn and

(
F †
)n

= (Fn)
†

for
n ≥ 1, and these iterates of F are also normal.

Applying this to the normal operator F−λ I we see that the kernel of (F−λ I)n

is the same as the kernel of F − λ I for each λ and each n ≥ 1. So for a normal
operator F and each eigenvalue λ, the generalized eigenspaces (the set of vectors a
for which (F − λ I)n(a) = 0 for some n) are not larger than the eigenspaces.

Now suppose x ∈ Y and F (F (x)) = λF (x) for some λ where x 6= 0. Then
F (F (x)− λx) = 0 so F (x)− λx ∈ Y ∩X = { 0 } so x is, itself, an eigenvector for
eigenvalue λ.

This means that the action of F cannot turn a non-eigenvector in Y into an
eigenvector. Specifically, if Eigλ is the eigenspace for eigenvalue λ then

(
Eigλ, Eig

⊥
λ

)
is a complementary pair of subspaces that reduces F , and also reduces any iterate
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Fn and their adjoints, where orthogonal complementation is taken in either Y or
all of H.

In the proof of Lemma 17.5 we construct an isometry D, and we may deduce
that there is an isometry E, from Y onto Y , for which

DF † = F and EF = F †.

In that proof we extend D to all of H by defining it to be 0 on X, which

we discovered along the way was Y
⊥

, extending by linearity to the direct sum
H = X ⊕ Y .

With that definition DEF = F and we conclude that DE is the identity on Y
and an isometry on Y so DE is the orthogonal projection onto Y .

Any linear map such as D that is an isometry when restricted to the orthogonal
complement of its kernel is called a partial isometry, and we have seen they can
come in handy. Orthogonal projections provide examples, but are not the only
ones: except in special cases D itself will not be an orthogonal projection.

Leaving that for now (obviously partial isometries have properties we have not
explored) we could have, instead, defined D (and E too) to be the identity on X
rather than 0, and after extending by linearity both D and E would be isometries
of H onto H.

Using the new definition, the complementary pair
(
X,Y

)
reduces D and E

and their adjoints too. These adjoints are also isometries, both when restricted as
operators from Y onto Y and as operators from H onto H.

Now let’s focus on F,D and E, and their adjoints, as operators from Y to Y .
All six operators are one-to-one and D and E and their adjoints are isometries onto
Y . The restricted operators F and F † are onto Y , which might (or might not)
equal Y .

Since DEF = F the map DE and the identity operator I agree on the dense
subset Y of Y and both D and E are the identity on X, so DE = I on all of H.

Since D is an isometry, for all x, y ∈ H we have

〈x, y 〉 = 〈D(x), D(y) 〉 = 〈x,D†D(y) 〉

which implies that D†D(y) = y for all y ∈ H: that is, D†D = I.

This means that D† = D−1, a fact that holds for any invertible isometry, not
just this one. So D† = E.

We have then

DF † = F and DF = FD and DF † = F †D

and these identities hold not just on Y but on all of H.

We have accumulated a rather lengthy list of important results in this discus-
sion, which we record in the following proposition.
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17.7. Proposition. Suppose F is a normal operator on Hilbert space H.

(i) F (H)
⊥

= Ker(F ) and
(
Ker(F ), F (H)

)
is a complementary pair

that reduces both F and F †, and both F and F † are one-to-one when
restricted to F (H).

(ii) There is an invertible isometry D (so D−1 = D†: these are called unitary
operators and we will have more to say about them later) which is the

identity on Ker(F ) and for which DF † = F and which commutes
with both F and F †.

(iii) Eigenvectors for F for different eigenvalues are orthogonal.

(iv) For each complex number λ, the operator F − λ I is normal, so it and its
adjoint have the same kernel. So eigenvalues for F are the conjugates
of eigenvalues for F †, and the eigenspace for F with eigenvalue λ
is the same as the eigenspace for F † for eigenvalue λ.

(v) Ker(F ) = Ker (Fn) and Fn(H) = Fn
(
F (H)

)
is dense in F (H) for any

n ≥ 1 and any normal F . This implies that the kernel of F − λ I is the
same as the kernel of (F − λ I)

n
for each n ≥ 1 so the generalized

eigenvectors for F and λ are simply the members of the eigenspace Eigλ.

(vi) For each λ the complementary pair
(
Eigλ, Eig

⊥
λ

)
reduces F , F †

and all their powers. This includes the case of λ = 0, for which(
Eig0, Eig

⊥
0

)
=
(
Ker(F ), F (H)

)
.

Proof. The proof is taken from the preceding remarks. �

17.8. Exercise. If N is a normal operator on a finite dimensional Hilbert
space then there is an invertible isometry U (these are called unitary operators, and
U−1 = U† for any such) so that the matrix of U−1 ◦N ◦ U is diagonal.

18. Bounded Self-Adjoint Operators

In this section all Hilbert spaces will have complex field. Not only do the given
proofs fail, most of the results we discuss here are actually false for real Hilbert
spaces.

An operator F ∈ CL(H) is called self-adjoint when F = F †: that is,

〈F (x), y 〉 = 〈x, F (y) 〉 ∀x, y ∈ H.

Of course, self-adjoint operators are normal. For self-adjoint operators the
image of F and the kernel of F are orthogonal.

A second, on its face weaker, condition

〈F (x), x 〉 = 〈x, F (x) 〉 for all x ∈ H

is actually equivalent to, or implies, self-adjointness of F on complex Hilbert spaces.
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To see this, suppose the second condition holds. Then

0 =〈F (x+ y), x+ y 〉 − 〈x+ y, F (x+ y) 〉
= (〈F (x), x 〉+ 〈F (y), x 〉+ 〈F (x), y 〉+ 〈F (y), y 〉)

− (〈x, F (x) 〉+ 〈 y, F (x) 〉+ 〈x, F (y) 〉+ 〈 y, F (y) 〉)
=〈F (y), x 〉+ 〈F (x), y 〉 − 〈 y, F (x) 〉 − 〈x, F (y) 〉.

That means

〈F (y), x 〉 − 〈 y, F (x) 〉 = 〈x, F (y) 〉 − 〈F (x), y 〉.
Since the two sides are conjugates they must be real. But even more, if they were
nonzero and H a complex Hilbert space (as our spaces usually will be) the vector y
could be replaced by αy for any complex α and the right side would be multiplied by
α, while the left would acquire a factor of α. That means both sides must actually
be zero.

18.1. Lemma. A continuous operator F on a complex Hilbert space H

is self-adjoint if and only if

〈F (x), x 〉 = 〈x, F (x) 〉 for all x ∈ H.

Rephrasing, the condition is that 〈F (x), x 〉 is real for every x ∈ H.

Proof. This is the content of the last calculation. �

The following result provides, for self-adjoint operators on a complex Hilbert
space, an alternative to the usual method of calculating the operator norm.

18.2. Lemma. Suppose F is a continuous and self-adjoint operator on
complex Hilbert space H.

Then ‖F‖ = sup{ 〈F (x), x 〉 | ‖x‖ ≤ 1 }.

Proof. Let N = sup{ 〈F (x), x 〉 | ‖x‖ ≤ 1 }. For each x we have

〈F (x), x 〉 ≤ ‖F‖ ‖x‖2 so N ≤ ‖F‖.

We need to show the reverse inequality to prove this lemma.

Expand

〈F (x+ y), x+ y 〉 − 〈F (x− y), x− y 〉
4

− i
〈F (x+ i y), x+ i y 〉 − 〈F (x− i y), x− i y 〉

4

to verify that it simplifies to 〈F (x), y 〉. Since F is self-adjoint all four inner products
in this expression are real so the second fraction is the complex part of 〈F (x), y 〉.
Replace y by w = α y where α is a complex number of norm 1 chosen so that
〈F (x), w 〉 is real. Then the complex part of the expression above is 0, and the
magnitude of w is still the same as that of y. We have:

〈F (x), w 〉 =
〈F (x+ w), x+ w 〉 − 〈F (x− w), x− w 〉

4
.
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Squaring and applying the definition of N and the parallelogram law we have

| 〈F (x), w 〉 |2 =
| 〈F (x+ w), x+ w 〉 − 〈F (x− w), x− w 〉 |2

16

≤ (N ‖x+ w ‖2 +N ‖x− w ‖2 )2

16

≤ N2

4

(
‖x+ w ‖2 + ‖x− w ‖2

2

)2

=
N2

4
( ‖x ‖2 + ‖w ‖2 )2.

If we choose x of norm 1, the maximum value of 〈F (x), w 〉 among other vectors w
of norm 1 occurs when w is a norm one complex multiple of F (x), so in that case

| 〈F (x), w 〉 |2 =

∣∣∣∣ 〈F (x),
F (x)

‖F (x)‖

〉 ∣∣∣∣2 ≤ N2

4
(4) = N2.

We conclude that ‖F‖ cannot exceed N and the lemma is proved. �

This result is false on real Hilbert spaces, even in dimension 2. For instance,
if F represents a rotation by angle α in the plane, the operator norm of F is 1
but the supremum indicated in the last lemma is | cos(α)|. This also provides a
counterexample to the statement of Lemma 18.1 for real spaces.

18.3. Corollary . If F is a continuous operator

on a complex Hilbert space H we have ‖F † F‖ = ‖F‖2.

So in the self-adjoint case,
∥∥F 2

∥∥ = ‖F‖2.

Proof. If we apply Lemma 18.2 to the self-adjoint operator F †F we find∥∥F †F∥∥ = sup
{ ∣∣ 〈F †F (x), x

〉 ∣∣ | ‖x|| = 1
}

= sup { | 〈F (x), F (x) 〉 | | ‖x|| = 1 } = ‖F‖2.

�

The following is the converse of Lemma 17.4 for complex Hilbert spaces.

18.4. Corollary . If F is a continuous operator on complex Hilbert space H

and ‖F (x) ‖ = ‖F †(x) ‖ for all x then F is normal.

Proof. If 〈F (x), F (x) 〉 = 〈F †(x), F †(x) 〉 then 〈F †F (x), x 〉 = 〈FF †(x), x 〉.
So the assumption of the corollary is that

〈
(
F †F − FF †

)
x, x 〉 = 0 ∀x.

F †F − FF † is self-adjoint, so
∥∥F †F − FF †∥∥ = 0 and F †F = FF †. �

18.5. Corollary . If F ∈ CL(H) is normal on complex H

then ‖Fn ‖ = ‖F ‖n for all n ≥ 1.
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Proof. Suppose D is self-adjoint. By Corollary 18.3 we know that
∥∥D2

∥∥ =

‖D‖2 and
∥∥D4

∥∥ =
∥∥D2

∥∥2
= ‖D‖4 and then, generally,

∥∥D2n
∥∥ = ‖D‖2n . So if

2n ≥ j ≥ 0 we have

‖D‖2
n

=
∥∥∥D2n

∥∥∥ =
∥∥∥D2n−jDj

∥∥∥ ≤ ∥∥∥D2n−j
∥∥∥ ∥∥Dj

∥∥ ≤ ‖D‖2n
so equality holds throughout and

∥∥Dj
∥∥ = ‖D‖j . By choosing n appropriately we

have this identity for any j ≥ 0 and self-adjoint D.

Suppose F is normal. D = F †F is self-adjoint and normality implies that, for
n ≥ 1, Dn =

(
F †
)n
Fn. But then

‖F‖2n =
∥∥F †F∥∥n =

∥∥∥(F †F )n∥∥∥
=
∥∥∥(F †)n Fn∥∥∥ ≤ ∥∥∥(F †)n∥∥∥ ‖Fn‖ = ‖Fn‖2 ≤ ‖F‖2n .

So equality holds throughout and we have ‖Fn‖ = ‖F‖n for all n and any normal
F , not just those which are self-adjoint. �

As a final note in this section, we provide a means of partially ordering the
self-adjoint operators on a complex Hilbert space.

A self-adjoint operator F is called positive if 〈F (x), x 〉 ≥ 0 for every x.

Self-adjoint F is called positive definite if 〈F (x), x 〉 > 0 whenever x 6= 0.

If F is self-adjoint then F+‖F ‖ I is a positive operator, where I is the identity
operator, which allows us to transfer many facts true for positive operators to the
merely self-adjoint case.

We partially order the self-adjoint operators on H by F ≤ G if and only
if G− F is a positive operator.

18.6. Lemma. Any operator F on a complex Hilbert space that satisfies
the condition 〈F (x), x 〉 ≥ 0 for every x is automatically self-adjoint.
So these operators are positive.

Proof. If F satisfies the specified inner product condition then, of course,
〈F (x), x 〉 is always real and Lemma 18.1 applies to tells us that F is self-adjoint. �

Note that for any operator F , the products F †F and F F † are both positive
operators.

18.7. Exercise. If T ∈ CL(H) then T †+T and i (T †−T ) are self adjoint. So

T =
1

2

(
T † + T

)
+ i

[
−i
2

(
T † − T

)]
represents T in the form T = A+ i B where A and B are self-adjoint operators. If
C + iD is any other such representation, A−C = i (D−B ). But the right side is
not self-adjoint unless D = B, while the left is self-adjoint. In other words, A = C
and B = D; this type of representation is unique.

T † = A− i B so T T † = A2 + i (BA−AB)+B2 and it follows that T T † = T †T
(i.e. T is normal) when and only when A commutes with B.
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The analogy associating normal operators T with complex numbers and self-
adjoint operators A,B with real numbers in

T = A+ i B T † = A− i B

is compelling.

19. C∗ and Other Algebras

Suppose given an algebra A; that is, a vector space equipped with an associative
multiplication. Matrices with matrix multiplication, or the bounded operators on
a Hilbert space with composition come to mind.

If A has a norm and ‖F G ‖ ≤ ‖F ‖ ‖ G ‖ for all F and G in A then A is called
a normed algebra. If A has a multiplicative identity I and ‖ I ‖ = 1 the normed
algebra is called unital. If A is complete with this norm it is called a Banach
algebra.

We have seen that CL(H) is an example of a unital Banach algebra, non-
commutative except in trivial cases.

Any function � : A→ A is called an involution on A if

F �� = F and (aF + bG)� = aF � + bG� and (F G)� = G� F �

for every F,G ∈ A and numbers a, b. Normally, the field of numbers will be C.

If it possesses an involution, A is called an involution algebra or, synony-
mously, a ∗-algebra.

An algebra homomorphism φ : A → B between two ∗-algebras is called a ∗-
homomorphism if φ (F �) = φ(F )∗ for all F in A, where � denotes the involution
on A and ∗ is the involution on B.

The Hermitian adjoint is an involution on CL(H), and a primary example is
when H = L2(µ) for a σ-finite measure µ.

If an involution � on the Banach algebra A satisfies ‖F �F ‖ = ‖F ‖ ‖F � ‖ for
all F ∈ A then A is called a C∗-algebra.

We just proved above that for a complex Hilbert space H, the algebra of op-
erators CL(H) with Hermitian adjoint satisfies ‖F †F ‖ = ‖F ‖2 for F ∈ CL(H),
and since ‖F ‖ = ‖F † ‖ for these F we find that CL(H) is a unitary C∗-algebra.

It is also (fairly) obvious that the continuous complex valued functions on a
fixed compact space with supremum norm and (pointwise) complex conjugation is a
commutative and unitary C∗-algebra. With complex conjugation and pointwise a.e.
multiplication, L∞(µ) is a C∗-algebra for σ-finite measure µ, where the essentially
finite measurable functions have essential supremum norm.

