
MORE STRUCTURE: METRICS, TOPOLOGICAL GROUPS AND

UNIFORMITY

LARRY SUSANKA

Abstract. This is an appendix for a book I have (mostly) written on mea-

sure theory. It deals with a variety of topics with mixed structure, blending
topology, algebra and other topics.

It is not really self-contained. There are references from Chapter One
“Some Preliminaries” to the Axiom of Choice, the integers, the real numbers
and general notational conventions. There are also references to the appendix
on algebra and the appendix on topology.

Contents

1. Metrics and Pseudometrics May 26, 2013 2
2. Completeness 9
3. Metrizability 14
4. Two Topologies on Sets of Continuous Functions 18
5. The Gelfand-Kolmogoroff Theorem and Other Stories 20
6. Ascoli’s Theorem 24
7. The Stone-Weierstrass Theorem 25
8. Elementary Results on Topological Groups 28
9. The Homogeneous Space of Cosets in a Topological Group 31
10. Uniformities 36
Index 41

Date: May 26, 2013.

1



2 LARRY SUSANKA

1. Metrics and Pseudometrics May 26, 2013

Topologies, which abstract certain features of the “closeness” idea among points
in a set, are often derived from an explicit measure of closeness called a metric or
pseudometric.

A pseudometric on a set X is a function d : X×X → [0,∞) with the following
properties:

d(x, x) = 0 ∀x ∈ X and

d(x, y) = d(y, x) ∀x, y ∈ X and

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X. (The Triangle Inequality)

The open ball of radius ε ≥ 0 centered at x ∈ X is a set { y ∈ X | d(x, y) < ε }.
The notation B(x, ε) is used for open balls.

The sphere of radius ε ≥ 0 centered at x ∈ X is a set { y ∈ X | d(x, y) = ε }. The
notation S(x, ε) can be used for this sphere. If there is more than one pseudometric
around, the notation Bd(x, ε) and Sd(x, ε) can be used for specificity.

A pseudometric d on X is called bounded if X = S(x, ε) for some x and
sufficiently large ε. Because of the triangle inequality, the specific point x chosen
is not relevant to this definition: if X = S(x, ε) then X = S(y, 2 ε) for all y ∈ X.

A pseudometric d is called a metric if, in addition to the properties listed above
we have:

d(x, y) = 0 implies x = y.

As progenitor, Euclidean distance in Rn constitutes an important metric.

1.1. Exercise. Suppose f : X → Y is any function.

(i) Any pseudometric d on Y induces a pseudometric D on X by D(p, q) =
d(f(p), f(q)) for any p, q ∈ X. If d is a metric and f is one-to-one, D is a metric.

(ii) If f is one-to-one and onto, any pseudometric D on X induces a pseudo-
metric d on Y by d(s, t) = D(f−1(s), f−1(t)) for any s, t ∈ Y . If D is a metric so
is d.

The topology generated by a pseudometric d on X is that formed using
the set of all open balls, denoted Bd, as a subbase. We say that the pseudometric
and the topology it generates are compatible.

Two pseudometrics are called topologically equivalent if they generate the
same topology. This is an equivalence relation on the set of pseudometrics on X.

Any subset A of a pseudometric space X may be regarded as a pseudometric
space by restricting the pseudometric on X to A. The subspace topology on A is
the same as the topology induced by this restricted pseudometric.

1.2. Exercise. (i) The open balls actually constitute a base, not just a subbase, for
any topology generated by a pseudometric. So any topology which can be generated
by a pseudometric is first countable.

(ii) B(x, ε) ⊂ B(x, ε) ∪ S(x, ε) but the reverse containment need not hold. For

instance, there may be no points y with ε
2 ≤ d(x, y) < ε. In that case, B(x, ε) =

B(x, ε) but S(x, ε) may well be nonempty.
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(iii) For any topology which can be generated by a pseudometric, the three con-
ditions “second countable” and “separable” and “Lindelöf” are equivalent.

Generally, any topology on X is called a pseudometric or metric topology

if it arises, or could have arisen, as the collection of open sets for a pseudometric
or, respectively, a metric on X. A pseudometric or metric topology is described as
pseudometrizable or, respectively, metrizable.

Topologically equivalent pseudometrics can have important differences, as we
shall see. So the concept of pseudometric space is different from and a refinement
of the concept of topological space.

1.3. Exercise. (i) Suppose d1 is a pseudometric. Define d2 to be cd1 for a fixed
positive constant c. Then d2 is a pseudometric, and topologically equivalent to d1.

(ii) Define d3 by d3(x, y) = d1(x, y) if d1(x, y) ≤ 1 and d3(x, y) = 1 otherwise.
Then d3 is a pseudometric, and topologically equivalent to d1. So every pseudomet-
ric is topologically equivalent to a pseudometric whose values are bounded above by
1 or any other specified positive number.

(iii) Suppose f : [0, a) → [0, b), where a or b could be ∞, is continuous and
f(0) = 0. Suppose further that f is twice differentiable on (0, a) and f ′(t) > 0 and
f ′′(t) ≤ 0 for all t ∈ (0, a). If the range of d1 is contained in [0, a) then d4 = f ◦ d1
is a pseudometric and topologically equivalent to d1. This gives a handy method of
creating topologically equivalent metrics with particular properties. For example

d1
1 + d1

= 1− 1

1 + d1
, Ln(1 + d1), Arctan(d1), and (d1)

1
3

are all topologically equivalent to d1. (hint: Use the mean value theorem to show
that f(t+ s)− f(t) ≤ f(s) for all positive t and s with s+ t in the domain of f .)

A pseudometric space or metric space is a pair (X, d) where d is a pseu-
dometric or, respectively, a metric on X, along with the topology generated by d
wherever that is required.

Often we will simply refer to “the metric or pseudometric space X” and a par-
ticular metric or pseudometric, assumed to be present, is not mentioned explicitly.

1.4. Exercise. Suppose (X, d) is a pseudometric space. For each x ∈ X let [x] be
the set of all points at distance 0 from x. These sets form a partition P of X. Each
member of the partition is closed with respect to the topology induced by d.

The topology on X induced by d is T0 if and only if every member of the partition
consists of one member of X, and in that case the topology is T2. This happens
exactly when d is a metric.

Define d̃ on P by d̃([x], [y]) = d(x, y). Show that d̃ is well defined and a metric

on P . Show that the topology induced by d̃ is the quotient topology. Show that each
open set in X corresponds to a unique open set in P and conversely.

There are a couple of classes of functions that pop up naturally between pseu-
dometric spaces. A function f : X → Y between two pseudometric spaces (X, d1)
and (Y, d2) is called uniformly continuous if ∀ε > 0 ∃δ > 0 so that a, b ∈ X and
d1(a, b) < δ implies d2(f(a), f(b)) < ε.
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1.5. Exercise. (i) Uniformly continuous functions are continuous with the topolo-
gies induced by the pseudometrics.

(ii) Continuous functions between pseudometric spaces need not be uniformly
continuous. (hint: Look at f(x) = 1

x on the open unit interval (0, 1). So f : (0, 1) →
(1,∞). Give both domain and range intervals the usual metric defined by d(x, y) =
|x− y|. This function is continuous but not uniformly continuous.)

(iii) Suppose O is any open cover of compact pseudometric space (X, d). There
is a unique largest positive number λ called the Lebesgue number for O for which
B(x, λ) is contained in a member of O for every x ∈ X. This result is called the
Lebesgue Covering Lemma. (hint: To get started, find for each x ∈ X a largest
ball B(x, µx) contained in any of the members of O.)

(iii) A continuous function between pseudometric spaces with compact domain
is uniformly continuous. In particular, if d1, d2 are two topologically equivalent
pseudometrics on compact X then the identity function i : (X, d1) → (X, d2) is
uniformly continuous.

(iv) Is it true that if if d1, d2 are two topologically equivalent pseudometrics on
compact X that there are positive numbers α and β with αd1(x, y) ≤ d2(x, y) ≤
βd1(x, y) for all x, y ∈ X?

(v) It is not true that a uniformly continuous function with an inverse function
has a continuous inverse. (hint: Let f : [0, 2π) → S, where S is the unit circle in
the plane, and f(x) = (Cos(x), Sin(x)).)

(vi) A function uniformly continuous with respect to one pair of metrics on
domain and range need not be uniformly continuous if either metric is
switched to a different but topologically equivalent metric. (hint 1: Suppose
f : (0, π/2) → (0,∞) is defined by f(x) = tan(x). Give (0, π/2) the metric d(x, y) =

|x − y| and (0,∞) the metric D(x, y) = |x − y|. Let D̃ be the metric Arctan ◦D.

D̃ is equivalent to D. Show that f is uniformly continuous with respect to the

metrics d and D̃ but not with respect to the metrics d and D. hint 2: Suppose
f : (0,∞) → (0,∞) is defined by g(x) = x2. Give (0,∞) the metric D(x, y) = |x−y|
in both domain and range. g is not uniformly continuous. Let D̃ be the metric

D(x, y) = |x2 − y2|. D̃ is topologically equivalent to D. Show that g is uniformly

continuous with respect to the metric D̃ in its domain and D in its range.)

Suppose f : (X, d) → (Y, e) is any function from one pseudometric space to
another. f is called Lipschitz if there is a constant L, called a Lipschitz constant

for f , so that e(f(x), f(y) ≤ Ld(x, y) for all x, y ∈ X. The function f is called
locally Lipschitz if for each x ∈ X there is a constant Lx and a neighborhood Vx

of x so that e(f(z), f(y) ≤ Lxd(z, y) for all y, z ∈ Vx.

1.6. Exercise. (i) The Lipschitz property implies the locally Lipschitz property
which, itself, implies that f is continuous.

(ii) The Lipschitz property implies uniform continuity, but the converse implica-
tion does not hold.

(iii) “Locally Lipschitz” implies “Lipschitz” when the domain is compact.
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A function between two metric spaces (X, d1) and (Y, d2) which preserves the
distance concept in the domain is called an isometry. Specifically, f : X → Y
is an isometry if d1(a, b) = d2(f(a), f(b)) for every pair of points a, b ∈ X. An
isometry is, obviously, uniformly continuous and one-to-one. If it is also onto, the
inverse function is an isometry and X and Y with their induced topologies are
homeomorphic.

The two metric spaces (X, d1) and (Y, d2) are called isometric provided there
is an isometry f : X → Y onto Y .

1.7. Exercise. The function d̃(x, y) =
∣∣∣ 1x − 1

y

∣∣∣ is a metric on X = (0,∞) and is

topologically equivalent to the usual metric d(x, y) = |x−y| on X. Show that (X, d)

and (X, d̃) are isometric.

Some sources do not require the spaces involved in an isometry to be metric
spaces—only pseudometric spaces. With this relaxed definition the quotient func-
tion of X onto P of Exercise 1.4 is an isometry onto P without, in general, an
inverse. We avoid that choice.

The diameter of a nonempty subset A of X with respect to the pseudometric
d is sup { d(x, y) | x, y ∈ A } if the set is bounded, and the diameter is said to be
infinite otherwise. We use the notation diam(A) for this supremum. A set whose
diameter is not infinite is said to be bounded. Note that if 0 < diam(A) < ∞ and
x ∈ A then A ⊂ B(x, 2 diam(A)).

A set A is said to be totally bounded if for each ε > 0 there is a finite
list x1, . . . , xn of members of X so that A ⊂ ∪n

i=1B(xi, ε). The concept of to-
tally bounded depends on the specific pseudometric used. Topologically equivalent
pseudometrics need not preserve this property.

1.8. Exercise. (i) Compact subsets of a pseudometric space are totally bounded.

(ii) Any totally bounded pseudometric space is separable.

The distance between the point x and the nonempty set A in the pseu-
dometric space X is defined to be d(x,A) = inf { d(x, y) | y ∈ A }. The distance

between two nonempty sets A and B in the pseudometric space X is defined
to be d(A,B) = inf { d(x,A) | x ∈ B }. Finally, if A is a set and ε > 0 define
Bd(A, ε) = {x ∈ X | d(x,A) < ε }.
1.9. Exercise. (i) If A and B are nonempty, d(A,B) = d(B,A).

(ii) For each nonempty A the function f(x) = d(x,A) is uniformly continuous.

(iii) With f as above, f−1(0) = A =
⋂∞

n=1 Bd(A, 1/n).

(iv) Any pseudometric space is CR.

(v) Every closed set is a Gδ in any pseudometric space.

(vi) Every pseudometric space is paracompact. (hint: Suppose first that Y is a
metric space. For n ≥ 1 let Bn denote the cover consisting of all balls of radius
1
n . Suppose A is any open cover of Y and A ∈ A. Pick p ∈ Y and A ∈ A with

p ∈ A. Since A is open there is a ball B
(
p, 1

n

)
⊂ A. Now StarB3n

(
B
(
p, 1

3n

))
⊂

B
(
p, 1

n

)
⊂ A so the sequence Bn for integers n ≥ 1 is locally starring for A—in fact,

this sequence is locally starring for any open cover whatsoever. So Y is T∗ and since
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Y is regular this implies Y is paracompact. Now if X is a pseudometric space let Y
be the quotient metric space described in Exercise 1.4 obtained by combining points
in X at zero distance from each other into a single point in Y . X is paracompact
and the result for Y follows.)

(vii) Any pseudometric space is perfectly T4 and therefore completely T4.

(viii) If A is compact and B is closed and A∩B = ∅ then there is ε > 0 so that
Bd(A, ε) ∩B = ∅.

(ix) In a pseudometric space, sequential compactness, countable compactness and
compactness are equivalent conditions.

(x) Suppose A and B are nonempty subsets of the pseudometric space X. If A is
compact there is a point x ∈ A with d(x,B) = d(A,B). If B is also compact there
are points x ∈ A and y ∈ B with d(x, y) = d(A,B).

We saw in Proposition ?? that in the presence of the T3 property paracompact-
ness is equivalent to the existence of a σ-locally finite open refinement G =

⋃
n∈N

Gn

for each open cover, and pseudometric spaces are T3 and paracompact. In fact, more
is true. In a pseudometric space this countable decomposition of an open refine-
ment can be chosen so that G is locally finite and each point has a neighborhood
intersecting no more than one member of each Gn. Engelking [?] refers to this
result as one of the most important theorems of general topology.

1.10. Proposition. The Stone Theorem In a pseudometric space each open
cover has a locally finite and σ-discrete open refinement.

Proof. Suppose given an open an cover O of pseudometric space (X, d). For each
set A ∈ O form the countable chain of subsets An where for each n,

An =

{
x ∈ A | d(x,X −A) ≥ 1

2n

}
.

Well order O. Define for each n and each A ∈ O the set

Ãn = An −
⋃

B∈O

B<A

Bn+1.

The triangle inequality (draw a sketch) implies that d(An, X − An+1) ≥ 1
2n+1 . So

if B < A then Ãn ⊂ X −Bn+1 which implies d(B̃n, Ãn) ≥ 1
2n+1 .

For each n and A define Ân to be the set of all points in X less than 1
2n+3 away

from Ãn. So each Ân is open. From the last calculation we see that for distinct A

and B, d(B̂n, Ân) ≥ 1
2n+2 . (Draw a sketch!)

So if Gn = { Ân | A ∈ O }, each point of X is in at most one member of Gn.

It remains to show that G =
⋃

n∈N
Gn is a cover of X.

Select x ∈ X and let A be the first member of the open cover O containing x.
So x is in An for large enough n and because A is the first member of O containing

x, we have x ∈ Ãn too. So x ∈ Ân ∈ Gn ⊂ G.

Finally, we suppose H is a locally finite open refinement of G. By the Refinement

Lemma ?? and Exercise ??, there is a subcover G̃ of G and a locally finite open
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refinement H̃ of G̃ and a one-to-one and onto function f : G̃ → H̃ for which f(S) ⊂ S

for every S ∈ G̃.

Since G̃ is a subcover of a σ-discrete cover it too is σ-discrete. The properties of

f ensure that H̃ is σ-discrete as well. �

1.11. Exercise. Every pseudometric space has a σ-discrete base.

1.12. Exercise. If X is a metric space with metric d define S to be the set of all
bounded nonempty closed subsets of X. Define Hd on S × S by

Hd(A,B) = sup { d(x,B) ∨ d(y,A) | x ∈ A, y ∈ B }.
(i) Show that H is a metric on S. It is called the Hausdorff metric.

(ii) Hd(A,B) < ε exactly when B ⊂ Bd(A, ε) and A ⊂ Bd(B, ε).

(iii) The function Φ: X → S defined by Φ(x) = {x } is an isometry.

(iv) Kelley [?] points out that topologically equivalent metrics on X can produce
different topologies on S. He gives the following example: Consider the nonneg-

ative real numbers with metrics d given by d(x, y) =
∣∣∣ x
1+x − y

1+y

∣∣∣ and e given by

e(x, y) = 1 ∧ |x − y|. These metrics both generate the usual topology on [0,∞).
Let In = {0, 1, . . . , n − 1 }. Then the sequence In converges to N in the topology
generated by Hd on S but not in the topology generated by He on S.

1.13. Exercise. Suppose T is a finite subset of the bounded interval [a, b] containing
a and b. Denote by 1 + nT the number of members of T . Label the members of T
as ti for i = 0, . . . , nT so that a = t0, tnT

= b and ti−1 < ti for i = 1, . . . , nT . A
selection of points from [a, b] of this kind is called a partition of [a, b].

Suppose f : [a, b] → X is a path in the metric space (X, d). f is called rectifiable
with respect to d if the length of f , defined by

length(f) = sup

{
nT∑

i=1

d(ti−1, ti) | T is a partition of [a, b]

}
,

is finite.

We will suppose that X is path connected and in fact there is a rectifiable path
in X connecting any two points in X. Define for each x and y in X the number

D(x, y) = inf { length(f) | f is a rectifiable path connecting x to y } .

(i) Show that D is a metric, called the geodesic distance metric.

(ii) Give the unit circle the metric it inherits as a subset of the plane with the
usual Euclidean distance. What is the geodesic distance metric on the circle?

(iii) Find an example in the plane to show that D need not be topologically
equivalent to d.

A set F of pseudometrics on X is called separating if for each pair of distinct
points in X there is a member d ∈ F with d(x, y) 6= 0.

Any set of pseudometrics generates a topology formed by using as subbase
∪d∈FBd where each Bd is the set of all open balls defined using the pseudomet-
ric d ∈ F. The set of all finite intersections of open balls with common center and
radii but differing pseudometrics is a base for this topology, and a topological space
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which can be produced using a separating family of pseudometrics is called a gauge

space.