Sub-algebras of any ∗-algebra which are closed under the operation of taking
adjoints are also ∗-algebras, though completeness or the presence of a unit may not
be preserved.
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Finally, any unitary ∗-algebra A which is a sub-algebra of some CL(H) and
which is weak operator closed7 is called a von Neuman algebra or, synonymously,
a W∗-algebra.

20. Orthogonal Projection and Unitary Operators

Suppose V is an inner product space and P is a projection onto subspace M
with kernel K. The pair (M,K) is called a complementary pair when both M and
K are closed subspaces. Recall the material on orthogonal projections (page 91)
where the two subspaces M and K were orthogonal, and in that case we had the
Pythagorean Law ‖x‖2 = ‖P (x)‖2 + ‖Q(x)‖2 for all x, where Q = I − P .

There, we had 〈P (x), Q(x) 〉 = 0 for all x, and that is sufficient to ensure
that the Pythagorean Law holds for these paired projections, as can be seen by
expanding ‖x‖2 = ‖P (x) +Q(x)‖2.

Wherever linear P might come from, projection or not, if it satisfies the
Pythagorean Law for some function Q then P must be continuous, and in fact
‖P‖ ≤ 1.

This will certainly happen if M and K are orthogonal. In that case, continuity
of P has it that K and M = K⊥ are closed, and there are disjoint orthonormal
bases B of M and C for K for which P is the orthogonal projection PB and Q is
the orthogonal projection PC .

20.1. Lemma. Suppose H is a Hilbert Space and M is a closed subspace of H.
The orthogonal projections onto M and M⊥ are continuous and can be realized as
projections PB and PC as in Corollary 15.4, where B is an orthonormal basis for
M , C is an orthonormal basis for M⊥ and B ∪ C is an orthonormal basis for H.

Proof. See the discussion preceding this lemma. �

Let PB be an orthogonal projection onto span(B) for orthonormal set B, and
suppose C is an orthonormal basis for B⊥ and denote PB(x) = xB and xC = x−xB .

For any x = xB + xC and y = yB + yC represented this way we have

〈PB(x), y 〉 = 〈xB , yB + yC 〉 = 〈xB , yB 〉 = 〈xB + xC , yB 〉 = 〈x, PB(y) 〉.

So any orthogonal projection PB is self-adjoint.

On the other hand, suppose a projection P is not orthogonal. In other words,
there are vectors x in M = P (H) and y in K = Ker(P ) for which 〈x, y 〉 6= 0. Then
we have

〈P (x), y 〉 = 〈x, y 〉 6= 0 = 〈x, 0 〉 = 〈x, P (y) 〉.
So P is not self-adjoint.

20.2. Lemma. A projection on a Hilbert space is orthogonal
if and only if it is self-adjoint.

7In this context A is weak operator closed if, whenever S ∈ CL(H) and Tν is a net in A for
which 〈h, (Tν − S )(g) 〉 −→ 0 for all h, g ∈ H, then S must be in A too.
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Proof. The argument is in the last remarks. �

Even in two dimensions, two orthogonal projections need not commute, nor
will their product (that is, composition) be a projection in general. Still, we have
the following result.

20.3. Lemma. Suppose P and W are orthogonal projections onto subspaces
MP and MW , with nullspaces KP and KW , respectively.

(i) If P and Q commute their composition is the orthogonal projection onto the
intersection of their ranges.

(ii) P + W is an orthogonal projection exactly when WP = 0 = P W. In that
case, the sum MP +MW is direct and P +W is a projection onto MP ⊕MW .

(iii) P ≤W exactly when P W = P . This happens exactly when MP ⊂MW .

(iv) W − P is an orthogonal projection exactly when MP ⊂ MW . In that case
it is a projection onto KP ∩MW .

Proof. The proof is left for the reader. �

20.4. Proposition. Suppose Q1 and Q2 are two orthogonal projections on
Hilbert space H with associated complementary pairs (A1, B1) and (A2, B2), re-
spectively.

Let T = Q1 ◦Q2 and B = (I − T )(H) and A = A1 ∩A2.

Then B = A⊥ and (A,B) is a complementary pair for H and Tn converges in
the strong operator topology to the projection P for this complementary pair.

Proof. The operator norm of Tn cannot exceed 1 for any n and every Hilbert
space is reflexive so the Mean Ergodic Theorem, Theorem 12.7, applies to T .

Suppose Tg = Q1 ◦Q2(g) = g. Then g is in the range of Q1 so g = a1 = a2 + b2
where a1 ∈ A1 and a2 ∈ A2 and b2 ∈ B2.

Then ‖a1‖2 = ‖a2‖2 + ‖b2‖2 so ‖a1‖ ≤ ‖a2‖.
But Q2(a1) = a2 and ‖Q2‖ ≤ 1 so ‖a2‖ ≤ ‖a1‖.
We conclude that ‖b2‖ = 0 so a1 = a2 and g ∈ A1 ∩A2.

According to the Mean Ergodic Theorem

Pn =
1

n

(
I + T + T 2 + · · ·+ Tn−1

)
converges in strong operator topology to P , the projection for the complementary
pair (A,B).

Now suppose a ∈ A = A1∩A2 and recall that Q1 and Q2 are self-adjoint. Then
for every w ∈ H we have

〈 a, (I − T )w 〉 = 〈 a, w 〉 − 〈 a, Q1 ◦Q2(w) 〉
= 〈 a, w 〉 − 〈Q2 ◦Q1(a), w 〉 = 〈 a, w 〉 − 〈 a, w 〉 = 0.

So every member of A is orthogonal to every member of (I − T )(H), and it follows
that B = A⊥. That means P is an orthogonal projection.
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Tn(a) = Pn(a) = Pa = a for every a ∈ A. It remains to show than Tn(b)
converges to Pb = 0 for every b ∈ B.

Suppose b ∈ B. Then T (b) = a + c for certain a ∈ A and c ∈ B. Note that T
and Pk commute for each k.

PkT (b) = a+ Pk(c) = TPk(b).

The vector Pk(c) converges to 0, and also Pk(b) converges to 0. That means a = 0
and so T (b) ∈ B. So the complementary pair (A,B) reduces T and this implies
(A,B) reduces Tn and Pk for every n and k.

Given this reduction, we may presume without loss that B = H and A = { 0 },
and we make this presumption now. With this assumption, Pn converges strongly
to the zero operator, and we are trying to show that Tn does too.

Consider S = Q2T.

Then S is self-adjoint, operator norm bounded by 1, Sn = Q2T
n and (by an

argument very similar to the above) the range of I − S is dense in H. Also

Rn =
1

n

(
I + S + S2 + · · ·+ Sn−1

)
= Q2Pn −

1

n
(Q2 − I)

converges strongly to the zero operator and each Rn is self-adjoint.

....unfinished �

Recall that a linear isometry on H is a member Ψ of CL(H) for which

‖Ψ(v) ‖ = ‖ v ‖ for all v ∈ H.

If Ψ is a linear isometry, expanding 〈Ψ(x+ y),Ψ(x+ y) 〉 = 〈x+ y, x+ y 〉 and
noting that both sides are real we see that

〈Ψ(x),Ψ(y) 〉+ 〈Ψ(y),Ψ(x) 〉 = 〈x, y 〉+ 〈 y, x 〉.
So the real part of 〈Ψ(x),Ψ(y) 〉 equals the real part of 〈x, y 〉. In case H is a

complex Hilbert space, replacing y by i y we see that the complex parts are equal
too, so we find that in any Hilbert space, isometries preserve the inner product of
any pair of vectors, not just those inner products of the form 〈x, x 〉 used to define
the norm.

〈Ψ(x),Ψ(y) 〉 = 〈x, y 〉 ∀x, y ∈ H.

A linear isometry on H, therefore, sends an orthonormal basis of H to an
orthonormal basis of its range. It is an isometric isomorphism onto its image, and
in the finite dimensional case must be invertible.

Invertible or not, we saw earlier that in the case of isometries, for x, y ∈ H

〈x, y 〉 = 〈Ψ(x),Ψ(y) 〉 = 〈x,Ψ†Ψ(y) 〉
which implies that Ψ†Ψ(y) = y for all y ∈ H: that is, Ψ†Ψ = I, the identity
operator on H.

Recall that if it is invertible, an isometry on a Hilbert space is called a unitary
operator, and the set of these will be denoted U(H).

Unitary operators are normal and, in fact, if Ψ is unitary, Ψ Ψ† = Ψ†Ψ = I.
In this case Ψ† = Ψ−1 is also an isometry. Conversely, any bounded operator Ψ on
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H which is onto H for which Ψ†Ψ = I must be an invertible isometry and hence
unitary. So a normal isometry is unitary.

20.5. Lemma. If Ψ: H→ H is an isometry it has closed range.
So if that range is dense then Ψ is onto H, unitary, and Ψ† = Ψ−1.

Proof. The range of any isometry with complete domain must be closed, so
if the range is dense in H it must be all of H. For the rest, adapt the remarks
above. �

If Ψ is an isometry but not invertible, then Ψ Ψ† 6= Ψ†Ψ = I so Ψ is not
normal. But at least

〈x, ΨΨ†(y) 〉 = 〈Ψ†(x),Ψ†(y) 〉 = 〈ΨΨ†(x),ΨΨ†(y) 〉 = 〈x,ΨΨ†ΨΨ†(y) 〉

for all x and y, so ΨΨ† is a projection, obviously orthogonal.

20.6. Exercise. The unitary operators U(H) form a group under composition.
An operator is unitary exactly when it sends any (and hence every) orthonormal
basis of H, in a one-to-one fashion, to an orthonormal basis of H.

Operators S : DS → RS and T : DT → RT , where domains and ranges are all
subspaces of a given Hilbert space H, are called unitarily equivalent if there is
a member U ∈ U(H) for which

S = U†T U = U−1T U.

The relationship is obviously reciprocal. If DS = H for unitarily equivalent S and
T then also DT = H, and in that case the same unitary operator U can be used to
show that S† and T † are unitarily equivalent.

20.7. Exercise. Unitarily equivalent operators are normal or self-adjoint to-
gether.

21. Unbounded Operators

Until now, our concentration has been on bounded (i.e. continuous) operators.
But many important operators, differential operators among them, are unbounded,
defined on a dense subset of a Hilbert space but not on the whole space.

We discussed a few properties of such operators—closed operators— in Section
10 and we continue that discussion here.

A primary user-group of this material, physicists thinking about quantum me-
chanics, employs a slightly different notation from that used by most mathemati-
cians, and that can lead to communication problems. For instance an inner product
〈x , y 〉 is denoted 〈 y |x 〉, so to these physicists an inner product is conjugate linear
in the first “slot” and linear in the second. Also, it is pretty universal for physicists
to employ λ∗ rather than λ to denote complex conjugation of the number λ.
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Using this vocabulary a vector w is indicated by what is termed a ket, |w 〉 = w,
while a functional corresponding to inner product against vector v is called a bra,
〈v | = 〈 · , v 〉. Thus we have a bracket, a number, given by

〈 v | |w 〉 = 〈 v |w 〉 = 〈w , v 〉.

The map that identifies H with its dual H′ is conjugate linear. Thus

〈 f + λ g | = 〈 f |+ λ∗〈 g |.
Bras and kets are frequently transformed into each other, and it is this conjugate

linear identification that does the job.

If Ψ is an operator, the symbol 〈 v |Ψ denotes the functional defined by

〈 v |Ψ ( |w 〉 ) = 〈Ψ(w) , v〉
and this number is usually denoted 〈 v |Ψ |w 〉. The notation is linear in the “spots”
occupied by Ψ and w (individually) and conjugate linear in the location of v.

| v 〉 〈w | is intended to represent a linear operator mapping onto the span of v
related to a projection. Specifically,

| v 〉 〈w | ( |u 〉 ) = 〈w |u 〉 | v 〉 = 〈u , w 〉 v
and if w = v and a unit vector this is the projection of u onto the span of v.

If you see symbols rather than vectors inside a bra or a ket, the intent is to
label instances of a vector or functional. A mathematician might use subscripts or
superscripts on a generic vector symbol for this. For instance, if you see an indexed
ket | i, j 〉 the intent is that there are vectors vi,j for which | i, j 〉 = | vi,j 〉 = vi,j . Or
if λ is an eigenvalue of an operator the ket |λ 〉 would denote an eigenvector for λ.

Apparently context and habit helps the expert user keep this kind of shorthand
straight, but it is a common source of confusion for the beginner.

A function T is often defined as a set of ordered pairs where each first component
is associated with exactly one ordered pair in this set. The set of first components
is the domain of the function, and the set consists of ordered pairs of the form
(x, T (x)). In other words, with this definition a function actually is its graph γ(T ).
The difference is that γ(T ) has subspace topology from a product space, while T
itself has no topology or other structures associated with it. We can (and will)
endow it with a topology of our choosing for special purposes. It is rarely relevant
to draw this distinction.

For each such T we will let DT denote the domain of T and indicate the image
T (DT ) of T by RT . Unless otherwise noted, whenever we use this notation for
domain and range we presume T to be linear on vector space DT .

Two functions are equal if the two domains and all function values coincide.

For two functions S and T we have a partial ordering given by containment.
So S ⊂ T provided that T is an extension of S to larger domain. In particular,
DS ⊂ DT and S(x) = T (x) for every x ∈ DS .

Generally, we define S+T in the obvious way, with domain DS+T = DS ∩DT .
And S ◦ T is defined with domain DS◦T = {x ∈ DT | T (x) ∈ DS }.

When T is one-to-one we define T−1 for the members DT−1 = RT of H by
T−1(T (x)) = x. Recall from Exercise 10.2 that if T is closed, so is T−1.
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Because of domain confusion we use the word “commute” cautiously when
applied to unbounded operators.

Note that T ◦ S has domain consisting of those x ∈ DS for which S(x) ∈ DT ,
while S ◦ T has domain consisting of those x ∈ DT for which T (x) ∈ DS . These
domains will often be different, and even when they are equal their common domain
could easily contain just the zero vector. It is unclear how useful a relation such
as S ◦ T = T ◦ S might be. If T is one-to-one, and so possesses an inverse function
T−1 : RT → DT the compositions T ◦ T−1 and T−1 ◦ T are both the identity, but
possibly on different subsets of H. These maps cannot be said to commute in
general.

With these issues in mind, we define a relation between two operators B and T
that recovers part of what we use “commutativity” for, but with restrictions, and
which is not symmetric.

We say B commutes with T (in that order) only when DT ∪ RT ⊂ DB

and B(T (x)) = T (B(x)) for every x ∈ DT . It is implied by the existence of the
right-hand side that B(x) ∈ DT whenever x ∈ DT .

Equivalently, DB◦T = DT and B ◦ T ⊂ T ◦ B. A common case is when B is
defined on all of H, in which case the first condition (in both forms of the definition)
is superfluous.

Note that if B commutes with T and T commutes with B then our definition
puts strong conditions on domains and ranges. Specifically, DB = DT and RB ∪
RT ⊂ DT .

And whenever DB = DT , if B commutes with T then we do have symmetry:
T commutes with B also.

Recall now the definition of a closed operator, and the results of Section 10.