1.14. Exercise. Consider the indexed collection of pseudometric spaces (Xa, da)
for a ∈ A. The topology generated by a given da is indiscrete exactly when da is
identically 0. Modify the pseudometrics if necessary to create topologically equiva-
lent pseudometrics for which the diameter of each Xa does not exceed 1.

(i) If an uncountable number of the Xa are not indiscrete the product topology
on
∏

a∈A Xa is not first countable. This implies the product space is not pseu-
dometrizable.

(ii) Suppose only a countable number of the Xa are not indiscrete. Let S denote
the set of all indices for which Xs are not indiscrete when s ∈ S. For each s ∈ S
define the pseudometric Ds on

∏
a∈A Xa by Ds(x, y) = ds(x(s), y(s)). Let n denote

a one-to-one function from S onto an initial segment of N if S is finite, and onto
N itself if S is infinite. Finally, define D on

∏
a∈A Xa by

D(x, y) =
∑

s∈S

Ds(x, y)

2n(s)
.

Show that D is a pseudometric on
∏

a∈A Xa and D generates the product topology
there.

(iii) A product of pseudometrizable spaces is pseudometrizable if and only if all
but a countable number of factor spaces are indiscrete. It follows easily that the
product is metrizable if and only if all but a countable number of factor spaces
consist of a single point and every pseudometric is a metric.

1.15. Exercise. A topology generated by a set of pseudometrics is T2 if and only
if the set of pseudometrics is separating.

(ii) Suppose F is any set of pseudometrics. Form a new family G by selecting
one pseudometric (not necessarily one in F) from each distinct equivalence class of
pseudometrics related to any member of F. Then G generates the same topology as
does F.

(iii) Suppose that d0, d1, . . . is a sequence of pseudometrics and the diameter of
X does not exceed 1 for any of them. Then

d(x, y) =

∞∑

i=0

di(x, y)

2i

is a single pseudometric which generates the same topology as does the set formed
from the entire sequence of pseudometrics.

1.16. Exercise. (i) Consider the product space [0, 1]N where each factor space has
the usual topology. The topology on this product space is a compact metric topology.
Suppose that an is a positive number for each n ∈ N and

∑
n∈N

an converges. Show
that

d(x, y) =
∑

n∈N

an |xn − yn|

is a compatible metric for the product space. Show that the product space is sepa-
rable.
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(ii) Suppose Y is any nonempty set. We define l
2(Y ) to be those members f

of RY which are 0 except at countably many members of Y and for which the
(countable) sum

∑
y∈Y f(y)2 converges. Define for f, g ∈ l

2(Y )

d(f, g) =

√∑

y∈Y

(f(y)− g(y))2.

One shows that d actually converges to a number, and d satisfies the triangle in-
equality on l

2(Y ) by examining finite sums of real numbers, showing that
√√√√

k∑

i=0

(fi − gi)2 ≤

√√√√
k∑

i=0

f2
i +

√√√√
k∑

i=0

g2i .

Once that is done, we conclude that l2(Y ) is a metric space with d as metric.

(iii) The Hilbert cube is the subset of l
2(N) consisting of those members f

for which |fn| ≤ 1
n+1 for all n. Show that the Hilbert cube with subspace topology

from l
2(N) is homeomorphic to [0, 1]N with product topology. The Hilbert cube is

separable, and every subset of the Hilbert cube with subspace topology is separable
too.

2. Completeness

If d is a pseudometric on X a sequence x in X is called Cauchy (or d-Cauchy
when there is more than one pseudometric around) if for each ε > 0 there is an
integer N so that d(xn, xm) < ε whenever n and m both exceed N .

When d is a pseudometric and if every Cauchy sequence inX converges to a point
of X in the topology generated by d we say that X is complete with respect to

d.

The concepts of Cauchy sequence and completeness are not topological concepts:
they depend on the specific pseudometric used in their definitions.

A topological space X is called topologically complete if it is complete with
respect to some compatible pseudometric.

2.1. Exercise. Suppose X is pseudometrizable. Any convergent sequence is Cauchy
with respect to any compatible pseudometric.

2.2. Exercise. Suppose X is compact and pseudometrizable and d is any com-
patible pseudometric. Then any d-Cauchy sequence in X converges. (hint: In a
pseudometric space compactness is equivalent to both countable compactness and
sequential compactness.)

2.3. Proposition. A pseudometrizable space X is compact if and only if it has a
pseudometric with respect to which X is complete and totally bounded. In case it
has such a pseudometric, X is complete and totally bounded with respect to any
compatible pseudometric.

Proof. In light of Exercises 1.8 and 2.2 we need only show that completeness and
totally boundedness with respect to a pseudometric d implies sequential compact-
ness.
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Suppose y0 is a sequence in X. Let X = ∪n1

j=1B(x1
j , 1). The sequence y0 is in at

least one of the balls in this union, which we will denote B1, infinitely often. Let
y1 be the subsequence of y0 formed by selecting the values of y0 which lie in B1.

Suppose we have sequences y0, . . . , yi with yk+1 a subsequence of yk for k =
0, . . . , i− 1. Suppose further that yk ⊂ Bk where each Bk is a ball of radius 2−k+1

for k = 1, . . . , i.

Find points xi+1
j for j = 1, . . . , ni+1 for which X = ∪ni+1

j=1 B(xi+1
j , 2−i). The

sequence yi is in at least one of these balls, which we denote Bi+1, infinitely often.
Let yi+1 be the subsequence of yi formed from the values of yi which lie in Bi+1.

We create in this way a sequence of subsequences of y0. The sequence x defined
by xn = yn0 is obviously Cauchy and so converges, and is a subsequence of y0. �

2.4. Exercise. Suppose X is a compact metric space and φ : X → X is an isometry.
Then X is onto. (hint: If not there is a ball B(p, ε) for some ε > 0 in open
X − φ(X). So d(p, φ(p)) ≥ ε. If we denote by φn the composition of φ with itself
n times, define the sequence pn = φn(p). Since X is compact there is a Cauchy
subsequence pni

. For this subsequence, if i < j and i is large enough d(pni
, pni

) < ε.
But since φ is an isometry this means d(p, pnj−ni

) < ε.)

Suppose X is a pseudometric space. A function φ : X → X is called a contrac-

tion on X if there is a number ε ∈ (0, 1) with d(x, y) ≤ ε d(φ(x), φ(y)) for all pairs
x, y ∈ X. Contractions are, of course, continuous.

A point p ∈ X is called a fixed point for any function f : X → X provided
f(p) = p.

2.5. Exercise. Banach Fixed Point Theorem If X is a complete metric space
and φ is a contraction on X then φ has exactly one fixed point. (hint: First show
that a contraction on a metric space can have no more than one fixed point. Then
select a point p ∈ X and form the sequence pn = φn(p). Show by repeated applica-
tion of the triangle inequality that this sequence is Cauchy and so must converge to
some x in complete X. Continuity of φ implies that the sequence φ(pn) converges
to φ(x). Conclude that x = φ(x).

To aid in the statement of next theorem, we make the the following definitions.
Suppose we have a sequence Sn, n ∈ N of closed nonempty subsets of a pseudo-
metric space. The sequence will be called a Cantor sequence if the diameter of
these sets converges to 0 and Sn ⊃ Sn+1 for each n. The intersection of this Cantor
sequence is

⋂∞
n=0 Sn.

2.6. Proposition. The Cantor Theorem A pseudometric space X is complete
exactly when every Cantor sequence in X has nonempty intersection.

Proof. First, if X is complete and Sn for n ∈ N forms a Cantor sequence then
selecting a point from each Sn produces a Cauchy sequence which converges to a
point in every one of the closed sets Sn.

Now suppose every Cantor sequence in X has nonempty intersection and p is
a Cauchy sequence in X. Let Sn = { pk | k ≥ n }. Then the Sn form a Cantor
sequence, and any point in the intersection of the sequence is a limit of p. �
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2.7. Exercise. (i) A closed subset of a complete pseudometric space is complete.

(ii) Think of a complete subset of a complete pseudometric space that is not
closed. What if the pseudometric is a metric?

(iii) Any closed subspace of R with the usual absolute value metric is complete.

(iv) Suppose (X, d) is complete and A,B are bounded nonempty subsets of X.
It is not true that d(A,B) = 0 implies A ∩ B 6= ∅. (hint: Let D be the metric in
R2 given by D(p, q) = 1∧ d(p, q) where d is the ordinary Euclidean distance. Let A
and B denote the two components of the graph of y = 1/x2.)

2.8. Proposition. Suppose Y is a complete pseudometric space, and Ai, i ∈ N is
a countable set of open dense subsets. Then

⋂∞
i=0 Ai is dense.

Proof. We will have the result if we can conclude that W ∩ (
⋂∞

i=0 Ai) is nonempty
for generic nonempty open W .

We know that W ∩A0 is open and nonempty so there is a ball B1 of radius not
exceeding 1 for which B1 ⊂ W ∩ A0. B1 is open so there is a ball B2 of radius
not exceeding 1

2 with B2 ⊂ B1 ∩A1. We iterate this process finding at each step a

closed ball Bi ⊂ Bi−1 ∩Ai−1 of radius not exceeding 1
i . We have created a Cantor

sequence of closed balls Bi and since X is complete this sequence has nonempty
intersection. A point in every Bi must be in every Ai and W too. The result
follows. �

2.9. Exercise. Baire Category Theorem (Part Two) A complete pseudo-
metric space Y is of second category. More generally, subsets of Y of first category
have empty interior.