In our context, and using our identification of a function as its graph, T is
closed when T is a closed subset of H × H with its natural inner product. This
means that whenever sequence xi, i ∈ N, in H converges to a point a ∈ H and
provided T (xi) converges to a point b ∈ H then a ∈ DT and T (a) = b.

This condition is implied by continuity, but does not require continuity. The
Closed Graph Theorem, Proposition 9.8, states that when f : X → Y is linear and
X and Y are Banach then f closed implies f continuous. But in our case that
theorem applies only when DT is a closed subset of the Hilbert space H. This is
allowed, but not the case of primary concern to us.

T is closed when T and its topological closure T in H ×H coincide, and T is
called closeable if T is a function. We saw in Corollary 10.3 that this will happen
exactly when (0, y) ∈ T implies y = 0. In terms of DT , this condition means that
whenever xi converges to 0 in DT then either T (xi) converges to 0 or T (xi) fails to
converge at all.

In particular examples, a closed operator S is usually not given directly, but
instead is the closure T = S of an operator T defined on smaller domain. DT is
then called a core of S.
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21.1. Exercise. (i) If it is to be a core of closed Hilbert space operator S, it
is necessary that subspace X of DS be dense in DS. If S is bounded this is also
sufficient.

(ii) Assuming that there actually is a closeable unbounded operator with do-
main dense in H (we discuss several in later sections) show that the boundedness
condition on S in (i) cannot be removed. (hint: In Exercise 10.8 (ii) we saw that
no unbounded closed operator T can be defined on all of H. That means there is a
vector x for which T (yi) fails to converge for every sequence yi in DT that converges
to x. So let DS = Fx⊕DT and define S on DS to be an extension of T .)

(iii) Suppose T is closeable and R ⊂ T . Then DR is a core of T if every member
x of DT is a limit of some sequence yi in DR for which R(yi) converges.

(iv) If closed S is bounded below and has closed range RS, and if S(X) is dense
in RS for dense subspace X of DS then X is a core of S.

For unbounded T , if T is a function then DT contains every member a of H
for which there is any sequence xi in DT converging to a with the property that
T (xi) is also convergent. If this limit is b then T (a) = b.

Suppose S is any extension of T , and suppose (a, b) ∈ S.

If a ∈ DT then since DT is dense in DT there is a sequence xi from DT with xi
converging to a. If (a, b) /∈ T then it must be that S(xi) = T (xi) fails to converge,
and in fact there is no sequence yi in DT converging to a for which T (yi) converges

to anything. So b = S(a) has no connection to the values of T . And if a /∈ DT then
this is even more obviously true.

Extensions of T beyond T can be made “at random” (subject to linearity) but
these extensions, even if they might be good for something, cannot be said to have
anything to do with T . On the other hand, every point of T not already in T is
connected to the values of T by a continuity condition at that new domain member,
and there is only one possible way of doing this.

So T is the smallest closed extension of T , and the only one whose values are
all connected by a continuity condition to the values of T itself.

It is important to recognize that if T is closeable there is no reason why either
DT or RT should be closed. Generally, the domain will not be closed and the range
will often not be closed.

In the following, we will consider functions defined on vector subspaces of a
Hilbert space H. We have certain requirements on a function T in the remainder
of this section, and if any these requirements are not met for some T we will be
explicit about that.

• T : DT → H is linear on vector subspace DT of Hilbert space H.

• We require DT to be dense in H.

• We assume the field to be the complex numbers.

• We specifically do not require T to be bounded.
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Generally, an operator satisfying these conditions is called an unbounded
operator on H.

It is an awkward phrase, as we do not exclude the possibility that such an
operator is bounded, but it may not be, and many of the operators from important
applications will not be. Also, the operator will not generally be defined on H, but
only on a proper dense subset.

For each y ∈ H define the function Ay(·) = 〈T (·) , y 〉 : DT → C.

Ay is linear on DT and if it is bounded on DT corresponds to inner product
against a unique member wy ∈ H: viz.

Ay(·) = 〈 · , wy 〉.
Since DT is assumed dense in H, wy is the unique member of H that “works”

for this y, and this uniqueness is one reason to require DT to be dense in H.

We define T †(y) = wy whenever Ay is a bounded functional on DT .

So T † has its own domain, consisting of all those y for which the functional
Ay(·) = 〈T (·) , y 〉 is bounded.

The function T† : DT † → H defined by

〈x , T †(y) 〉 = 〈T (x) , y 〉 ∀x ∈ DT , y ∈ DT †

is called the adjoint of T . Without further conditions we might not have
DT † dense in H, and will provide an example illustrating this later.

If S extends T (that is, if T ⊂ S) there is a relationship between T † and S†.

21.2. Lemma. If S and T are unbounded operators on H

and T ⊂ S then S† ⊂ T †.
Proof. Since DT ⊂ DS and S agrees with T on DT , for each y ∈ H it is harder

for Ay(x) = 〈T (x) , y 〉 ∀x ∈ DT to be bounded than for By(x) = 〈T (x) , y 〉 ∀x ∈
DS to be bounded. So DS† ⊂ DT † .

Now suppose y ∈ DS† . Then

〈x , S†(y) 〉 = 〈S(x) , y 〉 ∀x ∈ DS .

But DT ⊂ DS and S agrees with T on DT so

〈x , S†(y) 〉 = 〈T (x) , y 〉 = Ay(x) ∀x ∈ DT .

Since T †(y) is the unique member of H that represents Ay on DT , we find
S†(y) = T †(y) for y ∈ DS† . �

21.3. Lemma. T † is a closed operator for any unbounded operator T .

Proof. Suppose xi is a sequence in DT † and xi converges to a and T †(xi)
converges to b. So

〈x , T †(xi) 〉 = 〈T (x) , xi 〉 ∀x ∈ DT .

The left side converges to 〈x , b 〉 and the right side to 〈T (x) , a 〉 for all x ∈ DT .

So we have: 〈x , b 〉 = 〈T (x) , a 〉 ∀x ∈ DT .

That means | 〈T (x) , a 〉 | ≤ ‖b‖ ‖x‖ for all x ∈ DT so a ∈ DT † . And the
uniqueness condition mentioned earlier implies that T †(a) = b. �
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21.4. Corollary . T † is continuous exactly when DT † is closed.

Proof. By the last lemma T † is closed so if DT † is closed the closed graph
theorem tells us that T † is continuous.

On the other hand, suppose T † is continuous and xn is a sequence in DT †

converging to a point x. The sequence is bounded and ‖T † ‖ < ∞ so there is a
constant K for which ‖T †(xn) ‖ < K for all n.

For each w ∈ DT we find | 〈T (w) , xn 〉 | = | 〈w , T †(xn) 〉 | ≤ K ‖w ‖. So by
continuity of inner product we have | 〈T (w) , x 〉 | ≤ K ‖w ‖ as well, which puts
x ∈ DT † . �

21.5. Corollary . If T † is bounded below (i.e. T † has continuous inverse)
then RT † is closed.

Proof. Suppose T †(xn) is Cauchy in RT † , converging to point y ∈ H. Since
T † is bounded below xn is Cauchy too, converging to some x ∈ H.

Since T † is closed T †(x) = y ∈ RT † . �

We define J : H×H→ H×H by

J(x, y) = (−y, x).

Note that J is an isometry and J2 = −I where I is the identity operator on
H ×H with product inner product

〈 (a, b) , (x, y) 〉 = 〈 a , x 〉+ 〈 b , y 〉
Because J is an isometry on a complete space, if A ⊂ H × H is closed then

so is J(A). Obviously, two pairs (x, y) and (a, b) are orthogonal in H ×H exactly
when J(x, y) and J(a, b) are orthogonal.

If T is any linear operator and c a nonzero number, the operator c T is normally
regarded as the operator that sends x to c T (x) and so the function c T will contain
the point (x, c T (x) ) for each x ∈ DT . But when T is regarded as a subset of
H ×H, c T means the set of all ( c x, c T (x) ) for x ∈ DT , and by linearity this is
just T .

Keep an eye out for this: in the equation J2(T ) = −T = T it is this second
meaning that is intended. J2(x, y) = (−x,−y) for each (x, y) ∈ T but the sets
J2(T ) and T coincide when T is linear.

21.6. Lemma. When T is a closed operator.

Then J(T †) = T⊥ and H ×H = T ⊕ T⊥ = T ⊕ J(T †)

where these direct sums are orthogonal direct sums.

Proof. Suppose (y, T †(y)) ∈ T †. Then for every x ∈ DT we find

0 = 〈x , T †(y) 〉 − 〈T (x) , y 〉 = 〈 J(x, T (x)) , (y, T †(y)) 〉.
So every member of T † is orthogonal to every member J(T ) and, of course, we then
have every member of J(T †) orthogonal to every member of T as well.

On the other hand, suppose (a, b) ∈ T⊥. Then for every x ∈ DT we have

0 = 〈x , a 〉+ 〈T (x) , b 〉
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which implies that 〈T (·) , b 〉 is bounded on DT so b ∈ DT † . By the uniqueness
condition implied by the density of DT we then have a = −T †(b) and (a, b) ∈ J(T †).

Our conclusion here is that J(T †) = T⊥, and the remaining statements of the
lemma are immediate. �

21.7. Proposition. If T is a closeable operator

then T
†

= T † and DT † is dense in H.

Proof. Since T extends T we know that D
T
† ⊂ DT † and that T

†
agrees with

T † on D
T
† . We will now show that DT † −D

T
† must be empty, so that T

†
= T †.

Suppose y ∈ DT † −D
T
† .

The operator norm of 〈T (·) , y 〉 = 〈T (·) , y 〉 is bounded by some number k on
DT but 〈T (·) , y 〉 is unbounded on DT .

So there must be a point (x, T (x)) ∈ T for which x is in the unit sphere in DT

and | 〈T (x) , y 〉 | > k + 1.

This x cannot be in DT , but there is a sequence xi in the unit sphere in DT

converging to x and for which T (xi) converges to T (x). But then

| 〈T (xi) , y 〉 | ≤ k < k + 1 < | 〈T (x) , y 〉 |

contradicting continuity of inner product.

So no such y can exist and therefore T
†

= T †.

We will now show that in case T is closeable that DT † = D
T
† is dense in H.

We will suppose, without loss, that T itself is closed: that is, T is a closed
subspace of the Hilbert space H ×H.

We now suppose that a ∈ (DT †)
⊥. Our goal here is to conclude that a = 0 so

(DT †)
⊥ = { 0 } and we could conclude that DT † is dense.

We do know that for every y ∈ DT † we have

0 = 〈−T †(y) , 0 〉+ 〈 a , y 〉 = 〈 (0, a) , (−T †(y), y) 〉 = 〈 (0, a) , J(y, T †(y)) 〉.

That means (0, a) ∈ T =
(
J(T †)

)⊥
by Lemma 21.6 (remember, we are assuming

here that T = T ) and since T is a linear function we must have a = 0 as required. �

21.8. Proposition. For unbounded operator T if DT † is dense
then T is closeable and T = T ††.

Proof. Suppose (0, b) ∈ T . So there is a sequence xi of members of DT

converging to 0 for which T (xi) converges to b. Then for each y ∈ DT † we have

〈T (xi) , y 〉 = 〈xi , T †(y) 〉

and the right side converges to 0. If DT † is dense, continuity of inner product
requires b to be 0 and so T is a function and T is closeable.

Recall the notation in the proof of Lemma 21.6 and Proposition 21.7.
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If DT † is dense

H ×H = T † ⊕ (T †)⊥ = T † ⊕ J(T ††) =
(
J(T )

)⊥ ⊕ J(T ††)

where all direct sums are orthogonal direct sums.

So (T )⊥ =
(
T ††
)⊥

and it follows that T = T ††. �

21.9. Exercise. (i) (RT )
⊥

= Ker
(
T †
)
.

(ii) (RT † )
⊥ ⊃ Ker (T ). And if T is closed then (RT † )

⊥
= Ker (T ).

21.10. Corollary . Suppose T is closeable.
T is one-to-one if and only if RT † is dense in H.

Proof. Rephrase Exercise 21.9. �

21.11. Corollary . If DT = H and DT † is dense in H then T is continuous.

Proof. If DT † is dense then T = T ††. Since T is already defined on H we have
T = T so T is closed. Now Corollary 21.4 tells us that T = T †† is continuous. �

21.12. Lemma. Suppose S is one-to-one and RS is dense in H.
So both S and S−1 are unbounded operators.

Then S† is one-to-one and
(
S†
)−1

=
(
S−1

)†
.

Proof. By Exercise 21.9 (i) Ker(S†) is trivial so S† is one-to-one.

(a, b) ∈
(
S†
)−1 ⇐⇒ (b, a) ∈ S† ⇐⇒ S†(b) = a

⇐⇒ ∀x ∈ DS 〈S(x) , b〉 = 〈x , a〉
⇐⇒ ∀y ∈ RS 〈 y , b〉 = 〈S−1(y) , a〉

⇐⇒ b =
(
S−1

)†
(a) ⇐⇒ (a, b) ∈

(
S−1

)†
.

�

21.13. Lemma. RS† = H if and only if S is bounded below.

Proof. Assume RS† = H but S is not bounded below.

Select sequence xn in the domain of S with ‖xn ‖ → ∞ but S(xn) → 0.
Consider the family of continuous functionals φn given by φn(w) = 〈w , xn 〉 for
each n. Note that ‖φn ‖ = ‖xn ‖ → ∞.

Since S† is onto H every w ∈ H is of the form S†(y) for some y ∈ DS† . Then

φn(w) = 〈w , xn 〉 = 〈S†(y) , xn 〉 = 〈 y , S(xn) 〉 → 0.

So the set {φn(w) | n ∈ N } is bounded for every w ∈ H. So by the Banach-
Steinhaus Theorem there is a constant M for which ‖φn ‖ ≤ M for every n. This
contradicts our earlier observation about these operator norms. So S is bounded
below.

We now suppose S is bounded below.
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Then S−1 : RS → DS exists and is continuous.

For every w ∈ H the functional φw(·) = 〈S−1(·) , w 〉 is continuous on RS
and so can be extended to a continuous functional on all of H. Any such can be
represented as inner product against a member z of H, so

〈S−1(x) , w 〉 = 〈x , z 〉 ∀x ∈ RS .

So if x = S(y) we have

〈 y , w 〉 = 〈S(y) , z 〉 ∀y ∈ DS .

That means z ∈ DS† and S†(z) = w. So arbitrarily chosen w is in RS† . �

21.14. Corollary . Suppose S is closed.
RS = H if and only if S† is bounded below.

Proof. Since S is closed, S†† = S and we can apply the last lemma, replacing
S with S†. �

21.15. Theorem. Suppose S is closed.
RS = H and S is bounded below if and only if
RS† = H and S† is bounded below.

Proof. This follows from Lemma 21.13 and its corollary. �

22. Spectrum and Resolvent

For unbounded operator T on H and complex number α, if T − α I has trivial
kernel then it has an inverse function called the resolvent for T and α

Rα(T) = (T − α I )−1 : (T − α I)(DT )→ DT .

T −α I is bounded below if and only if Rα(T ) is bounded on its domain, which
is equivalent to continuity of this inverse map. In particular,

‖ (T − α I)(x) ‖ ≥ c ‖x ‖ ∀x ∈ DT if and only if ‖Rα(y) ‖ ≤ 1

c
‖ y ‖ ∀y ∈ RT−α I ,

where in this statement c is a positive constant.

If Rα(T ) is continuous with dense domain α is called a regular value for
T. The set of all regular values is called the resolvent set, ρ(T), and the set of
complex numbers not in the resolvent set is called the spectrum, σ(T).

Complex numbers can wind up in the spectrum, potentially, for three reasons.

It might be that α is an eigenvalue for T , so T − α I has no inverse at all.
The collection of eigenvalues is called the point spectrum. The point spectrum
is denoted σp(T). There is no distinction made among members of the point
spectrum for which T − α I has dense range and those for which the range is not
dense.8

8Different authors chop the spectrum up in various ways and with various names, and we don’t

propose to analyze all the different vocabularies. Descriptors for pieces of the spectrum include:
discrete, pure point, peripheral, essential, absolutely continuous, singular and compression, in

addition to our vocabulary. The reader of a given text must winkle out the usage in context.



118 CONTENTS

If α is not an eigenvalue and T−α I has dense range but T−α I is not bounded
below, then Rα(T ) still exists as an unbounded operator and these α comprise the
continuous spectrum denoted σc(T).

And members α of the spectrum which are not eigenvalues but for which T−α I
does not have dense range, whether or not T −α I is bounded below, comprise the
residual spectrum denoted σr(T).

As a final piece of vocabulary we gather together all of σp and σc and possibly
some of the members of σr to form the approximate point spectrum denoted
σap(T). This set consists of those α for which there is a sequence xn of unit vectors
in DT with ‖ (T − α I)(xn) ‖ → 0. It may be convenient to find a sequence xn
of vectors in DT for which ‖xn ‖ → ∞ and for which ‖ (T − α I)(xn) ‖ → 0,
or a sequence for which there exists ε > 0 with lim sup ‖xn‖ ≥ ε and ‖ (T −
α I)(xn) ‖ → 0. Either condition can, equivalently, serve to define the approximate
point spectrum.

22.1. Lemma. α ∈ σap(T ) if and only if there is a sequence xn of
unit vectors in DT for which

〈T (xn)− αxn , xn 〉 → 0 and 〈T (xn) , xn 〉 → α and 〈T (xn) , T (xn) 〉 → αα.

Proof. Suppose α ∈ σap. Then there is a sequence xn of unit vectors in DT

with ‖T (xn)− αxn ‖ → 0. But then

| 〈T (xn)− αxn , xn 〉 | ≤ ‖T (xn)− αxn ‖ ‖xn ‖ = ‖T (xn)− αxn ‖ → 0.

So 〈T (xn) , xn 〉 − 〈αxn , xn 〉 = 〈T (xn) , xn 〉 − α→ 0.

Expand 〈T (xn)− αxn , T (xn)− αxn 〉 to obtain the remaining limits and the
converse implication. �

σap(T ) consists of exactly those α for which T − α I is not bounded below.

So σr(T )− σap(T ) corresponds to those complex numbers α for which T − α I
is bounded below but for which RT−α I is not dense.

If T is fixed during a discussion, repeated reference to it might be suppressed to
clean up the notation. So the resolvent Rα exists and is bounded on the resolvent
set ρ, and the spectrum σ = C− ρ can be written as:

the disjoint union σ = σp ∪ σc ∪ σr and as the union σ = σap ∪ σr.

22.2. Lemma. If T is an unbounded operator and T ⊂ S ⊂ T then

σr (S) ⊂ σr(T ) and σap (S) = σap(T ) so σ (S) ⊂ σ(T ).

While S could have more eigenvalues than T , it acquires them
from σc(T ) or σap(T ) ∩ σr(T ).

Also σc (S)− σc (T ) ⊂ σap(T ) ∩ σr(T ).

Any member of the continuous spectrum for S which is
not in σc (T ) must have come from the part of σr (T ) in σap(T ).
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Proof. If (S − α I ) (DS) is not dense then its subset (T − α I ) (DT ) cannot
be, so clearly σr (S) ⊂ σr(T ).

It is also obvious that σap (T ) ⊂ σap(S), since any sequence of unit vectors xn
drawn from DT for which (T −α I )(xn)→ 0 will serve as well to place α ∈ σap(S).

Now suppose xn is a sequence in DS for which (S − α I )(xn) → 0. Since
DS ⊂ DT for each n there is a unit vector yn from DT for which both ‖xn−yn ‖ < 1

n

and ‖S(xn)− T (yn) ‖ < 1
n . But then

0 ≤ | ‖ (S − α I )(xn) ‖ − ‖ (T − α I )(yn) ‖
≤‖S(xn)− αxn − T (yn) + α yn ‖

≤ ‖S(xn)− T (yn) ‖+ α ‖ yn − xn ‖ → 0.

By assumption (S−α I )(xn)→ 0 so (T −α I )(yn)→ 0 as well so α ∈ σap(T ).

The final containment of the lemma is now clear. �

22.3. Lemma. Suppose T is closed and operator T − α I is bounded below for
some number α. This is equivalent to continuity of the resolvent
function for T and α.
Then the range of T − α I is closed. So if it is dense in H

it must be all of H.

Proof. Suppose (T − α I)(xn) → y. Since T − α I is bounded below xn is
Cauchy and so converges to some x ∈ H. That means T (xn) = αxn + y is a
sequence in RT which converges to αx + y, and since T is closed x ∈ DT and
T (x) = αx+ y. So (T − α I)(x) = y is in the range of T − α I. �

22.4. Exercise. For operator T the residual spectrum can be decomposed as

σr = (σr − σap ) ∪ (σr ∩ σap ).

(i) If α ∈ σr−σap, the resolvent Rα is continuous. If α ∈ σr∩σap the resolvent
is not continuous.

(ii) Whenever α ∈ σr the domain of the resolvent Rα, RT−α I , is not dense in
H. In particular

(RT−α I )
⊥

= Ker
(
T † − α I

)
6= { 0 }.

RT−α I is the orthogonal complement of the eigenspace of T † for eigenvalue α,
and this eigenspace is nontrivial.

(iii) If T is closed and α ∈ σr − σap we have RT−α I closed (Lemma 22.3)
and not all of H. And T † − α I is closed so Ker

(
T † − α I

)
is closed and, here,

nontrivial.
H = RT−α I ⊕Ker

(
T † − α I

)
.

Suppose for a moment that T is bounded and defined on all of H. So T † is also
bounded and, we saw that

∥∥T †∥∥ = ‖T‖. The last exercise applies to bounded as

well as unbounded operators so in this case H = RT−α I ⊕Ker
(
T † − α I

)
implies

|α| ≤ ‖T‖ whenever Ker
(
T † − α I

)
6= { 0 }.

And if (T − α I)(xn) → 0 for sequence xn of unit vectors then we must have
|α| ≤ ‖T‖ here too.
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We have the following result, applicable to bounded operators only:

22.5. Proposition. Suppose T is a bounded operator defined on all of H. The
entire spectrum of T is contained on or inside the circle centered at 0 of radius ‖T‖.
Rephrasing, the region outside this circle is in the resolvent set for T .

Proof. The remarks of the previous paragraphs deal with this. �

Stepping back to the more general setting of unbounded operators, we have:

22.6. Lemma. If T is an unbounded operator and T − α I is bounded below
for some number α then T − β I is bounded below for all
β in some disk of positive radius around α.

Specifically, if ‖Rα(T ) ‖ ≤ k and |β − α | < 1
k then

‖Rβ(T ) ‖ ≤
(

1

k
− |β − α |

)−1

.

Proof. If ‖ (T − α I )(x) ‖ ≥ ε ‖x ‖ for some positive ε and number α and
operator T , and if η ∈ C with |η| < ε then

‖ (T − α I − η I )(x) ‖ ≥ ‖ (T − α I )(x) ‖ − ‖ η x ‖
≥ ε ‖x ‖ − |η| ‖x ‖ = (ε− |η|) ‖x ‖.

�

This lemma tells us that complex numbers sufficiently near a member of the
resolvent set are themselves in the resolvent set provided that the domain of the
corresponding resolvent function is dense.

22.7. Lemma. For unbounded operator T , if ρ = ρ(T ) 6= ∅ then T is closed.

Proof. Suppose ρ is nonempty and α ∈ ρ. Suppose further that (xn, T (xn) )
is convergent to a point (a, b) in H ×H. Then Rα is continuous so

Rα(b− αa) = lim
n→∞

Rα(T (xn)− αxn)

= lim
n→∞

(T − α I )−1(T − α I )(xn) = lim
n→∞

xn = a.

Since the range of Rα is DT , this means a ∈ DT . And now

b− αa = (T − α I )(T − α I )−1(b− αa) = (T − α I )(a) = T (a)− αa
So we find that T (a) = b and therefore T is closed. �

Suppose α is in the resolvent set for operator T . We have just found that Rα
has domain H. We know that Rβ is bounded for each β near to α but we don’t
(yet) know if the domain of a nearby Rβ is dense—and therefore also H.

If ‖Rα ‖ = k define for complex β with |β − α | < 1
k the expression

Sβ =

∞∑
n=0

(β − α)nRn+1
α .

The sequence of partial sums Pj =
∑j
n=0(β − α)nRn+1

α is Cauchy in operator
norm and the continuous operators defined on all of H form a Banach space so the
series does converge to a bounded operator defined, as is Rα, on all of H.
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(T − β I )Pj = (T − α I − (β − α) I )Pj = (T − α I )Pj − (β − α)Pj

= (T − α I )

(
j∑

n=0

(β − α)nRn+1
α

)
− (β − α)

(
j∑

n=0

(β − α)nRn+1
α

)

= I +

(
j∑

n=1

(β − α)nRnα

)
−

(
j∑

n=0

(β − α)n+1Rn+1
α

)
= I − (β − α)j+1Rj+1

α .

The last term converges to 0 in operator norm and we conclude that (T−β I )Pj(x)
converges to x for every x ∈ H. Since the range of T−β I is closed (we are assuming
here that ρ(T ) is nonempty so T is closed) that range must be all of H. So the
domain of Rβ is all of H.

A similar argument shows that Pj(T − β I )(x) → x for each x ∈ DT , and it
also converges to Sβ(T − β I )(x).

Putting these two together yields Sβ = Rβ , a series representation for the
resolvent function for β in a neighborhood of any α in the resolvent set.

22.8. Proposition. (i) The resolvent set for any unbounded operator T is open.

(ii) The spectrum of any unbounded operator T is closed.

(iii) The domain of Rα is H (not just dense in H) for every α ∈ ρ(T ).

(iv) If α ∈ ρ(T ) and ‖Rα ‖ = k and β ∈ C with |β−α | < 1
k then β ∈ ρ(T )

and the following series representation is convergent in operator norm:

Rβ =

∞∑
n=0

(β − α)nRn+1
α .

Proof. If ρ(T ) = ∅ there is nothing to prove. The case ρ(T ) 6= ∅ is dealt
with in the preceding remarks. �

When the resolvent set for an operator T is nonempty, there are several iden-
tities involving the resolvent that are useful and we develop them now.

22.9. Proposition. Suppose S and T are unbounded operators with nonempty
resolvent sets. Suppose α, β ∈ ρ(T ) and γ ∈ ρ(T ) ∩ ρ(S).

(i) Operator V commutes with T if and only if Rα(T ) commutes with V .

(ii) Rα(T )−Rβ(T ) = (α− β)Rα(T )Rβ(T ).

(iii) Rγ(T )−Rγ(S) = Rγ(T ) (S − T )Rγ(S) when DS ⊂ DT .

Proof. (i) Suppose V commutes with T . Then both DT and RT are in DV

and for every x ∈ DT we have V (T (x)) = T (V (x)). It is implied by the existence
of the right-hand side that V (x) ∈ DT whenever x ∈ DT .

We need to show that this implies that Rα commutes with V . Since DRα = H

we have both domain and range of V in the domain of Rα. We need to show that
Rα(V (x)) = V (Rα(x)) for all x ∈ DV . We do have the right side of this equation
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defined, since the range of Rα is DT which is contained in DV by assumption. Since
T − α I is onto H there is a y ∈ DT for which T (y)− α y = x. Then

V (Rα(x)) =V (Rα(T (y)− α y)) = V (y) = Rα(T − α I)V (y)

=Rα(T (V (y))− αV (y)) = Rα(V (T (y))− V (α y)) = Rα(V (x)).

So we have shown that if V commutes with T then Rα(T ) commutes with V .

For the converse implication, suppose Rα(V (x)) 6= V (Rα(x)) for some x ∈ DV .
Revisiting the last calculation above in reverse order, it must fail somewhere. There
are only three places in the chain of equalities that this might occur. First, it may
be that T (y) /∈ DV , so V does not commute with T because RT 6⊂ DV . But if
T (y) ∈ DV , it might be that T (V (y)) 6= V (T (y)), and again V does not commute
with T . Finally, it could be that Rα(x) /∈ DV . But the range of Rα is DT so
DT 6⊂ DV and, again, V does not commute with T .

(ii) (T − β I )Rβ(T ) is the identity on H while Rα(T )(T − α I ) is the identity
on DT .

Rα(T )−Rβ(T ) =Rα(T )(T − β I )Rβ(T )−Rα(T )(T − α I )Rβ(T )

=Rα(T )(T − β I − T + α I )Rβ(T ) = (α− β)Rα(T )Rβ(T ).

(iii) Similarly to the calculation above, and using DS ⊂ DT , we have

Rγ(T )−Rγ(S) =Rγ(T )(S − γ I )Rγ(S)−Rγ(T )(T − γ I )Rγ(S)

=Rγ(T )(S − γ I − T + γ I )Rγ(S) = Rγ(T )(S − T )Rγ(S).

�

Item (ii) of this proposition is generally referred to as the First Resolvent
Identity while (iii) is called the Second Resolvent Identity. The First Resol-
vent Identity implies that Rα(T ) and Rβ(T ) commute whenever α, β ∈ ρ(T ).

23. The Spectrum of Unitary or Normal Operators

Suppose U : H→ H is unitary: that is, an isometry onto H. For such operators
we have seen that the inverse isometry U−1 coincides with the adjoint U†.

Suppose λ is complex and |λ | 6= 1.

The function U − λ I is easily seen to have trivial kernel, and the adjoint
(U − λ I )† = U† − λ I = U−1 − λ I also has trivial kernel.

That means the range of U − λ I (and also that of U† − λ I) is dense in H.

Suppose U − λ I is not bounded below. Then there is a sequence xn of unit
vectors for which ‖U(xn)− λxn ‖ → 0. By the BCS inequality both

〈U(xn)− λxn , U(xn) 〉 → 0 and 〈U(xn)− λxn , λ xn 〉 → 0.

But then

〈U(xn)− λxn , U(xn) 〉 = 1− 〈λxn , U(xn) 〉 → 0

so 〈U(xn) , λ xn 〉 → 1.
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And also

〈U(xn)− λxn , λ xn 〉 = 〈U(xn) , λ xn 〉 − 〈λxn , λ xn 〉 → 0

so 〈U(xn) , λ xn 〉 → λλ 6= 1.

This contradiction implies that U − λ I is bounded below, and this applies to
its adjoint U†−λ I as well. So by Corollary 21.14 we have RU−λ I = RU†−λ I = H.

The point is that the resolvent Rλ exists and is continuous with domain H

whenever |λ | 6= 1.