Suppose (Y, d) is any metric space and X is any topological space. Let C(X,Y)
denote the set of continuous functions from X to Y . Suppose f is a generic function
from X to Y . By analogy with the discussion before Lemma ?? we say that a net
n : D → C(X,Y ) converges uniformly to f ∈ YX if

∀ε > 0 ∃ terminal segment Tε so that sup { d(f(x), nt(x)) | t ∈ Tε } < ε ∀x ∈ X.

The proof that f must be continuous if it is the limit of such a net in C(X,Y ) is
identical to the earlier argument from Lemma ??, where the special case of Y = R

is considered.

A subset S of C is called uniformly closed if S contains the limits of all
uniformly convergent nets in S.

Suppose now (Y, d) is any bounded metric space. For f, g ∈ C(X,Y ) define

dsup(f, g) = sup { d(f(x), g(x)) | x ∈ X }.
By choosing an x so that d(f(x), g(x)) is very close to dsup(f, g) and applying
the triangle inequality we see that dsup(f, g) ≤ dsup(f, h)+dsup(h, g) and the other
properties of a metric are obviously satisfied by dsup so dsup is a metric on C(X,Y ).

It is straightforward to see that a net n : D → C(X,Y ) converges to f uniformly
if and only if it converges to f in the metric topology from dsup. We conclude that
questions of closure and compactness in C(X,Y ) can be determined by examining
sequences and subsequences in C(X,Y ): generic nets are not required.
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We now impose the additional condition that (Y, d) be complete. In that case,
if fn for n ∈ N is a Cauchy sequence in C(X,Y ) and x ∈ X then fn(x) converges
to some member g(x) of Y for each x. The function g is the uniform limit of the
sequence and is therefore continuous itself. So C is complete.

We now drop the requirement that (Y, d) be a bounded metric space and instead
consider the set Cb(X,Y) of bounded continuous functions from X to Y . Just as
before, the limits of uniformly convergent nets in Cb(X,Y ) are in Cb(X,Y ). The
function dsup defined just as above is a metric on Cb(X,Y ) and a net in Cb(X,Y )
converges to g in the topology generated by this metric exactly when the net is
uniformly convergent to g. Cauchy sequences in Cb(X,Y ) converge in Cb(X,Y )
with the dsup metric when (Y, d) is complete.

In case X is compact (or countably compact), every function in C(X,Y ) is
bounded so Cb(X,Y ) coincides with C(X,Y ).

2.10. Exercise. Verify the statements made in the last few paragraphs.

Suppose A is a subset of the metric space X, Y is a metric space and g : A → Y .
The oscillation of g at x ∈ A is

osc(g)(x) = lim
n→∞

sup

{
e(g(z), g(y)) | y, z ∈ A ∩Bd

(
x,

1

n

)}

and where we assign the “value” ∞ to osc(g)(x) if the supremum involves an un-
bounded set for all n. When osc(g) is constantly 0, g is said to have zero oscilla-

tion.

It is obvious that if g is the restriction to A of a function that is continuous on
A then osc(g) is constantly 0. It is also clear that if g is continuous with subspace
topology on A then osc(g)(x) = 0 for every x ∈ A. There is a much more interesting
partial converse.

2.11. Lemma. Suppose (X, d) and (Y, e) are complete metric spaces and A has
subspace metric from X and is dense in X. A function f : A → Y can be extended
to a continuous function defined on X precisely when f has zero oscillation.

Proof. In view of the remarks above we need only show that the zero oscillation
condition allows us to extend f to a continuous function defined on all ofX. Assume
the condition.

There is a Cauchy sequence Sx in A converging to each x ∈ X − A. Since
osc(f)(x) = 0 and for any n the sequence Sx is eventually in Bd

(
x, 1

n

)
we conclude

that f ◦ Sx is Cauchy in complete Y and therefore converges to some member of
Y which we will denote F (x). If T x is another Cauchy sequence in A converging
to x it is easy to see that limn→∞ f ◦ T x

n = limn→∞ f ◦ Sx
n so F is well defined on

X −A. We now define F (x) = f(x) for x ∈ A.

If we can show that F is continuous, it will be the extension we want. Suppose
p ∈ X and Q is any sequence in X converging to p. For each n > 0 there is a
member Wn of A with d(Wn, Qn) < 1

n and also with e(F (Wn), F (Qn)) < 1
n . W

converges to p along with Q. This implies F ◦W = f ◦W converges to F (x). The
defining condition e(F (Wn), F (Qn)) <

1
n forces F ◦Q to converge too, and to this

same limit. �
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2.12. Proposition. Each metric space is isometric to a dense subset of a complete
metric space.

Proof. Let B denote the bounded continuous functions from the metric space (X, d)
to (R, e) where e is the usual absolute value metric. We concluded earlier that
(B, esup) is a complete metric space, and convergence with respect to esup is equiv-
alent to uniform convergence.

Select any particular point p ∈ X and for x ∈ X define Ψ(x) : X → R by
Ψ(x)(y) = d(y, x)− d(y, p). The triangle inequality implies

−d(x, p) ≤ d(y, x)− d(y, p) ≤ d(x, p)

so Ψ(x) is bounded. Ψ(x) is obviously continuous on X so Ψ: X → B. Also, Ψ is
one-to-one: if d(y, x) − d(y, p) = d(y, z) − d(y, p) for all y ∈ X then letting y = z
yields d(z, x) = 0 so x = z.

Now suppose x, z ∈ X. So Ψ(x)(y) − Ψ(z)(y) = d(y, x) − d(y, z). Once again,
the triangle inequality yields

−d(x, z) ≤ d(y, x)− d(y, z) ≤ d(x, z)

which puts an upper bound of d(x, z) on the magnitude of Ψ(x)(y)−Ψ(z)(y). That
upper bound is actually realized by setting y = z so Ψ: (X, d) → (B, esup) is an
isometry.

Ψ(X) is a dense subset of Ψ(X), a closed subset of the complete metric space

(B, esup). Ψ(X) is, itself, complete with subspace metric. �

If (X, d) is isometric to a dense subspace of complete metric space (Y,D) we call
(Y,D) a completion of (X,d). We have just discovered that completions always
exist. We now turn to the question of uniqueness of the completion.

2.13. Proposition. Suppose the metric space (X, d) is isometric to the dense subset
A, with subspace metric, of the complete metric space (Y,D) and also isometric to
the dense subset B, with subspace metric, of the complete metric space (Z,E). Then
(Y,D) and (Z,E) are isometric.

Proof. The isometries specified for (X, d) can be used to create an isometry f : A →
Z with f(A) = B. It is easily seen (once again, the triangle inequality) that f has
zero oscillation. By Lemma 2.11 the function f can be extended to a continuous
function F : Y → X.

Because continuous F is an isometry when restricted to A, and A is dense in Y ,
we find that F is actually an isometry on its whole domain Y .

By an identical argument, we can produce an isometry G : Z → Y with G◦f(p) =
p for every p ∈ A. Since G ◦ F is the identity on the dense set A it must be the
identity on all of Y , so G is onto Y and we find that Y and Z are isometric. �

2.14. Exercise. Here is an alternate construction of the completion. If (X, d) is a
metric space let S denote the set of all Cauchy sequences in X. For x, y ∈ S, write
f ≡ y when limn→∞ d(xn, yn) = 0. This is an equivalence relation on S. We will
denote by [x] the equivalence class containing the Cauchy sequence x. Let K denote
the set of all these equivalence classes. Define Φ: X → K by Φ(p) = [xp] where
xp is the constant (Cauchy) sequence xp

n = p for all n. Define the function D on
K×K by D([x], [y]) = limn→∞ d(xn, yn). Show that D is well defined and a metric
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on K. Show that K is complete with this metric. Show that Φ is an isometry. Show
that Φ(X) is dense in K.

2.15. Exercise. Suppose (X, d) is a pseudometric space. Motivated by the same
desire, as in the metric case, to provide limits for all Cauchy sequences in X by
embedding X in a “completion” and to extend nice enough functions defined on X
to this “completion,” what added problems do you encounter and how should you
proceed?

2.16. Exercise. Suppose F is a separating family of pseudometrics on a set X,
with the associated T2 topology. Create notions of Cauchy sequence, completeness
and completion in this situation, by analogy with the construction of Exercise 2.14.
Is there a Baire Category Theorem here?

Be aware that different but equivalent (in the sense that they generate the same
topology) families of pseudometrics can create different notions of “Cauchy.” Com-
pleteness depends on the specific family of pseudometrics in hand.

Two pseudometrics d1 and d2 on setX are called pseudometrically equivalent

if there are positive constants C1 and C2 for which C1d(x, y) ≤ d2(x, y) ≤ C2d1(x, y)
for all x, y ∈ X.

2.17. Exercise. (i) It is obvious that pseudometrically equivalent pseudometrics
are topologically equivalent, and that pseudometric equivalence is an equivalence
relation on the set of pseudometrics on X.

(ii) It is also true that the same sets are bounded with respect to either of a pair
of pseudometrically equivalent pseudometrics, and the same sequences are Cauchy,
and X is complete with respect to one of these pseudometrics exactly when it is
complete with respect to the other.

(iii) A function f : X → Y between two pseudometric spaces (X, d1) and (Y, e1)
retains the properties “uniformly continuous” or “Lipshitz” if either pseudometric
is replaced by a pseudometrically equivalent pseudometric.

3. Metrizability

The manifold consequences of pseudometrizability and the techniques available
in pseudometric spaces raise the question of when, exactly, is a topology compat-
ible with some pseudometric. The overview essay on metrization theory in Steen
and Seebach [?] gives some sense of the concerted effort from the years 1920-1960
devoted to understanding the correct setting and appropriate generality of these
questions. Though a reasonably satisfactory theory exists, questions remain. Ap-
proaches other than those described below exist, as well as a number of popular
variations obtained by rephrasing the covering conditions listed here.

3.1. Theorem. Suppose X is a topological space.
The following conditions are equivalent:

(i) X is metrizable.

(ii) The Nagata-Smirnov Metrization Theorem
X is regular and has a σ-locally finite base.
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(iii) The Arhangel’skǐı Metrization Theorem
X is T1 and there is a single sequence of open covers that is locally

starring for any open cover.

Proof. If X is metrizable with compatible metric d, the set

Mn =

{
Bd

(
x,

1

n

)
| x ∈ X

}

is an open cover of X for each integer n > 0.

StarM3n

(
Bd

(
x,

1

3n

))
⊂ Bd

(
x,

1

n

)
for each x and n > 0

and it follows easily that the sequence Mn is locally starring for any open cover.
We have shown that (i) implies (iii).

Assuming condition (iii), we know X is both regular and paracompact. If Jn,
n ∈ N, is a fixed sequence of open covers locally starring for any open cover, use
paracompactness to find for each n a locally finite open refinement Kn of Jn.

Now suppose x is a point and A 6= X is any open set containing x. Select
y ∈ X − A. Since X is regular, there are nonintersecting open sets C and D with
x ∈ C and y ∈ D. So {A,D } is an open cover of X. By assumption, there is an
open set V with x ∈ V and integer n with StarJn(V ) ⊂ A. So StarKn

(V ) ⊂ A.
This implies that the union of all the Kn forms a base for the topology, and we
have condition (ii).

We have arrived at the essential point: we need to show that if condition (ii)
holds for topological space X then X is metrizable.

We presume X to be regular and that An, n ∈ N, is a decomposition of a base A
for the topology as a countable collection of neighborhood finite collections of base
members. It is easy to see that this implies paracompactness, and we have already
shown that T2 plus paracompactness implies normality.

In fact, X is perfectly T4. To see this, let B be any nonempty open set. For
each n let Sn be the union of all the C with C ∈ An and with C ⊂ B. Since An is
locally finite, each Sn is closed. Also, since X is regular and the union of the An

constitute a base, each point in open B is in at least one of the Sn. We now see
that B = ∪n∈NSn is an Fσ set, and conclude that X is perfectly T4.

Without loss, we presume that An ∩ Am = ∅ when and only when n 6= m. For
A ∈ An create Urysohn function fA : X → [0, 1] with f−1

A (0) = X − A. This can
be done by normality and because each closed set is a Gδ.

For each A ∈ An define for each y ∈ X the number

gA(y) =
1

n+ 1

(
fA(y)

1 +
∑

B∈An
fB(y)

)
.

The sum in the denominator is finite and all functions involved are continuous and
nonnegative, so gA is continuous. We now define G : Y → [0, 1]A by G(y)(A) =
gA(y).

We will show that actually G(Y ) ⊂ l
2(Y ) and that G is a homeomorphism of Y

onto G(Y ) with subspace topology from the metric space l
2(Y ). The conclusion,

then, is that Y is metrizable.
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Suppose y ∈ Y . For each n, y is in only finitely many distinct members of An

and so is in only countably many members of A. Parenthetically, we note that Y
is CI . So

∑

A∈A

(G(y)(A))2 =
∑

n∈N

(
∑

A∈An

(G(y)(A))2

)
≤
∑

n∈N

(
∑

A∈An

G(y)(A)

)2

<
∑

n∈N

1

(n+ 1)2
.

Since the sum on the far right converges, G(y) ∈ l
2(Y ).

Now suppose x 6= y. Then there is a member A of A containing x but not y.
Then G(y)(A) = 0 but G(x)(A) 6= 0. So G is one-to-one.

Actually we can get a bit more from this. If W is a closed subset of Y and
x /∈ W then by regularity there is a set A ∈ An for some n which contains x but
does not intersect W . So ε = G(x)(A) > 0 and G(y)(A) = 0 for all y ∈ W . This
implies that d(G(x), G(W )) ≥ ε

n+1 where d is the metric on l
2(Y ). We conclude

that G(Y )−G(W ) is open in G(Y ) so G(K) is closed in G(Y ): we have shown that
G : Y → G(Y ) is a closed function onto its image space, as a subspace of l2(Y ).

It remains to verify that G is continuous.

If any neighborhood of p ∈ Y is a finite set then {p} itself is open, so if G(p) is in
any relatively open set in G(Y ), the inverse image of that open set is a neighborhood
of p.

We now assume every neighborhood of p is infinite.

For n = 0 let T0 be any neighborhood of p in one of the Ak(0).

Having picked neighborhood Tn of p in Ak(n) let Vn be the collection of all
members of Aj containing p for any j ≤ k(n). Let N(n) be the cardinality of this
set of neighborhoods. Select a neighborhood Hn of p inside the intersection of all
the members of Vn and so that

|G(y)(A)−G(p)(A)| < 1

N(n)(n+ 1)

whenever y ∈ Hn and for all A ∈ Vn. Continuity of each gA allows this choice of
Hn.

Now select Tn+1 to be a member of some Ak(n+1) contained in Hn and where
we insist k(n+ 1) > k(n).

We create by this process a nested collection of neighborhoods Tj , j ≥ 0 of p
drawn from A and with certain useful properties.

Suppose y is any point of Tn+1. We would like to discover thatG(y) ∈ Bd (G(p), ε(n))
for some expression ε(n) that converges to 0 as n becomes large. That would imply
that the inverse image under G of any open set containing G(p) is a neighborhood
of p. Since the only restriction we placed on p was that all of its neighborhoods are
infinite, and we took care of the finite neighborhood case above, we could deduce
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that G is continuous.

(d(G(p), G(y)))2 =

∞∑

j=0

∑

A∈Aj

(G(p)(A)−G(y)(A))2

=

k(n)∑

j=0

∑

A∈Aj

(G(p)(A)−G(y)(A))2 +

∞∑

j=k(n)+1

∑

A∈Aj

(G(p)(A)−G(y)(A))2

≤
k(n)∑

j=0

∑

A∈Aj

(G(p)(A)−G(y)(A))2 +

∞∑

j=k(n)+1

1

(j + 1)2

≤N(n)

(
1

N(n)(n+ 1)

)2

+

∞∑

j=k(n)+1

1

(j + 1)2

Both terms in this sum can be made as small as necessary by choosing n large
enough and the theorem is proved. �

This theorem provides some insight into the distinction between paracompact
spaces and metrizable spaces.

• We saw earlier that a space is regular and paracompact exactly when it is
T1 and T∗: that is, T1 and each open cover has a locally starring sequence.

• The Arhangel’skǐı condition says that metrizability is equivalent to T1 plus
the existence of a single sequence that is locally starring for any open
cover.

• In a similar vein, the Nagata-Smirnov condition states that metrizability
is equivalent to regularity and the existence of a σ-locally finite base. A
selection of members of this base could be used to produce a σ-locally finite
open refinement for any open cover you might encounter.

• Previously, we showed that in the presence of the T3 property, paracom-
pactness was equivalent merely to the existence of a σ-locally finite open
refinement for each open cover.

3.2. Exercise. The Nagata-Smirnov condition can be modified to produce an even
more compelling result. A regular topological space X is metrizable if and only if
it has a σ-discrete base: that is, there is a base A which can be decomposed as
a countable union of families An where each point in X has a neighborhood that
touches no more than one set in An for each n. This is called the Bing
Metrization Theorem. Review The Stone Theorem, Proposition 1.10, and prove
the Bing Metrization Theorem.

3.3. Corollary . The Urysohn Metrization Theorem
Among CII topological spaces, regularity
and metrizability are equivalent conditions.

Proof. This theorem follows by invocation of the Bing (or the Nagata-Smirnov)
Metrization Theorem. �

3.4. Exercise. A CII topological space is metrizable exactly when it is homeomor-
phic to a subspace of the Hilbert cube [0, 1]N.
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3.5. Exercise. If a topological space X is to be pseudometrizable, it is necessary
that {x} is either equal to or disjoint from {y} for each x, y ∈ X, because all
pseudometric spaces have this property. If this condition holds, the set of all these
closed sets {x} forms a partition P of X, which we give the quotient topology.
Conclude that X is pseudometrizable if and only if P is metrizable.

3.6. Exercise. Theorem 10.4 yields an important metrization result.

Suppose An, n ∈ N, is a countable family of open covers of X whose union
is a base for a T2 topology. Suppose for each n there is an m so that Am is a
barycentric refinement of An. Suppose that for any pair of these covers there is a
common refinement on the list of covers. Then X with this topology is metrizable.

3.7. Exercise. Dugundji [?] characterizes Tychonoff spaces as precisely those whose
topology is generated by a separating set of pseudometrics. Kelley [?] rephrases this
by describing Tychonoff spaces as precisely those homeomorphic to a subspace of a
cube [0, 1]Y for some index set Y , and later as exactly all subspaces of compact T2

spaces. The reader is invited to review the proof of Theorem 10.4 and consider the
equivalence of these conditions.