We knew from Proposition 22.5 that no point of the spectrum could be strictly
outside the unit circle S1 of C. We now know that points in the spectrum cannot
be strictly inside this circle either.

So the spectrum is confined to the unit circle itself.

If bn is an enumeration of a countable orthonormal basis of H and rn is any
countable set of real numbers then the function

U : H→ H given by U

( ∞∑
n=1

xn bn

)
=

∞∑
n=1

ei rn xn bn

is easily seen to be an isometry onto H, and each ei rn is an eigenvalue of U . By
choosing the rn properly, we see that the spectrum of a unitary operator on an
infinite dimensional separable Hilbert space can be any closed subset of the unit
circle in C.

If H has an uncountable orthonormal basis A, that basis can be written as a
disjoint union of countable subsets Sα, α ∈ B for an uncountable index set B, and
if we define U as above on each HSα and extend by linearity to H we have the same
result for Hilbert spaces of uncountable dimension too.

23.1. Proposition. If U is a unitary operator on complex Hilbert space H then
the spectrum of U is a compact subset of the unit circle in C. Any compact subset
of the unit circle in C is the spectrum of some unitary operator on any infinite
dimensional Hilbert space.

Proof. The proof can be found above. �

For normal operator N and any complex λ the operator N − λ I commutes
with its adjoint N† − λ I (i.e. these operators are also normal) so they have the
same range and the same kernel. This shared kernel is the orthogonal complement
of shared range.

It follows that λ is an eigenvalue for N exactly when λ is an eigenvalue for N†,
and the respective eigenspaces coincide.

Suppose that xn is a sequence of unit vectors in H and ‖ (N − λ I)(xn) ‖ → 0.
In other words, λ is in the approximate point spectrum of N . So

〈 (N − λ I)(xn) , (N − λ I)(xn) 〉 = 〈 (N† − λ I)(xn) , (N† − λ I)(xn) 〉 → 0

which means λ ∈ σap
(
N†
)
.

Moreover, for any normal operator the closure of its range is the orthogonal
complement of its kernel. So if the range RN−λ I is not dense in H then λ must be
an eigenvalue for N .
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So normal operators, including unitary operators, have no residual spectrum.

This leads to the following proposition for normal operators, which applies to
unitary operators as a special case.

23.2. Proposition. Suppose operator N is normal on complex Hilbert H.

(i) Every point strictly outside the circle centered at 0 of radius ‖N‖ is
in the resolvent set for N .

(ii) σr(N) = ∅.

(iii) λ ∈ σp(N) exactly when λ ∈ σp
(
N†
)
. For these λ,

Ker(N − λ I) = Ker
(
N† − λ I

)
6= { 0 } and RN−λ I = RN†−λ I

and RN−λ I = Ker(N − λ I)⊥ 6= H.

(iv) λ ∈ σc(N) exactly when λ ∈ σc
(
N†
)
.

Proof. The proof is contained in the remarks above and Proposition 22.5. �

23.3. Corollary . Suppose operator N is normal on complex Hilbert H.
(i) σ(N) = σp(N) ∪ σc(N).
(ii) RN−λ I = H for every λ ∈ σc(N).

Proof. �

We have shown that the spectrum of any linear operator, bounded or not, is
closed. We have not shown it to be nonempty. That it is nonempty for bounded
operators is true, but the proof uses techniques we will not discuss till a bit later.
See Proposition ??.

24. Symmetric Operators

In this section we work with operators defined on a dense vector subspace of a
complex Hilbert space H unless explicitly stated to the contrary.

We call an unbounded operator T as above symmetric if T ⊂ T †: in other
words, if T † is an extension of T . Linear T is symmetric exactly when T †(x) is
defined for every x ∈ DT and T (x) = T †(x).

So T symmetric means that

〈T (x) , y 〉 = 〈x , T (y) 〉 ∀x, y ∈ DT .

The argument of Lemma 18.1 needs no modification for unbounded operators.

T is symmetric⇔ 〈T (x) , x 〉 = 〈x , T (x) 〉 ∀x ∈ DT

and then of course we have the equivalent condition

T is symmetric⇔ 〈T (x) , x 〉 is real ∀x ∈ DT .

24.1. Proposition. If T is symmetric, the approximate point spectrum
σap of T is contained in R.

So if α is non-real and in the spectrum of T then the
resolvent function Rα is continuous but fails to have dense
domain: RT−α I cannot be dense in H for any such α.
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Proof. Suppose α ∈ σap. Then there is a sequence xn of unit vectors in DT

with ‖T (xn)− αxn ‖ → 0. By Lemma 22.1 we have 〈T (xn) , xn 〉 → α.

Symmetry now requires α to be real. �

See Proposition 24.4 for the next step in this direction.

Since T † is always closed and T † extends symmetric T , every symmetric oper-
ator is closeable.

If symmetric T is bounded on DT then it could be extended in a unique way
to a continuous operator T defined on all of H. In that case, since T † is closed we

have T † = T and then T = T †† = T
†

so T is its own adjoint. This is the ordinary
adjoint for bounded operators, and the symmetry condition just means that this
unique extension of T to all of H is self-adjoint.

Bounded or not, the domain of T † for symmetric T will often be larger than
the domain of T .

24.2. Lemma. (i) A symmetric operator is always closeable.
(ii) If T is symmetric and DT = H (so T = T †)

then T is bounded.

Proof. See the preceding remarks for (i). Case (ii) follows Corollary 21.11 or
from the preceding remarks and the closed graph theorem directly. �

Item (ii) of Lemma 24.2 is called The Hellinger-Toeplitz Theorem.

So if we know that symmetric T is not bounded, then we know that the domain
of T † cannot be all of H: the Hellinger-Toeplitz Theorem tells us there is no getting
away (in cases of crucial importance) from consideration of operators defined on
only part of H.

24.3. Lemma. Suppose S is symmetric and one-to-one.
If RS = DS−1 is dense in H then S−1 is symmetric too.

Proof. The domain of S−1 is RS .

Suppose g = S(x) and f = S(y) are in DS−1 . Then

〈S−1(g) , f 〉 = 〈x , S(y) 〉 = 〈S(x) , y 〉 = 〈 g , S−1(f) 〉.

�

A symmetric T might have the same domain as T †, and it is only to these
unbounded operators that some of our most important theorems apply.

If T = T † we say that the unbounded operator T is self-adjoint. Self-adjoint
operators are, of course, closed. And if a self-adjoint operator is bounded its domain
must be all of H.

If a self-adjoint operator (like any symmetric operator) has any eigenvalues at
all they must be real.
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24.4. Proposition. Suppose T is self-adjoint.
If RT−α I = (T − α I) (DT ) is not dense in H

then α is a real eigenvalue of T .
Self-adjoint operators have no residual spectrum.

Proof. Suppose A = RT−α I is not dense in H. Select nonzero x ∈ A⊥.

So ∀w ∈ DT we have (since T is self-adjoint)

0 = 〈 (T − α I)(w) , x 〉 = 〈T (w) , x 〉 − 〈αw , x 〉.

So 〈T (w) , x 〉 = 〈αw , x 〉 for all ∀w ∈ DT , so the functional 〈T ( · ) , x 〉 is
bounded on DT . That means x is in the domain of T †, assumed to be equal to T .
We can now carry the calculation above a step further:

0 = 〈 (T − α I)(w) , x 〉 = 〈T (w) , x 〉 − 〈αw , x 〉 = 〈w , T (x) 〉 − 〈w , αx 〉.

Since DT is dense in H this means T (x) = αx. But T can have only real
eigenvalues so α is real. �

24.5. Corollary . Suppose T is self-adjoint.
The spectrum σ of T is contained in R and
σ = σp ∪ σc.

Proof. By Proposition 24.1 the resolvent function is continuous off the real
numbers for every symmetric T . For self-adjoint operators, which are closed, Propo-
sition 24.4 and Lemma 22.3 then imply that the domains of these resolvent functions
are not only dense but actually all of H. So every non-real complex number is in
the resolvent set.

By Proposition 24.1 the approximate point spectrum is contained in R and by
Proposition 24.4 there is no residual spectrum, so there is no part of σap outside
σp ∪ σc. �

Suppose S and T are symmetric operators and S ⊂ S† ⊂ T ⊂ T †. Then

T †† = T ⊂ T † ⊂ S†† = S ⊂ S†.

In other words T = S = S† and S is, therefore, self-adjoint.

We can draw conclusions from this.

First, there could be no proper self-adjoint extension of S† for symmetric S.

More, S† can not even have a nontrivial symmetric extension (that is, a sym-
metric extension bigger than itself) and if S† is symmetric it must be self-adjoint.

Looking at this from the “T standpoint,” if T is any symmetric operator, T
cannot be a nontrivial extension of the adjoint of any symmetric operator.

So not only can there be no nontrivial “chains” of self-adjoint operators, there
cannot even be nontrivial containment chains of symmetric operators, where the
adjoint of one is contained in the closure of the next.

This implies, for instance, that different self-adjoint extensions of symmetric
S, should there be more than one, cannot be compatible in the sense that neither
could be an extension of the other.
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On the other hand, suppose S ⊂ T ⊂ T †. Then T †† = T ⊂ T † ⊂ S† so

S ⊂ T ⊂ T † ⊂ S†.
We find that if S is a restriction of any symmetric operator, then S is symmetric

too and any possible self-adjoint extension of S must lie between S and S†.

In the hunt for T for which T = T †, increasing the size of DT decreases the
size of DT † and there might be no way to “meet in the middle.” Some symmetric
operators have no self-adjoint extension at all. Later, we examine a condition that
will guarantee such extensions.

We say that unbounded T is essentially self-adjoint if T = T †. By the
discussion above this implies that T is the only self-adjoint extension of T . And
there can there be no nontrivial self-adjoint restrictions of T .

In the physics literature, the term Hermitian operator may refer to any of
the operators we describe as symmetric, self-adjoint and essentially self-adjoint,
depending on the predilections of the author. Busy physicists sometimes prefer not
to think about the distinction unless absolutely necessary.

24.6. Exercise. Two unitarily equivalent unbounded operators are both self-
adjoint or both not.

25. Counterexamples: Self-Adjointness

Here are a few very simple examples/counterexamples of the phenomena under
consideration.

First we examine an operator that is not closeable and an adjoint with-
out dense domain .

Define T on DT = C([0, 1]) by T (ψ) = ψ(0), the constant function. So T is an
unbounded operator on the Hilbert space H = L2([0, 1]).

Strictly speaking, of course, we are saying that members of DT are those equiva-
lence classes of measurable functions on [0, 1] that differ from a continuous function
on a null set. There is at most one continuous function in any such class. T uses
that member in its definition and returns the class of the relevant constant function.

g ∈ DT † provided

〈T (ψ) , g 〉 =

∫ 1

0

g(x)ψ(0) dx = ψ(0)

∫ 1

0

g(x) dx

is a bounded operator. But there is no limit to how large ψ(0) can be among ψ

of norm 1 in the Hilbert space, so we must have
∫ 1

0
g(x) dx = 0. In other words,

DT † = 1⊥ which is not dense in H.

And then for g ∈ 1⊥ we have

〈ψ , T †(g), 〉 = 〈T (ψ) , g 〉 = ψ(0)

∫ 1

0

g(x) dx = 0.

So T † is the zero operator on 1⊥.
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Next, we look at an example of an operator that is symmetric but not
essentially self-adjoint.

Consider the operator S = i d
dx defined on DS , which consists of those members

f ∈ C1([0, 1]) with f(0) = f(1) = 0. So S is an unbounded operator on the Hilbert
space H = L2([0, 1]). S is symmetric.

〈S(g) , f 〉 = 〈 g , S(f) 〉 ∀f, g ∈ DS

as shown by the calculation∫ 1

0

(i g′(x)) f(x) dx = i g(x) f(x)

∣∣∣∣1
0

−
∫ 1

0

i g(x) f ′(x) dx

= g(1)f(1)− g(0)f(0) +

∫ 1

0

g(x) ( i f ′(x) ) dx.

Let Et consist of those members f of C1([0, 1]) for which f(1) = eitf(0) for a
fixed real t. And let At be the operator with the same formula as S but defined on
Et. For these functions

g(1)f(1)− g(0)f(0) = eitg(0)e−itf(0)− g(0)f(0) = 0

so the At are symmetric by the same calculation used above for S and are extensions
of S. Note that the At are incompatible except for values of t for which they are
equal: they cannot have a shared self-adjoint extension.

The next example features a symmetric operator whose adjoint is not
symmetric, and therefore (of course) not self-adjoint.

The set C = C∞c ( (0, 1) ) consists of those infinitely differentiable functions on
(0, 1) which are 0 off some compact subinterval of (0, 1).

C may be considered as a dense subset of L2([0, 1]).

We define operator TC by the formula − d2

dx2 applied to members of C.

Suppose f and g are in C. Then since members of C and all their derivatives
are 0 on the boundary of [0, 1]

〈TC(f) , g 〉 =

∫ 1

0

−f ′′(x) g(x) dx =

∫ 1

0

f ′(x) g′(x) dx

=

∫ 1

0

−f(x) g′′(x) dx = 〈 f , TC(g) 〉.

So TC is symmetric.

For any f ∈ C we have

〈TC(f) , 1 〉 =

∫ 1

0

−f ′′(x) dx = −f ′(x)

∣∣∣∣1
0

= −f ′(1) + f ′(0) = 0.

So this functional is (very) bounded and 1 ∈ DT †C
and T †C(1) = 0.

We have discovered that (1, 0) ∈ T †C .

Note that for any twice differentiable f and x ∈ [0, 1] we have∣∣∣∣∫ x

0

∫ t

0

f ′′(s) ds dt

∣∣∣∣ =

∣∣∣∣∫ x

0

f ′(t)− f ′(0) dt

∣∣∣∣ = |f(x)− x f ′(0)− f(0)| .
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In case f ∈ C we have then

| f(x) | =
∣∣∣∣∫ x

0

∫ t

0

f ′′(s) ds dt

∣∣∣∣ ≤ ∫ x

0

∫ t

0

| f ′′(s) | ds dt ≤
∫ 1

0

∫ 1

0

| f ′′(s) | ds dt

=

∫ 1

0

| f ′′(s) | ds ≤

√∫ 1

0

| f ′′(s) |2 ds = ‖TC(f) ‖

where the last inequality is Jensen’s inequality applied to the squaring function.

So if fn is a sequence in C for which ‖TC(fn) ‖ converges to 0 then the sequence
fn cannot converge to 1, and that means (1, 0) /∈ TC .

The domain of the closed operator T †C is therefore strictly larger than the

domain of T ††C = TC so T †C is not symmetric.

And so TC , which is symmetric, is not self-adjoint.

26. The Cayley and Inverse Cayley Transforms

The next few results rely only on the symmetry condition 〈T (x) , y 〉 =
〈x , T (y) 〉 for members x, y ∈ DT and not the density of DT in H, so we will
assume T possesses the former property and not necessarily the latter.

If T has the symmetry condition it can have no complex eigenvalues. So if
complex number α is not real the equation T (g) = α g has no solution except
g = 0. This implies that T − α I is one-to-one from its domain DT onto the set
RT−α I = (T − α I) (DT ), where I is the identity operator on H.

So the resolvent function Rα = (T − α I )−1 is defined on the set RT−α I .