4. Two Topologies on Sets of Continuous Functions

Suppose X and Y are topological spaces. C(X,Y ), the set of continuous func-
tions from X to Y , is typically a rather sparse subset of Y X , the set of all functions
from X to Y . There are many topologies used for one reason or another on C(X,Y )
and we will consider two of them.

The compact-open topology on C(X,Y ) is that with subbase given by all
sets of the form NA,B = { f ∈ C(X,Y ) | f(A) ⊂ B } where A is any compact set
in X and B is any open set in Y .

If A1 ⊃ A2 then NA1,B ⊂ NA2,B and if B1 ⊃ B2 then NA,B1
⊃ NA,B2

.

4.1. Exercise. Suppose B is a subbase of Y and A is a collection of compact sets
in X with the property that whenever ∅ 6= A ⊂ V ⊂ X and A is compact and V is
open there is an integer n and sets Ai, i = 1, .., n in A with A ⊂ ⋃n

i=1 Ai ⊂ V .

Then the set of all NA,B with A ∈ A and B ∈ B is a subbase for the compact-open
topology.

The pointwise topology on C(X,Y ) is that with subbase given by all sets
of the form NA,B where A is any one point set in X and B is any open set in
Y . Since one point sets are compact, the compact-open topology is finer than the
pointwise topology. The pointwise topology is the subspace topology of C(X,Y )
as a subspace of Y X with product topology. Though the topology on Y X does not
depend on that of X, the set C(X,Y ) obviously does.

We will denote by C(X,Y)co the set C(X,Y ) with compact-open topology, and
by C(X,Y)pw this same set with pointwise topology.

4.2. Exercise. (i) If Φ: C(X,Y )pw → Z is continuous, then Φ: C(X,Y )co → Z
is too.

(ii) If f : E → C(X,Y )co is a net converging to φ ∈ C(X,Y ) then f : E →
C(X,Y )pw also converges to φ.
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(iii) It is not true that if a net f : E → C(X,Y )pw converges to a continuous
function φ that f : E → C(X,Y )co also converges to φ. Even if both X and Y are
compact metric spaces, pointwise convergence does not imply compact-open conver-
gence. Let X = Y = [0, 1] with the usual absolute value metric. The sequence f
given by

fn(x) =





(n+ 2)x, if 0 ≤ x ≤ 1
n+2 ;

−(n+ 2)x+ 2, if 1
n+2 < x ≤ 2

n+2 ;

0, otherwise.

provides a counterexample. f converges to the zero function in C(X,Y )pw, but
none of the functions fn is in the compact-open subbasic neighborhood N[0,1],[0,1/2)

of the zero function.

(iv) The linear ordering of R provides a very useful avenue to evade the issue of
part (iii) above. A net f : E → C(X,R) is called monotone if either a ≥ b implies
fa(x) ≥ fb(x) for all x ∈ X or a ≥ b implies fa(x) ≤ fb(x) for all x ∈ X.

Show that if X is compact and the monotone net f : E → C(X,R) con-
verges pointwise to a member of C(X,R) then the net converges uniformly to
this limit function.

Define the evaluation map e : X×C(X,Y ) → Y by e(x, f) = f(x), and for each
x define the evaluation map at x to be ex : C(X,Y ) → Y via ex(f) = e(x, f).

Define the composition function ◦ : C(Y,Z)×C(X,Y ) → C(X,Z) to be the
obvious choice: send (f, g) to f ◦ g.
4.3. Lemma. (i) ◦ : C(Y,Z)co×C(X,Y )co → C(X,Z)co is continuous when X,Y
and Z are all T2 and Y is locally compact.

(ii) Each ex : C(X,Y )pw → Y is continuous. So each ex : C(X,Y )co → Y is
continuous.

(iii) e : X × C(X,Y )co → Y is continuous when X is locally compact.

Proof. Suppose f ∈ C(X,Y ) and g ∈ C(Y,Z). Let NA,B be a subbasic compact-
open neighborhood of g ◦ f : that is, A is compact in X and B is open in Z and
g ◦ f(A) ⊂ B. Note that g−1(B) is open in Y and f(A) is compact and contained
in g−1(B). Since Y has a compact neighborhood base, f(A) can be covered by a
finite collection of open sets whose closures lie in g−1(B). Let W be the union of
this finite cover of open sets. It follows that NW,B) × NA,W is a neighborhood of

(g, f) taken by ◦ into NA,B . Continuity of ◦ follows. Items (ii) and (iii) are left as
exercises. �

With any function F : X×Y → Z there is associated a unique function F̃ : X →
ZY , related by F̃ (x)(y) = F (x, y). This association sets up a one-to-one and
onto map ˜: ZX×Y → (ZY )X . Identified functions are called associates and the
identification is called the association map.

4.4. Lemma. If X,Y and Z are T2 and Y is locally compact then

F ∈ C(X × Y,Z) if and only if F̃ ∈ C(X,C(Y,Z)co).

Proof. The proof is left as a (rather difficult) exercise. See Dugundji [?]. �

4.5. Proposition. If X,Y and Z are T2 and Y is locally compact, the association
map ˜: C(X × Y,Z)co → C(X,C(Y,Z)co)co is a homeomorphism.
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Proof. The proof is also left as another (hard) exercise. Again, for reference we
recommend Dugundji [?]. �

4.6. Exercise. The following exercises refer to pointwise addition and multiplica-
tion of functions, restricted to the subset C(Y,R) of RY .

(i) Are + : C(Y,R)co×C(Y,R)co → C(Y,R)co and + : C(Y,R)pw×C(Y,R)pw →
C(Y,R)pw continuous?

(ii)Are · : C(Y,R)co×C(Y,R)co → C(Y,R)co and · : C(Y,R)pw×C(Y,R)pw →
C(Y,R)pw continuous?

4.7. Exercise. Under certain circumstances, C(X,Y )co is a metric topology.

(i) If X is compact and Y has a topology generated by metric d then, as we saw in
the remarks preceding Exercise 2.10, there is a metric topology on the set C(X,Y )
denoted dsup and defined by dsup(f, g) = sup{ d(f(x), g(x)) | x ∈ X }. Show that
this metric is compatible with the compact-open topology on C(X,Y ). Convergence
in this metric space is equivalent to uniform convergence.

(ii) Even if X itself is not compact, when Y is a metric topology and if K is com-
pact in X you do have a metric dK on C(K,Y ) given by dK(f, g) = sup{ d(f(x), g(x)) |
x ∈ K }. With this definition and if X is locally compact, convergence of a net ν
in the compact-open topology is equivalent to uniform convergence of the net of re-
stricted functions ν|K with respect to dK for every compact subset K of X. It is
for this reason that the compact-open topology on C(X,Y ) is sometimes called “the
topology of uniform convergence on compacta.” Local compactness of X is
required to guarantee that a function which is a uniform limit on each compact sub-
set K (and therefore continuous when restricted to each compact K with subspace
topology) is actually continuous on all of X.

(iii) Suppose X is σ-compact and locally compact and Y has a topology generated
by metric d. Then there is a chain of compact sets Ki for i ∈ N and with Ki

contained in the interior of Ki+1 for each i and with X =
⋃

i∈N
Ki. For each i

define di to be the pseudometric di(f, g) = sup{ d(f(x), g(x)) | x ∈ Ki }. Show
that the set of all these pseudometrics is separating. Consider Exercise 1.16 and
conclude this is a metric topology. Show that this metric is compatible with the
compact-open topology.

5. The Gelfand-Kolmogoroff Theorem and Other Stories

The following propositions, of particular interest to analysts, relate topological
properties on a topological space to algebraic and order properties on the ring of
real valued continuous functions on the space.

We call upon a number of standard results from algebra (including facts about
the prime ideal space of a ring with the Zariski topology from Section ??) and
topology during the discussion. Proofs of these may be found in Appendices ??

and ??.

We will find that when a space X is compact and T2, purely algebraic properties
of the ring of continuous real valued functions on X carry enough information to
determine the topology. A review of the related Stone-Čech compactification results
and Exercise ?? would be useful here.
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Suppose C(X,R) is the ring of continuous real valued functions on any topolog-
ical space X. This ring has multiplicative identity function which we denote 1X .
We will collect a few elementary facts about this ring as a “warm-up” to the main
discussion.

5.1. Lemma. Suppose X and Y are any pair of topological spaces. If H : C(Y,R) →
C(X,R) is a ring homomorphism then

H(cf) = cH(f) for any f ∈ C(Y,R) and c ∈ R.

In other words, ring homomorphisms are actually algebra homomorphisms for rings
of this type.

Proof. To see this note first for nonzero integers p and q that

qH

(
p

q
1Y

)
= H(p1Y ) = pH(1Y )

so the result holds for rational c and the function 1Y . Now suppose a, b are any
real numbers and a < b. There is a c with b− a = c2. Then

H(b1Y )−H(a1Y ) = H(c1Y c1Y ) = (H(c1Y ))
2

which is a nonnegative function so H(a1Y ) ≤ H(b1Y ). Since rH(1Y ) = H(r1Y ) for
rational r this inequality implies aH(1Y ) = H(a1Y ) for all a. Finally, if f ∈ C(Y,R)
and c ∈ R we find that

cH(f) = cH(1Y )H(f) = H(c1Y )H(f) = H(c1Y f) = H(cf).