A quick calculation shows that, since T has the symmetry condition, for any
complex α and x, y ∈ DT

〈 (T − α I )(x) , y 〉 = 〈x , (T − α I )(y) 〉.

For T with the symmetry condition and non-real number α define Cα by

Cα = (T − α I )(T − α I )−1

on the vector subspace DCα = (T − α I )(DT ) = RT−α I of H.

The image of Cα is RCα = Cα (DCα) = (T − α I )(DT ) = RT−α I .

Note that Cα ◦ Cα is the identity map on DCα .

It may be that DCα fails to be dense in H, which happens for symmetric T
exactly when the number α is in the residual spectrum σr.

But dense domain or not, Cα is an isometry on its domain, as verified in the
following calculation.

If f = (T − α I )(u) and g = (T − α I )(v) for u, v ∈ DT expand and compare
the right sides (using the symmetry condition) to show equality of the left sides.

〈Cα(f) , Cα(g) 〉 = 〈 (T − α I )(u) , (T − α I )(v) 〉
〈 f , g 〉 = 〈 (T − α I )(u) , (T − α I )(v) 〉.
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The case of α = −i is singled out and called the Cayley transform of T with
the symmetry condition. The Cayley transform

C(T) = (T − i I ) (T + i I )−1

of T is an isometry from (T + i I )(DT ) = RT+i I onto (T − i I )(DT ) = RT−i I .

Suppose (T+i I )(x) is a generic member of the domain of C(T ). So this vector
is also in the domain of C(T )− I, and

(C(T )− I )(T + i I )(x) = C(T )(T + i I )(x)− (T + i I )(x)

= (T − i I )(x)− (T + i I )(x) = −2 i x.

So the range of C(T )− I is DT , and since T − i I is one-to-one so is C(T )− I.

The Cayley transform of an operator as above is not just any isometry. It is
an isometry that moves every domain member except the zero vector.

The domain of (C(T )−I)−1 is DT , and (C(T )−I)−1 sends x to i
2 (T + i I )(x).

Now we calculate

(C(T ) + I )(T + i I )(x) = C(T )(T + i I )(x) + (T + i I )(x)

= (T − i I )(x) + (T + i I )(x) = 2T (x).

Putting these two calculations together yields

−i (C(T ) + I )(C(T )− I)−1(x) = T (x) ∀x ∈ DT .

The operation K defined by

K(A) = −i (A+ I )(A− I)−1

is called the inverse Cayley transform, and it is defined for any isometry A
which moves every domain member except 0 , required so that A − I is one-to-one
and (A− I)−1 is defined.

Let’s suppose A : DA → RA is any isometry of this type on H.

Let T = K(A). So T : RA−I → RA+I .

If x, y ∈ RA−I then x = (A − I)(a) and y = (A − I)(b) for certain a, b ∈ DA.
But then

〈T (x) , y 〉 = 〈−i (A+ I)(a) , (A− I)(b) 〉
= − i ( 〈A(a) , A(b) 〉 − 〈A(a) , b 〉+ 〈 a , A(b) 〉 − 〈 a , b 〉 )

and because A is an isometry this is i (〈A(a) , b 〉 − 〈 a , A(b) 〉 ).

Similarly,

〈x , T (y) 〉 = 〈 (A− I)(a) , −i (A+ I)(b) 〉
= i ( 〈A(a) , A(b) 〉+ 〈A(a) , b 〉 − 〈 a , A(b) 〉 − 〈 a , b 〉 )

and this simplifies to the same number, so T has the symmetry condition.

If T = K(A) is densely defined we now know that T is symmetric, though none
of the calculations involving these transforms so far used this density. Dense domain
or not, the symmetry condition implies that T + i I and T − i I are one-to-one on
their common domain DT = RA−I .
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Now suppose x ∈ DA so (A− I)(x) is a generic member of DK(A).

Then (K(A) + i I )(A− I)(x) = K(A)(A− I)(x) + i (A− I)(x)

= − i (A+ I)(x) + i (A− I)(x) = −2i x.

So K(A) + i I is onto DA and x = i
2 (K(A) + i I )(A− I)(x). Now we have

C(K(A))(x) = (K(A) − i I )(K(A) + i I )−1(x)

= (K(A) − i I )(K(A) + i I )−1 i

2
(K(A) + i I )(A− I)(x)

=
i

2
(K(A) − i I )(A− I)(x) =

i

2
(−i (A+ I)(x) − i (A− I)(x) )

=A(x).

Let’s recapitulate.

1 is not an eigenvalue of any isometry produced by applying the Cayley trans-
form to any operator that satisfies the symmetry condition; that is, the isometry
thereby produced moves every member of its domain except 0. The inverse Cayley
transform can be applied to any isometry from one subspace of H to another, so
long as 1 is not an eigenvalue of this isometry. The operator produced satisfies the
symmetry condition, and will be a symmetric operator if it has dense domain.

26.1. Proposition. If T has the symmetry condition then the Cayley transform
C(T ) of T is an isometry with domain DC(T ) = (T+i I )(DT ) = RT+i I onto range
RC(T ) = (T − i I )(DT ) = RT−i I . This isometry moves every domain member
except 0, and K(C(T )) = T .

If A is any isometry extending C(T ) (which must, perforce, move every domain
member except 0: see Exercise 27.4) then the inverse Cayley transform K(A) of A
is an extension of T with the symmetry condition and C(K(A)) = A.

Proof. Examine the remarks above. �

26.2. Lemma. Suppose T is symmetric.
T is closed exactly when RT+i I is closed.
So T is closed exactly when its Cayley transform has closed domain.

Proof. For x ∈ DT note that

〈 (T + i I )(x) , (T + i I )(x) 〉
= 〈T (x) , T (x) 〉+ i 〈x , T (x) 〉 − i 〈T (x) , x 〉+ i(−i) 〈x , x 〉.

By symmetry of T the middle terms cancel and we have, for every x ∈ DT ,

‖ (T + i I )(x) ‖2 = ‖T (x) ‖2 + ‖x ‖2.
Also by symmetry, T + i I is one-to-one. So the map that sends (T + i I )(x) ∈

RT+i I to (x, T (x)) ∈ T is an isometry onto T with norm induced from H×H. The
two sets are closed or not together. �

26.3. Corollary . Suppose T is symmetric and λ is
a complex number with nonzero imaginary part.
T is closed exactly when RT+λ I is closed.



132 CONTENTS

Proof. Suppose T is unbounded and λ = r + s i is a complex number with
nonzero imaginary part s. Then T is closed and symmetric exactly when 1

s T + r
s I

is closed and symmetric, which happens exactly when R 1
s T+ r

s I+i I
= RT+λ I is

closed by Lemma 26.2. �

26.4. Lemma. If T is symmetric then RT−i I = RT−i I .

Proof. Expanding ‖ (T−i I)(f) ‖2 shows that ‖ (T−i I)(f) ‖ ≥ ‖ f ‖ ∀f ∈ DT .
That is, T − i I is bounded below by 1. So if (T − i I)(hn) = T (hn) − i hn ∈
(T − i I)(DT ) for hn ∈ DT is a Cauchy sequence then hn must be Cauchy too
and this implies T (hn) is Cauchy so (hn, T (hn)) converges to a point (f, T (f)) ∈
T . So (T − i I)(hn) converges to (T − i I)(f) ∈ (T − i I)(DT ), and we find that

(T − i I)(DT ) ⊂ (T − i I)(DT ).

The inclusion (T − i I)(DT ) ⊂ (T − i I)(DT ) is similar but easier. �

26.5. Corollary . Suppose T is symmetric and λ is
a complex number with nonzero imaginary part.

Then RT−λ I = RT−λ I .

Proof. Suppose T is symmetric and λ = r + s i is a complex number with
nonzero imaginary part s. Then 1

s T −
r
s I is symmetric. By Lemma 26.4 we have

RT−λ I = R 1
s T−

r
s I−i I

= R 1
s T−

r
s I−i I

= RT−λ I .

�

26.6. Lemma. Test for Self-Adjointness
Symmetric T is self-adjoint exactly when
its Cayley transform C(T ) is unitary.

Proof. If T is self-adjoint then it is closed. By Lemma 26.2 so are RT+i I

and RT−i I . Also, R⊥T+i I = Ker(T † − i I) = Ker(T − i I) = { 0 } since symmetric
operators cannot have non-real eigenvalues. So RT+i I is dense in H and so is H.
RT−i I is found to be H by similar means. Since C(T ) is an isometry onto H it is
unitary.

On the other hand suppose C(T ) is unitary. That means RT+i I = RT−i I = H.
Suppose that x ∈ DT and y ∈ DT † and select w ∈ DT so that (T − i I)(w) =
(T † − i I)(y). Now we have

〈 (T + i I)(x) , y 〉 = 〈x , (T † − i I)(y) 〉 = 〈x , (T − i I)(w) 〉

= 〈 (T † + i I)(x) , w 〉 = 〈 (T + i I)(x) , w 〉.

Since RT+i I = H this means y = w, so y ∈ DT ; so DT † ⊂ DT and T = T †. �

Suppose T is self-adjoint with associated unitary operator A on H. Then

A = C(T ) = (T − i I)(T + i I)−1 : RT+i I = H→ RT−i I = H

while T itself is given by

T = K(A) = −i (A+ I)(A− I)−1 : RA−I → RA+I .
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Let S1 denote the unit circle in C. Then if λ = a + bi ∈ S1 − {1} and p ∈ R
define

m(λ) = −i λ+ 1

λ− 1
=

b

a− 1
and g(p) =

p− i
p+ i

=
p2 − 1

p2 + 1
− 2p

p2 + 1
i.

Obviously m and g are related to the inverse Cayley and Cayley transforms,
respectively. And m(g(p)) = p and g(m(λ)) = λ.

Suppose p is an eigenvalue for T with eigenvector x and define the vector y to
be the nonzero multiple y = (T + i I)x = (p+ i)x. Then

A(y) = (T − i I)(T + i I)−1y = (T − i I)x = (p− i)x =
p− i
p+ i

y.

In other words the vector y (and also, of course, x) is an eigenvector for A for
eigenvalue g(p).

If λ is an eigenvalue for A with eigenvector x then, since λ 6= 1 for Cayley
transforms, define the vector y to be the nonzero multiple y = (A−I)x = (λ−1)x.
Then

T (y) = −i (A+ I)(A− I)−1y = −i (A+ I)x = (λ+ 1)x = −i λ+ 1

λ− 1
y.

In other words the vectors y and x are eigenvectors for T for eigenvalue m(λ).
We see, for example, that Ker(T ) is the eigenspace for A for eigenvalue −1.

Similar results hold for elements of the continuous spectrum of these operators.

Suppose xn is a sequence of unit vectors for which (T −p I)(xn)→ 0 where the
xn are not eigenvectors for p and T . The real number p still might be an eigenvalue,
but if not it is in the continuous spectrum of T . In any case, T (xn) = p xn + zn
where zn → 0 and this sequence demonstrates that T − p I is not bounded below
so the resolvent function for T at p is not continuous.

Since T + i I is bounded below (its inverse is continuous) it follows that there is
a positive number a for which a ≤ ‖yn‖, where yn = (T+i I)xn = p xn+i xn+zn =
(p+ i)xn + zn for all n.

Ayn = (T − i I)xn = T xn − i xn = (p xn + zn)− i xn = (p− i)xn + zn

= (p− i) yn − zn
p+ i

+ zn =
p− i
p+ i

yn −
p− i
p+ i

zn + zn.

This implies that
(
A− p−i

p+i I
)
yn → 0 and since ‖yn‖ is bounded below by

positive a for every n

(A− g(p) I)
yn
‖yn‖

→ 0.

So the sequence yn/‖yn‖ of unit vectors demonstrates that A − g(p) I is not
bounded below so the resolvent function for A at g(p) is not continuous.

Now suppose λ 6= 1 and xn is a sequence of unit vectors for which (A−λ I)xn →
0. So Axn = λxn + zn where zn → 0. Define, for each n, the vector yn by

yn = (A− I)xn = λxn − xn + z + n = (λ− 1)xn + zn.



134 CONTENTS

Since λ 6= 1 we may assume (by shifting xn to start later in the sequence, if
necessary, so that zn is small enough) that ‖yn‖ ≥ a for all n and some positive a.

T yn = − i (A+ I)xn = −i Axn − i xn = −i (λxn + zn)− i xn = −i (λ+ 1)xn − i zn

= − i (λ+ 1)
yn − zn
λ− 1

− i zn = −i λ+ 1

λ− 1
yn + i

λ+ 1

λ− 1
zn − i zn.

As above, we have
(
T + i λ+1

λ−1 I
)
yn = (T −m(λ) I) yn → 0. So the resolvent

function for T fails to be continuous at m(λ).

It remains to consider the possibility that 1 ∈ σ(A). It is not possible for 1
to be an eigenvalue for A, but it may be part of the continuous spectrum. If it is,
select sequence xn of unit vectors demonstrating this: yn = (A − I)xn → 0. But
then

T yn = −i (A+ I)xn = −i Axn − i xn = −i yn − 2i xn.

Since yn → 0 the magnitude of the far right side converges to 2, which shows
that T is unbounded.

On the other hand, if we assume T to be unbounded, with unit vectors xn and
‖T (xn)‖ → ∞ chosen so that ‖T (xn)‖ > 2 for all n. Define yn = (T + i I)xn as
before. In this case ‖yn‖ → ∞. Let wn = yn/‖yn‖.

(A− I)wn =
Ayn − yn
‖yn‖

=
(T − i I)xn − (T + i I)xn

‖yn‖
=
−2i xn
‖yn‖

→ 0.

So 1 is in the continuous spectrum of A. We note that since the spectrum
of A is closed, if 1 is not in the spectrum of A there must be an “interval” on
the unit circle in C around 1 disjoint from that spectrum, and the points of the
spectrum nearest to 1 provide upper and lower bounds (through the function m)
of the interval in R within which the spectrum of T is contained. In that case the
domain of the resolvent function R1(A) is all of H, and that is the domain of T .

Let’s recapitulate some of the facts we have accumulated.

26.7. Theorem. Suppose T is self-adjoint with Cayley transform A. Then
σ(T ) ⊂ R and σ(A) ⊂ S1.

Eigenvectors for T and A coincide, with eigenvalues related by the functions g
and m above. Generally, g(σ(T ) ) = σ(A)− { 1 } and m(σ(A)− { 1 } ) = σ(T ).

1 may be in the continuous spectrum of A but 1 cannot be an eigenvalue for A.
T is bounded exactly when 1 /∈ σ(A).

If T is bounded and λ− and λ+ are those points in the spectrum of A nearest to
1 with non-positive and non-negative complex parts, respectively, then the spectrum
of T is contained in the interval [m(λ+), m(λ−)].

Proof. Everything but the last remark has been dealt with in the comments
preceding the theorem. Consider m(a+ b i) = b

1−a defined on S1 − { 1 }. m can be

split into two functions: the part with negative b = −
√

1− a2 given by

f : [−1, 1)→ (−∞, 0], f(a) = −
√

1 + a

1− a
, f ′ is negative on (−1, 1)
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and the part with positive b =
√

1− a2 given by

h : [−1, 1)→ [0,∞), h(a) =

√
1 + a

1− a
, h′ is positive on (−1, 1).