�

5.2. Exercise. Suppose X and Y are any pair of topological spaces and
H : C(Y,R) → C(X,R) is a ring homomorphism.

(i) H is order preserving: that is, f ≤ g implies H(f) ≤ H(g). (hint: If 0 ≤ g ∈
C(Y,R) then

√
g is continuous.)

(ii) If f is a bounded function then so is H(f). (hint: The function H(1Y ) can
only have two possible values: 0 or 1. If 0 ≤ f ≤ n1Y for positive integer n then
n1Y − f ≥ 0.)

5.3. Exercise. Suppose X is a topological spaces and SX is the set of all nonzero
ring homomorphisms G : C(X,R) → R with the pointwise topology. SX is a topo-
logical subspace of the product space RC(X,R).

(i) Ker(G) is a maximal ideal in C(X,R) for every G ∈ SX , and every maximal
ideal in C(X,R) is the kernel of some member of SX .

(ii) G(1X) = 1 for each G ∈ SX .

For each p ∈ X consider the evaluation homomorphisms ep : C(X,R) → R de-
fined by ep(f) = f(p). Since c1X is continuous for each real constant c, each ep
is onto the field R so Ker(ep), which we will denote Mp, is a maximal ideal in
C(X,R). We find that the Jacobson radical consist of the zero function alone in
this ring.

In fact, if X is compact any maximal ideal is of the form Mp for some p. For
if J is an ideal in C(X,R) and there is no point in X at which all members of J
are 0, then for each p ∈ X there is a continuous function fp and a neighborhood
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Np of p with fp(Np) ⊂ [1,∞). The set of all these Np cover X, and since X is
compact there is a finite subcover Np1

, . . . , Npn
of X. So the positive function

f =
∑n

i=1 f
2
pi

is a member of J . Also, the reciprocal g of f is a member of C(X,R).
So gf = 1X ∈ J and we conclude that J = C(X,R). So there is a point p in X at
which every member of any maximal ideal M (or any other proper ideal, for that
matter) vanishes. Since Mp is a maximal ideal and contains M we find M = Mp.

With these facts in hand, we proceed to the main result of the section. The fol-
lowing proposition tells us, foremost, that the algebraic structure on Max(C(X,R))
determines the topology on X if X is compact. Second, it provides a way of think-
ing about the Zariski topology on Max(C(X,R)) in terms of the more transparent
pointwise topology on SX , with which Max(C(X,R)) is shown to be homeomorphic
in the case of compact X.

5.4. Proposition. (The Gelfand-Kolmogoroff Theorem) Suppose X is a com-
pact T2 topological space.

The function ΦX : X → Max(C(X,R)) via ΦX(p) = Mp is a homeomorphism.

The function ΨX : X → SX via ΨX(p) = ep is a homeomorphism.

Proof. We saw in the remarks above that ΦX and ΨX are one-to-one and onto.

Sets of maximal ideals of the form Af = Out(f)∩Max(C(X,R)) for f ∈ C(X,R)
constitute, by definition, a base for the topology on Max(C(X,R)).

Because X is normal, sets of the form Bf = X − f−1(0) for f ∈ C(X,R)
constitute a base for the topology on X.

Note that ΦX(Bf ) = Af . We conclude that ΦX is a homeomorphism.

Note that SX is T2 because X is compact and T2: all members of SX are of the
form ep, and a net in SX converges exactly when the corresponding net of “evalua-
tion points” converge in X. Continuity of ΨX is easy to show, and because ΨX is
one-to-one and onto with T2 range and compact domain it is a homeomorphism. �

Let’s consider now a continuous function W : X → Y for generic X and Y . W
induces a ring homomorphism

W̃ : C(Y,R) → C(X,R) defined by W̃ (f) = f ◦W.

The homomorphism W̃ itself induces a continuous function

W ∗ : Spec(C(X,R)) → Spec(C(Y,R))

defined by W ∗(P ) = W̃−1(P ) = { f | f ◦W ∈ P }.

It is immediate that if W is a homeomorphism then W̃ is an isomorphism.

Below we reprise some of the material in Exercise ?? in our specific context.

5.5. Exercise. We will presume X and Y are both compact and T2 and
W : X → Y is continuous.

(i) If W is one-to-one then W is a homeomorphism onto its image W (X) (see
Exercise ??) which is closed in normal Y . The Tietse Extension Theorem then

implies that W̃ is onto C(X,R): that is, every continuous f : X → R can be written
as g ◦W for some continuous g : Y → R.
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(ii) When W̃ is onto C(X,R), W ∗(M) is a maximal ideal in C(Y,R) whenever M
is a maximal ideal in C(X,R). We find that W ∗ : Spec(C(X,R)) → Spec(C(Y,R))
is one-to-one and continuous, and is also one-to-one and continuous as a function
from the subspace Max(C(X,R)) into the subspace Max(C(Y,R)).

(iii) If W is not onto Y then there is a continuous function defined on Y which
is zero on the closed set W (X) but nonzero somewhere on Y −W (X). This means

that Ker
(
W̃
)

contains more than the zero function 0 1Y and we find that W̃ is

not an isomorphism onto its image.

(iv) If Ker
(
W̃
)
contains a function f other than the zero function, then there

is a maximal ideal which does not contain f and in particular, Ker
(
W̃
)
is not a

subset of Jac(C(Y,R)) = {0(1Y )}. This means the image of W ∗ fails to contain this

maximal ideal or, in fact, any prime ideal containing f . (Note: any f ∈ Ker
(
W̃
)

must be zero somewhere unless W̃ is the zero homomorphism.)

(v) On the other hand, if W is onto Y then W̃ has trivial kernel and we find
that W ∗(Max(C(X,R)) = Max(C(Y,R)).

(vi) If W is both one-to-one and onto then it is a homeomorphism and W ∗ is a
homeomorphism.

Finally, we have an interesting result adapted from the treatment of Dugundji
regarding the sole source of ring homomorphisms between function spaces of the
kind we are examining.

5.6. Exercise. Suppose θ : C(X,R) → C(Y,R) is any function. Give

R
C(Y,R) and R

C(X,R)

the product topology: that is, the topology of pointwise convergence.

(i) The map

Θ: RC(Y,R) → R
C(X,R) defined by Θ(ω) = ω ◦ θ

is continuous. (hint: See Exercise ??.)

(ii) If Θ(SY ) ⊂ SX then the restriction of Θ to SY is continuous.

5.7. Corollary . Suppose X and Y are compact T2 topological spaces and θ : C(Y,R) →
C(X,R) is a ring homomorphism with θ(1Y ) = 1X . Then there is a unique

W ∈ C(X,Y ) with θ = W̃ . Moreover, if θ is an isomorphism then W is a homeo-
morphism.

Proof. For each ex ∈ SX the function Θ(ex) on C(Y,R) defined by sending f to
ex(θ(f)) is a real valued ring homomorphism on C(Y,R). ex(θ(1Y )) = 1 so this
homomorphism is not trivial and corresponds to a member ey ∈ SY . Define W (x)
to be this y: that is,

W = Ψ−1
Y ◦Θ ◦ΨX

which is the composition of continuous functions and therefore is itself continuous.

The proof that W is a homeomorphism if θ is an isomorphism we leave as an
exercise. �
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5.8. Exercise. (i) To what extent is the result from above true when the condition
H(1Y ) = 1X is dropped?

(ii) Show that X is connected exactly when C(X,R) is not the internal direct sum
of two nontrivial proper ideals. Rephrasing, this means there exist two proper ideals
J,K of C(X,R) so that for each f ∈ C(X,R) there exist unique members j ∈ J
and k ∈ K with f = j + k exactly when X is not connected.

Complete success in adapting the program from above to deal with non-compact
spaces cannot be expected. An example from Dugundji, [?], illustrates this. Let
Ω denote the first uncountable ordinal and endow intervals of ordinals with or-
der topology. In Exercise ?? we found that C([0,Ω),R) is essentially identical to
C([0,Ω],R), because any member of C([0,Ω),R) is eventually constant. Yet [0,Ω]
is compact while [0,Ω) is not, so these underlying spaces are not homeomorphic.
In this case [0,Ω) itself has nice properties. It is, for instance, normal and so
Tychonoff.

However, any Tychonoff space will have a Stone-Čech compactification and the
results above apply to this compactification. Maximal ideals there correspond to
sets of functions with a common 0 at individual points of the compactification.
Using this and other tools, the beautiful results of this section have been pushed
much further and the reader is invited to examine two different approaches to
these issues (different from each other and from that of this section) in Gillman
and Jerison, Rings of Continuous Functions [?] and Beckenstein, Narici and Suffel,
Topological Algebras [?].

We find in those sources, for instance, that the ideal structure of Cb(X,R), the
bounded real valued continuous functions on non-compact X, can be markedly
more complex than that of C(X,R). If X is Tychonoff, we know that each mem-
ber of Cb(X,R) can be extended to a unique member of C(Y,R), where Y is the
Stone-Čech compactification of X. These two sets of functions are ring isomor-
phic. We have seen in this section that Max(C(Y,R)) is homeomorphic to the
compactification Y .

6. Ascoli’s Theorem

We will now suppose that X is any topological space and Y is a metric space
and suppose given a nonempty subset F of C(X,Y ). We endow F with subspace

topology from C(X,Y )co. We will be concerned with F and by that we will mean
the compact-open closure in C(X,Y )co.

If ε > 0, an open set N ⊂ X is called a neighborhood of ε-equicontinuity
for F if diam(f(N)) < ε for all f ∈ F.