The comment about the spectrum of T is now immediate. �

27. When is an Operator Essentially Self-Adjoint?

We will now delve into various means by which we can show a symmetric
operator to be self-adjoint, or essentially self-adjoint.

We deal with the easiest case first.

27.1. Proposition. Test for Essential Self-Adjointness.
Suppose T is a symmetric operator and there is a
real number α for which RT−α I = H. Then T is self-adjoint.

Proof. Our goal below is to show that DT † ⊂ DT and, since the other con-

tainment is implied by the symmetry of T , we will have T = T †.

Assume the conditions on T and α. If y ∈ DT † then since RT−α I = H we can

find w ∈ DT for which (T − α I)(w) = (T † − α I)(y). Then ∀x ∈ DT we have

〈 (T − α I)(x) , y 〉 = 〈x , (T † − α I)(y) 〉
= 〈x , (T − α I)(w) 〉 = 〈 (T − α I)(x) , w 〉.

Since T − α I is onto H this means y = w: that is, y ∈ DT . �

We define the deficiency subspaces D− and D+ by

D+ = (RT−i I )
⊥

= Ker
(
T † + i I

)
and D− = (RT+i I )

⊥
= Ker

(
T † − i I

)
.

We will eschew a cumbersome but more precise reference to T , as in D−(T )
and D+(T ), whenever possible.

The deficiency indices n− and n+ are the Hilbert dimensions of the respec-
tive deficiency subspaces.

If T is closed and symmetric then the following are orthogonal direct sums:

H = RT+i I ⊕D− and H = RT−i I ⊕D+.

The Cayley transform C(T ) : RT+i I → RT−i I is an isometry onto RT−i I which
moves every nonzero member of its domain, so an isometry from D− onto D+ which
moves every nonzero member of D−, if there are any, could be combined with C(T )
to produce a unitary operator U on H extending C(T ). Then K(U) is a self-adjoint
extension of T .
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27.2. Theorem. Test for the Existence of a Self-Adjoint Extension.
If T is symmetric then T has a self-adjoint extension if and only if the deficiency
indices n+ and n− of T are equal. If D+ = D− = { 0 } then T itself is self-adjoint.
Otherwise, the distinct self-adjoint extensions of T correspond to those isometries
from D− onto D+ which leave no point of D− except 0 unmoved. The association
is through the inverse Cayley transform.

Proof. The argument follows from the preceding discussions. �

A conjugation on a Hilbert space H is a conjugate linear isometry whose
square is the identity. The obvious example is complex conjugation applied to a
function space such as L2([0, 1]).

By an application of the polarization identity, we see that whenever Q is a
conjugation

〈x, y 〉 = 〈Q(y), Q(x) 〉.

27.3. Theorem. Test for the Existence of a Self-Adjoint Extension.
Suppose T is symmetric on complex Hilbert space H and there is a conjugation Q
on H for which Q(DT ) ⊂ DT and with the property that Q commutes with T : that
is, T ◦Q(x) = Q ◦ T (x)∀x ∈ DT . Then T has a self-adjoint extension.

Proof. Since DT = Q(Q(DT ) ) and Q(DT ) ⊂ D(T ) we have Q(DT ) = DT .

If x is any member of (RT−i I)
⊥

= D+ and y is any member of DT then

0 = 〈 (T − i I)(y), x 〉 = 〈Q(x), Q ◦ ( (T − i I)(y) ) 〉 = 〈Q(x), (T + i I)(Q(y)) 〉

Coupled with the remark of the last line we have Q(x) ∈ (RT+i I)
⊥

= D−.

Then Q restricted to D+ is an invertible conjugate linear isometry onto D−,
and so the deficiency indices for T coincide. �

27.4. Exercise. If g ∈ D−∩D+ then g ∈ (DT )
⊥∩(RT )

⊥
. So if T is symmetric

(i.e. it satisfies the symmetry condition and has dense domain) any isometry of
D− onto D+ whatsoever satisfies the condition in Theorem 27.2, since there are no
shared points to leave unmoved except 0.

Test for Essential Self-Adjointness So symmetric T is essentially self-
adjoint if and only if the deficiency indices are both 0. If the indices are both 1
there is a “circle” of extensions of T : if a and b are unit vectors and D− = C a
and D+ = C b then the linear map sending a to ei tb is an isometry for each fixed
real t. If the indices are equal but exceed 1 the collection of isometries of D− onto
D+ is larger, and each one corresponds to a distinct self-adjoint extension of T .

We now reprise some of the discussions specialized above for Cayley transforms
to get (in some ways) a slightly more general result.

27.5. Theorem. Test for Essential Self-Adjointness
If T is symmetric and both DCα and DCα are dense in H for some
non-real complex number α then T is the unique self-adjoint extension of T .
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Proof. Suppose first that symmetric T is closed and both domains are dense
as indicated in the statement of this theorem.

Suppose also that fi = (T−α I )(gi) = T (gi)−α gi is a Cauchy sequence in DCα

where gi is a sequence in DT . Since Cα is an isometry, Cα(fi) = (T − α I )(gi) =
T (gi)− α gi is also Cauchy. So the difference sequence

fi − Cα(fi) = (T (gi)− α gi) − (T (gi)− α gi) = (α− α) gi

is Cauchy and it follows that both gi and T (gi) are Cauchy, and therefore converge
to limits a and b, respectively, in H.

Using the assumption that T is closed we conclude that a ∈ DT and b = T (a).
Therefore fi = T (gi) − α gi converges to T (a) − αa ∈ DCα and so DCα is closed.
Our assumption then that DCα is dense implies that DCα = H and, similarly,
DCα = H.

Now suppose that f ∈ DT † .

By definition of adjoint,
(
T † − α I

)
(f) is the unique member of H for which

〈 f , (T − α I ) (h) 〉 = 〈
(
T † − α I

)
(f) , h 〉 ∀h ∈ DT .

Because (T − α I )(DT ) = DCα = H there is a member g of DT for which

(T − α I )(g) = (T † − α I )(f).

But then for every h ∈ DT

〈 f , (T − α I ) (h) 〉 = 〈
(
T † − α I

)
(f) , h 〉

= 〈 (T − α I ) (g) , h 〉 = 〈 g , (T − α I ) (h) 〉
where the last equality follows from symmetry of T .

Since (T−α I )(DT ) = DCα = H this means f = g. But g ∈ DT by assumption.
So DT † ⊂ DT . By the symmetry of T we know DT ⊂ DT † . So T = T †. Since T is
closed T †† = T = T †.

Now we remove the assumption that T is closed. Then T ⊂ T ⊂ T †. The
domain of T contains that of T so the domain of Cα calculated for T contains that
of the similar transform found using T for each non-real α, so the density condition
of this theorem for T implies the density condition for T .

So T = T †. Since T is the smallest possible extension of T which could be
self-adjoint, and since there can be no proper self-adjoint extensions of a known
self-adjoint extension, T is the unique self-adjoint extension of T . �

27.6. Exercise. (i) Test for Essential Self-Adjointness. Review Exercise
21.9 and prove that if T is symmetric and there is any non-real complex number α
such that neither α nor α is an eigenvalue of T † then T is essentially self-adjoint

and T is self-adjoint. (hint: Ker(T † − α I) = (DCα )
⊥

.)

(ii) If T is symmetric and there is a single non-real α for which neither α nor
α is an eigenvalue for T † then no non-real β is an eigenvalue for T †.

(iii) If symmetric T fails to be essentially self-adjoint, at least one of β or β is
an eigenvalue of T † for every non-real β, and therefore at least one of β or β is in
the residual spectrum of T .
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(iv) Test for Essential Self-Adjointness. Show that if T is symmetric, T
is self-adjoint if and only if for every Cauchy sequence xn of unit vectors in DT for
which T (xn) is also Cauchy, neither (T + i I)(xn) nor (T − i I)(xn) converges to 0.

This is equivalent to the following: For symmetric T , T is self-adjoint if and
only if for any Cauchy sequence xn of vectors in DT for which T (xn) is also Cauchy,
if either (T + i I)(xn)→ 0 or (T − i I)(xn)→ 0 then xn → 0.

(v) In Lemma 22.6 we determined that a (possibly small) disk around every
member of the resolvent set is also in the resolvent set. If λ is real and in the
resolvent set then there will be some non-real α for which both α and α are in the
resolvent set. So we have the following:

Test for Essential Self-Adjointness. If T is symmetric, T is self-adjoint
if there is a real number λ in the resolvent set.

27.7. Exercise. Show that if T is a closed symmetric operator then the spec-
trum of T must be one of the following four possibilities. a) The whole complex
plane. b) The closed upper half-plane. c) The closed lower half-plane. d) A closed
subset of R. In case d) the operator is self-adjoint.

We are now in a position to efficiently deal with a case that is very common,
possibly even the most important case, in applications.

27.8. Theorem. Test for Essential Self-Adjointness.
Suppose T has the symmetry condition and H has an orthonormal basis B of
eigenvectors of T , with eigenvalue λb for each b ∈ B.
Then the domain of T is dense and T is self-adjoint and σ

(
T
)

= {λb | b ∈ B }.

Proof. DT must contain the dense set span(B), the finite linear combinations
of members of B, so T is symmetric and so too then is T , defined on DT . The
orthonormal basis B is contained in RT+i I and RT−i I , which are closed and dense

and hence equal H. By Theorem 27.5 T is self-adjoint, and we know that T must be
contained in any possible self-adjoint extension of T so T is essentially self-adjoint.

Let L denote {λb | b ∈ B }. The eigenvalues of T are all eigenvalues of T and
the spectrum of any operator is closed, so L ⊂ σ(T ).

Suppose a is any number not in L. Suppose the distance from a to L is d.
Given generic x =

∑
b∈B ab b define

F (x) =
∑
b∈B

ab
λb − a

b.

The denominators in this formula are never smaller than d, so the operator
norm of F does not exceed 1/d. F is one-to-one and its range contains every
member of B, so is dense in H.

(T − a I) ◦ F (b) = b = F ◦ (T (b)− a b) ∀b ∈ B.
So F is the resolvent Ra(T ), continuous and densely defined. So a /∈ σ

(
T
)
. �

We note here that the eigenvalues of a self-adjoint operator on an infinite di-
mensional Hilbert space could be dense in any subset (or all of) R, so the spectrum
could be any closed subset of R.
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28. Extending a Cayley Transform

Suppose T is closed and symmetric. We saw in Exercise 27.4 that the deficiency
subspaces

D+ = (RT−i I )
⊥

= Ker
(
T † + i I

)
and D− = (RT+i I )

⊥
= Ker

(
T † − i I

)
.

do not intersect. And of course we also have

H = RT+i I ⊕D+ = RT−i I ⊕D− (orthogonal sums).

Suppose that y = a+ b ∈ DT where a ∈ D+ and b ∈ D−.(
T † − i I

)
(y) = T †a− i a and

(
T † + i I

)
(y) = T †b+ i b.

Adding the two left sides gives 2T (y) and the two right sides add to T (y)+ i (a+ b)
So T (y) = i y which implies y = 0 and then a = b = 0 as well.

So the following sum is verified to be direct: DT ⊕ D+ ⊕ D− and all three
summands are contained in DT † .

Now suppose z is a generic member of DT † .

Pick member y ∈ DT and a ∈ D+ so that
(
T † − i I

)
(z) = (T − i I)(y) + a.

Note that 2i a =
(
T † + i I − 2i I

)
(a) =

(
T † − i I

)
(a) so we have, finally,(

T † − i I
)(

z − y +
i

2
a

)
= 0

So there is a w ∈ D− with w = z − y + i
2 a and then z = w + y − i

2 a.

This means that

DT † = DT ⊕D+ ⊕D−.

There is no reason to expect that these direct summands are orthogonal with
respect to the usual inner product. However

〈 g , h 〉G = 〈 g , h 〉+ 〈T †(g) , T †(h) 〉 ∀g, h ∈ DT †

is an inner product on DT † called the graph inner product. A sequence xn is Cauchy
with graph inner product exactly when both xn and T (xn) are Cauchy with the
usual inner product. Since T † is closed, graph inner product makes DT † into a
Hilbert space.

With our assumptions (recall T is closed and symmetric) the three direct sum-
mands indicated above are graph closed.

And they are graph orthogonal. To see this suppose x ∈ DT , y ∈ D+ =
Ker(T † + i I ) and w ∈ D− = Ker(T † − i I ).

〈x , y 〉G = 〈x , y 〉+ 〈T †(x) , T †(y) 〉

= 〈x , y 〉+ 〈T (x) , −i y 〉 = 〈x , y 〉+ 〈x , −i T †(y) 〉
= 〈x , y 〉+ 〈x , −i (−i) y 〉 = 0.
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An identical argument shows 〈x , w 〉G = 0, and

〈w , y 〉G = 〈w , y 〉+ 〈T †(w) , T †(y) 〉
= 〈w , y 〉+ 〈 i w , −i y 〉 = 〈w , y 〉 − 〈w , y 〉 = 0.

Let’s examine these decompositions more closely in conjunction with extensions
of the Cayley transform of T . Below it is convenient to use the more precise D−(T )
and D+(T ) for deficiency subspaces of T .

C(T ) : RT+i I → RT−i I

H = D−(T )⊕ RT+i I = D+(T )⊕ RT−i I (orthogonal)

DT ⊂ DT † = DT ⊕D+(T )⊕D−(T ) (graph orthogonal)

C(T ) sends a vector of the form T (f) + i f for f ∈ DT to T (f)− i f .

One can visualize the creation of any isometry from a subspace of D−(T ) onto
a subspace of D+(T ) one step at a time by sending an orthonormal basis element
a of D−(T ) to an orthonormal basis element b of D+(T ) and extending C(T ) to an
isometry A : RT+i I ⊕ C a→ RT−i I ⊕ C b by linearity.

A sends a vector of the form T (f) + i f + k a to T (f)− i f + k b.

The inverse Cayley transform S = K(A) = −i (A + I)(A − I)−1 will be a
symmetric extension of T with domain RA−I . A generic member of this domain is
of the form

(A− I)(T (f) + i f + k a) = T (f)− i f + k b− T (f)− i f − k a
= − 2i f + k(b− a) for f ∈ DT , k ∈ C.

So extension S = −i (A+ I)(A− I)−1 acts on this domain member by

−2i f + k(b− a) −→ T (f) + i f + k a

−→ T (f)− i f + k b+ T (f) + i f + k a = 2T (f) + k (b+ a)

−→ − 2i T (f)− ik (b+ a).

Letting g = −2i f we have S( g + k (b− a) ) = T (g)− ik (b+ a).

So DS = DT ⊕ C (b− a) and the range of S is RS = RT ⊕ C (b+ a)

Each deficiency subspace D+(S) and D−(S) will lose one orthonormal basis
vector, b and a respectively. So

DS ⊂ DS† = DS ⊕D+(S)⊕D−(S)

has the right side losing two basis elements and gaining one, b − a. The left side
gains one, b − a. So the “gap” between them is diminished by two basis elements
compared to DT ⊂ DT † .

S is “closer” to being self-adjoint than was T , and

T ⊂ S ⊂ S† ⊂ T †.
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29. Examples: Self-Adjointness

Here is an example of incompatible essentially self-adjoint extensions
of a symmetric operator.

Let D consist of the infinitely differentiable functions f defined on [0, 1] (one-
sided derivatives at the endpoints) with Dirichlet boundary conditions: f(0) =
f(1) = 0. Let N consist of the infinitely differentiable functions f defined on [0, 1]
with Neumann boundary conditions: f ′(0) = f ′(1) = 0. Finally, let M consist
of the infinitely differentiable functions f defined on [0, 1] with mixed boundary
conditions: f(0) = f ′(1) = 0.

Define operators TD and TN on D and N respectively by the same formula

TD(f) = −f ′′ ∀f ∈ D, TN (f) = −f ′′ ∀f ∈ N TM (f) = −f ′′ ∀f ∈M.

As in the example on page 128, all three domains may be considered as a dense
subset of L2([0, 1]), and with that assumption these operators extend TC , which
was shown to be not essentially self-adjoint by explicitly producing a point on the

graph of T †C which was not in TC .

〈TD(f) , g 〉 =

∫ 1

0

−f ′′(x) g(x) dx = −f ′(x)g(x)

∣∣∣∣1
0

+

∫ 1

0

f ′(x) g′(x) dx

= − f ′(x)g(x)

∣∣∣∣1
0

+ f(x)g′(x)

∣∣∣∣1
0

−
∫ 1

0

f(x) g′′(x) dx = 〈 f , TD(g) 〉.

So TD is symmetric, and the same calculation reveals that both TN and TM
are symmetric as well.

Let’s examine (TD+i I)(DTD ). For integer n we find that (TD+i I)( sin(nπx) ) =
(n2π2 + i) sin(nπx) and the finite linear combinations of functions of this type form
a dense subset of D, and hence of L2([0, 1]) itself. Also finite linear combinations
of functions of the form (TD − i I)( sin(nπx) ) = (n2π2 − i) sin(nπx) are dense.
Therefore TD is self-adjoint.

Similar statements involving (TN + i I)( cos(nπx) ) = (n2π2 + i) cos(nπx) and
(TN − i I)( cos(nπx) ) = (n2π2 − i) cos(nπx) allow us to conclude that TN is also
essentially self-adjoint.

(TM + i I)

(
sin

((
n+

1

2

)
πx

))
=

((
n+

1

2

)2

π2 + i

)
sin

((
n+

1

2

)
πx

)
and

(TM − i I)

(
sin

((
n+

1

2

)
πx

))
=

((
n+

1

2

)2

π2 − i

)
sin

((
n+

1

2

)
πx

)
.

So TM is essentially self-adjoint too, subject to verification that the span of the
relevant functions form a dense set in M .

Appealing to Exercise 27.6 and referring again to the example on page 128 we
can also conclude that for every non-real α at least one of α or α is an eigenvalue

of T †C but neither α nor α is an eigenvalue of T †N , T †D or T †M .
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And we have found an example for which different self-adjoint exten-
sions have different spectra. In this case the spectra of TD and TN consists
of the numbers n2π2 for integer n (we appeal here to Theorem 27.8) while the

spectrum of TM consists of the numbers
(
n+ 1

2

)2
π2.

29.1. Lemma. If S is symmetric and T ⊂ S and
(T + i I)(DT ) = (S + i I)(DS) then T = S.

Proof. Suppose (S+i I)(f) for f ∈ DS is some member of the range of S+i I.
Since the ranges of S + i I and T + i I are equal, there must be a g ∈ DT for which
(T + i I)(g) = (S + i I)(f). But S extends T so (S + i I)(g) = (S + i I)(f). Since
S is symmetric S + i I is one-to-one so f = g. That means DS ⊂ DT . �

Finally, we look at an example of a symmetric operator with no self-
adjoint extension at all.

We will let our Hilbert space be `2, the space of square summable sequences
with orthonormal basis en given by en(j) = 1 if j = n and en(j) = 0 otherwise, for
n ≥ 0.

Define sn = en − en+1 for n ≥ 0. The set of these sn is linearly independent,
and if f ∈ `2 and 〈 f, sn 〉 = 0 for all n it is pretty easy to show that f is the zero
sequence.

So the vector space formed from the finite linear combinations of these sn,
which we will denote DT , is dense in `2.

We define T on DT by T (sn) = i en + i en+1, extending by linearity.

A quick calculation verifies that 〈T (sn), sm 〉 and 〈 sn, T (sm) 〉 are equal, and
in fact both inner products are i if m = n+ 1 and −i if m = n− 1 and 0 otherwise.

So T is symmetric.

(T + i I)(sn) = 2 i en so the range of T + i I is dense. So (Lemma 26.4) we find
that (T + i I)(DT ) = `2.

However (T − i I)(sn) = 2 i en+1 which means that e1 ∈ ( (T − i I)(DT ) )
⊥

. i is
in the residual spectrum σr(T ) of T .

So e1 ∈
(

(T − i I)(DT )
)⊥

, by Lemma 26.4. So (T − i I)(DT ) is not dense in

`2 so T is not self-adjoint. Also, Theorem 27.2 tells us that this operator has no
self-adjoint extension.

If S is symmetric closed extension of T then the range of S+i I would necessarily
contain (T + i I)(DT ) = `2, so (S + i I)(DT ) = (T + i I)(DT ). By Lemma 29.1
we then have S = T : in other words, T cannot even have a nontrivial symmetric
extension. That fact could also be deduced by appeal to Theorem 27.2.
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30. The Friedrichs Extension

We now consider a condition for which a symmetric operator does have at least
one self-adjoint extension.

We say operator T is semi-bounded (from below) if there is a real constant c
for which

〈T (g) , g 〉 ≥ c 〈 g , g 〉 ∀g ∈ DT

and positive if c can be chosen to be 0 and positive definite if it is positive and
〈T (g) , g 〉 = 0 only when g = 0. If c > 0 we will call T strongly positive. We
will refer to the greatest such c as the lower semi-bound for T.

〈T (g) , g 〉 is assumed to be real in this definition for all g, so semi-bounded
operators are symmetric. That means the approximate point spectrum is a subset
of the real numbers. But even more, the approximate point spectrum must be in
[c,∞). To see this we select α ∈ σap. Then there is a sequence xn of unit vectors
in DT with 〈T (xn) , xn 〉 → α. But by the semi-bound condition 〈T (xn) , xn 〉 ≥ c
for each n and so α ∈ [c,∞).

Note the distinction between semi-bounded and bounded below: T is bounded
below if there is a positive c for which

〈T (g) , T (g) 〉 ≥ c 〈 g , g 〉 ∀g ∈ DT .

This latter condition is used for different purposes than the one we deal with
now; for instance, T has bounded inverse exactly when it is bounded below.

In any event, if T is semi-bounded with constant c then 〈T (g) − c g , g 〉 ≥ 0
and in fact if I is the identity operator,

〈T (g)− c g + g , g 〉 = 〈 (T − (c− 1) I )(g) , g 〉 ≥ 〈 g , g 〉 ∀g ∈ DT .

For this reason, many facts involving semi-bounded operators with any lower semi-
bound are easy consequences of similar facts about positive operators, or semi-
bounded operators with lower semi-bound 1.

In an attempt to find a self-adjoint extension for symmetric S we are looking
for operator T with S ⊂ T = T † ⊂ S†.

S is one possibility, and the domain of S can be described using a modified
inner product, the graph inner product, on DS .

〈 g , h 〉G = 〈 g , h 〉+ 〈S(g) , S(h) 〉 ∀g, h ∈ DS .

Any Cauchy sequence in DS using this inner product—we will call such se-
quences G-Cauchy—is also Cauchy with the Hilbert space inner product, and will
converge in both senses to the same limit in DS . Conversely, every member of DS

is the limit of a G-Cauchy sequence. And the values of S on such a limit are the
limits of the S-values on any G-Cauchy sequence in DS converging to that limit
vector.

Limits of G-Cauchy sequences not already in DS are exactly the members of
DS not already in DS . In other words, DS is the G-completion of DS .

In many cases S is not self-adjoint, and a self-adjoint extension of S, if one
exists, will have larger domain. Our goal below is to find such an extension in a
special case commonly found in applications.
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Suppose now that S is not just symmetric but also semi-bounded with constant
1. Any operator with positive lower semi-bound must be one-to-one, and that is
the case here.

First, we define the Friedrichs inner product and norm on DS as follows.

〈 g , h 〉F = 〈S(g) , h 〉 and ‖ g ‖F =
√
〈 g , g 〉F ∀g, h ∈ DS .

Both the positive lower semi-bound constant and symmetry are needed to show
that this is, indeed, an inner product on DS .

Now suppose a sequence gn is in DS . Using the lower semi-bound constant and
the BCS inequality,

‖ gn − gm ‖2 ≤ ‖ gn − gm ‖2F = 〈S(gn − gm) , gn − gm 〉
≤ ‖S(gn − gm) ‖ ‖ gn − gm ‖.

If the sequence gn is G-Cauchy, both gn and S(gn) are Cauchy. So the right
side of this inequality can be made small by choosing m and n large enough. Then
‖ gn − gm ‖F can also be made small by choosing m and n large enough. In other
words, a G-Cauchy sequence is also F-Cauchy.

Looking at the left side of the inequality, we see that every F-Cauchy sequence
is Cauchy in H, and therefore converges in both senses to the same member of H.

So if K is the F-completion of DS we have

DS ⊂ DS ⊂ K ⊂ DS = H.

We extend the Friedrichs inner product to all of K by continuity. In particular,
we note that since 〈 g , g 〉F = 〈S(g) , g 〉 ≥ 〈 g , g 〉 for all g ∈ DS we also have
〈 g , g 〉F ≥ 〈 g , g 〉 for all g ∈ K.

Then K is itself a Hilbert space with Fredrichs inner product, and by definition
DS is F-dense in K.

For each y ∈ H the linear function

Ay(·) = 〈 · , y 〉 : DS → C

has F-operator norm bound ‖ y ‖, as calculated below:

|Ay(x) | = | 〈x , y 〉 | ≤ ‖x ‖ ‖ y ‖ ≤ ‖x ‖F ‖ y ‖.

Since DS is F-dense in K, Ay corresponds to F-inner product against a unique
member wy ∈ K: Ay(·) = 〈 · , wy 〉F , and wy has F-norm not exceeding ‖ y ‖.

We define B(y) = wy for every y ∈ H. Then B : H → K is easily seen to be
linear; B(y) is the unique member of K for which

〈x , B(y) 〉F = 〈x , y 〉 ∀x ∈ DS .

We will now accumulate some properties of B.

If x ∈ K and y ∈ H and B(y) = 0 then

〈x , 0 〉 = 〈x , 0 〉F = 〈x , B(y) 〉F = 〈x , y 〉

and the density of K in H implies y = 0. So B is one-to-one.
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B is symmetric with respect to the original inner product, as seen below. For
any x, y ∈ H we have

〈B(x) , y 〉 = 〈B(x) , B(y) 〉F = 〈B(y) , B(x) 〉F = 〈B(y) , x 〉 = 〈x , B(y) 〉.

So B is self-adjoint and, by the Hellinger-Toeplitz theorem, continuous.

Also B is positive because ∀x ∈ H

〈B(x) , x 〉 = 〈B(x) , B(x) 〉F ≥ 〈B(x) , B(x) 〉 ≥ 0.

Since B = B† and (RB)
⊥

= Ker
(
B†
)

= Ker (B) = { 0 } we know that the

subset RB of K is dense in H. So B−1, which we will henceforth denote by Q, is a
symmetric operator Q : RB → H and is onto H.

Note that if x, y ∈ DS then

〈x , y 〉F = 〈S(x) , y 〉 = 〈x , S(y) 〉 = 〈x , B ◦ S(y) 〉F .

But then for each y ∈ DS , 〈x , y −B ◦ S(y) 〉F = 0 ∀x ∈ DS .

Since DS is F-dense in K we have y = B ◦ S(y) ∀y ∈ DS .

There are a couple of interesting conclusions to be drawn from this. First, all
of DS is in RB = DQ. And, second, Q(y) = S(y) ∀y ∈ DS .

We now know that Q is a symmetric extension of S, and since B is a closed
operator, so too is its inverse Q.

Suppose x = B(y) is a generic member of the domain of Q.

〈Q(x) , x 〉 = 〈x , Q(x) 〉 = 〈B(y) , y 〉 = 〈B(y) , B(y) 〉F
≥ 〈B(y) , B(y) 〉 = 〈x , x 〉.

So Q is semi-bounded with constant 1, the same lower semi-bound as S.

Let ψ : H×H→ H×H be the map that switches coordinates, ψ(x, y) = (y, x).
So ψ sends any one-to-one operator to its inverse, and in particular ψ(B) = Q and
ψ(Q) = B.

Recall the notation and result of Lemma 21.6 and observe that J ◦ψ = −ψ ◦J .

As subsets of H ×H we have (since B = B† and Q is closed)

Q = −Q = −ψ(B) = −ψ( (J(B† ) )⊥ ) = −ψ( (J(B ) )⊥ )

= ( J(Q ) )⊥ = Q†.

So Q is self-adjoint.

30.1. Theorem. A symmetric and semi-bounded operator
has a self-adjoint extension that is also semi-bounded
with the same lower semi-bound constant.

Proof. Suppose T is symmetric and semibounded with lower semi-bound con-
stant c. Then S = T − (c − 1) I is also symmetric with lower semi-bound 1. Ac-
cording to the remarks before the theorem, there is a self-adjoint extension Q of S
with lower semi-bound constant 1. And then Q+(c−1) I is a self-adjoint extension
of T with lower semi-bound constant c. �
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The semi-bounded self-adjoint operator of this theorem is called the Friedrichs
extension of T.

Several additional sections (including the final result on the spectral theorem)
will be included in the final version of these notes
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Riesz’ Lemma, 24

Riesz-Fisher Theorem, 89

Schauder basis, 66

Schwarz inequality, 81

Second Resolvent Identity, 122

self-adjoint, 101

essentially, 127

for unbounded operators, 125

semi-bounded operator, 143
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semi-norm, 14

semi-normed linear space, 18

separated
by a real hyperplane, 10

by a real linear functional, 10

strictly
by a real hyperplane, 10

by a real linear functional, 10

strongly
by a real hyperplane, 10

by a real linear functional, 10

separating
set of semi-norms, 36

sesquilinear form, 81
SNLS, 18

spectrum, 117

approximate point, 118
continuous, 118

point, 117

residual, 118
∗-algebra, 105

∗-homomorphism, 105

strong
bidual, 48

dual, 47

topology, 47
strong operator topology, 30

subadditive, 14
sublinear, 14

sufficient

family of semi-norms, 35
symmetric

operator, 124

subset of a vector space, 12
symmetry, 81

condition, 129

Test for Essential Self-Adjointness, 135–138

topological

vector space, 28
topologically equivalent

families of semi-norms, 35

topology
fine on a TVS, 34

operator norm, 30
strong, 47
strong operator, 30
weak operator, 31

weak∗, 45
weak, generated by A, 43

totally
bounded in a TVS, 32

translation
invariant metric, 18

triangle inequality, 14

TVS, 28

unbounded operator, 113
unconditional

Schauder basis, 67
Uniform Boundedness Principle, 55

uniform equicontinuity, 60

uniformly
continuous

in a TVS, 30

unital normed algebra, 105
unitarily equivalent, 109

unitary
operator, 101, 108

vector space

topological, 28

weak

dual, 46
topology, 43

weak operator topology, 31

weak∗

topology, 45