F is called equicontinuous at p if p has a neighborhood which is a neighbor-
hood of ε-equicontinuity for F for every ε > 0.

Finally, F is called equicontinuous if it is equicontinuous at each p ∈ X.

6.1. Lemma. Suppose F is equicontinuous and f : E → F is a net in F. Suppose
further that for each x ∈ X the net ex ◦ f converges to some point φ(x) ∈ Y .

(i) φ is continuous.
(ii) If Np is a neighborhood of ε-equicontinuity for F then Np is a neighborhood

of 3ε-equicontinuity for {φ}.
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(iii) f converges to φ in C(X,Y )co.

Proof. Fix ε > 0. Let N be a neighborhood of ε-equicontinuity for F. Suppose y
and z are in N . Since the nets f(y) and f(z) converge to φ(y) and φ(z), respectively,
there is a ∈ E so that b ≥ a implies both d(fb(y), φ(y)) < ε and d(fb(z), φ(z)) < ε.
We find

d(φ(y), φ(z)) ≤ d(φ(y), fb(y)) + d(fb(y), fb(z)) + d(fb(z), φ(z)) < 3ε.

So d(φ(y), φ(z)) < 3ε. We have shown both (i) and (ii).

Now suppose φ is in the basic compact-open neighborhood NA,B . Since φ(A)
is compact the distance between φ(A) and Y − B is 5ε for some ε > 0. For each
z ∈ A let Nz be a neighborhood of z and a neighborhood of ε-equicontinuity for
F. Extract a finite subcover Nzi for i = 1, . . . , n of A. Find a ∈ E so that b ≥ a
implies d(fb(zi), φ(zi)) < ε for all i = 1, . . . , n. So if y ∈ A it must be in one of the
Nzi and we have

d(fb(y), φ(y)) ≤ d(fb(y), fb(zi)) + d(fb(zi), φ(zi)) + d(φ(zi), φ(y)) < ε+ ε+ 3ε.

So b ≥ a implies fb ∈ NA,B . So the net is eventually in this compact open neigh-
borhood of φ. So f converges to φ in this topology. �

6.2. Exercise. If a net f in equicontinuous F converges to φ in C(X,Y )co then f
converges to φ in C(X,Y )pw so the lemma above applies. So if N is a neighborhood

of ε-continuity for F then N is a neighborhood of 3ε-continuity for F, the compact-
open closure of F. So F is equicontinuous exactly when F is equicontinuous.

6.3. Theorem. (Ascoli’s Theorem)

Suppose F ⊂ C(X,Y )co and { f(p) | f ∈ F } is compact in Y for each p ∈ X. Then

F is compact in C(X,Y )co.

Proof. Suppose f is a universal net in F. Since evaluation at a point is continuous
we have

{ f(x) | f ∈ F } ⊂ { f(x) | f ∈ F }.
Thus f(x) is universal in compact { f(x) | f ∈ F } for all x ∈ X. So f(x) converges

to a point φ(x) ∈ { f(x) | f ∈ F } for each x ∈ X.

By the exercise above, F is equicontinuous, and by the lemma above φ is con-

tinuous and f converges to φ in the compact-open topology. Since F = F we find
that φ ∈ F. So universal nets in F converge in F, and we conclude that F is
compact. �

7. The Stone-Weierstrass Theorem

We begin with a very special case of the main theorem.

For each ε with 0 ≤ ε < 1, the domain of the functions in C([ε, 1],R) is compact
and the range is complete. So the topology of uniform convergence is a complete
metric topology, generated by metric dε defined by dε(f, g) = sup{ |f(x) − g(x)| |
x ∈ [ε, 1] }.

We are going to be interested in

Cε =

{
f ∈ C([ε, 1],R)

∣∣∣∣
1

2
I(x) ≤ f(x) ≤ 1

2
+

1

2
I(x) ∀x ∈ [ε, 1]

}
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where I is the identity function on [0, 1]. Note: we restrict I or any other func-
tion defined on [0, 1] to smaller intervals as appropriate and without notational
indication.

Cε is a closed subset of C([ε, 1],R), and so is itself a complete metric space with
subspace metric.

7.1. Lemma. With C0 as above, there is a sequence of members of C0 which are
polynomials (with no constant term) in the function I and which converge uniformly

to
√
I in C0.

Proof. Suppose 0 < ε < 1. For each f ∈ Cε define Tε(f) = f + 1
2 (I− f2).

If H(t) = t + 1
2 (x − t2) then for 0 ≤ t ≤ 1 we find that dH

dt (t) = 1 − t ≥ 0.

Since H(0) = 1
2x and H(1) = 1

2 + 1
2x, it follows that for any t between 0 and 1,

1
2x ≤ H(t) ≤ 1

2 + 1
2x.

So Tε : Cε → Cε. Also, nonnegativity of the derivative above implies that
Tε(f)(x) ≥ f(x) for each x ∈ Cε.

Note also that if f, g ∈ Cε then

dε(Tε(f), Tε(g)) = sup

{ ∣∣∣∣f(x)−
1

2
f2(x)− g(x) +

1

2
g2(x)

∣∣∣∣
∣∣∣∣ x ∈ [ε, 1]

}

=sup

{ ∣∣∣∣(f(x)− g(x))(1− 1

2
(f(x) + g(x)))

∣∣∣∣
∣∣∣∣ x ∈ [ε, 1]

}

≤(1− ε) d(f, g).

Since Tε is a contraction, it has a unique fixed point, which is obviously
√
I. The

sequence fi = T i
ε(I) must converge uniformly to this fixed point in Cε. Each fi is

created explicitly as a polynomial (with no constant term) in I.

The sequence fi is monotone and converges pointwise to
√
I on compact [0, 1] so

the convergence is uniform. �

7.2. Corollary . If X is compact and S is a uniformly closed subR-algebra of
C(X,R) and if f, g ∈ S then f ∨ g and f ∧ g are in S.

Proof. Suppose f ∈ S. Let K be a positive number for which K2 exceeds the
maximum value of f2 on X. By the lemma above, every uniform neighborhood of
the function

|f |
K

=

√
f2

K2

contains a polynomial (with no constant term) evaluated at f , and all these poly-

nomials are in the algebra S. Since S is closed, K |f |
K = |f | ∈ S. So f ∨ 0 = f+|f |

2

and f ∧ 0 = f−|f |
2 are in S.

So if f, g ∈ S, f ∨ g = f + (g − f) ∨ 0 and f ∧ g = f + (g − f) ∧ 0 are in S. �

7.3. Theorem. (The Stone-Weierstrass Theorem) Suppose S is a subR-
algebra of C(X,R) containing 1X and suppose S distinguishes points. Then S is
dense in C(X,R) with compact-open topology.
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Proof. Note that since addition and multiplication, as a functions from
C(X,R)co ×C(X,R)co to C(X,R)co, are continuous the compact-open closure S is
a subR-algebra of C(X,R) whenever S is.

Also, if S is dense in C(X,R) then C(X,R) = S. So if we can find a member of
S in every basic open neighborhood of C(X,R) when S = S we will have proven
the theorem.

As a second simplification, it suffices to prove the theorem when X is compact.
For if we have that, and if X is a more general topological space and if f is in the
compact-open basic neighborhood N =

⋂n
i=1 NAi,Bi

let ε be the least distance of
compact set f(Ai) to closed set R−Bi for i = 1, . . . , n.

From our simplifying assumption, we can find a member g of S within a uniform
ε-neighborhood of f , where all functions involved are thought of as restricted to
the compact set

⋃n
i=1 Ai. But then g ∈ N .

So we assume S = S and X is compact.

Suppose f ∈ C(X,R). Since the algebra S distinguishes points and contains
1X , for each x, y ∈ X there is a function Hx,y ∈ S with Hx,y(x) = f(x) and
Hx,y(y) = f(y). For ε > 0 let Nx,y = {x ∈ X | |Hx,y(x) − f(x)| < ε }. For
each fixed y and various x, these sets cover X. Extract a finite subcover Nxi,y for
i− 1, . . . , ny.

Let Hy = Hx1,y ∧ · · · ∧Hxny ,y
. Each Hy is in S because S is uniformly closed.

By construction, Hy(x) cannot exceed f(x) + ε anywhere on X. And for x in the
set Ny =

⋂ny

i=1 Nxi,y the numbers Hy(x) cannot be less than f(x)− ε.

Extract a finite subcover Ny1
, . . . , Nyn

of X from among these Ny.

Once again, because S is closed the function H = Hy1
∨ · · · ∨Hyn

is in S and by
construction is within ε of f on all of X. The result follows. �

7.4. Exercise. What can be said if the condition 1X ∈ S is removed from the
conditions in the Stone-Weierstrass Theorem?

7.5. Exercise. Suppose X is a compact subset of Rn and the set C(X,R) is given
the compact-open topology: the topology of uniform convergence. Let Xk be the
function that returns the kth coordinate of a point in X. Then the algebra gener-
ated by the set { 1X , X1, . . . , Xn } is dense in C(X,R)co : that is, any continuous
function can be uniformly approximated by a polynomial on any compact subset of
Rn.

It is one thing to assert that there is a polynomial uniformly close to any contin-
uous function f : [0, 1] → R and quite another to actually produce such a function.
Note that for positive integer n

1 = (x+ (1− x))n =
n∑

i=0

(
n

i

)
xi(1− x)n−i

is a partition of unity on [0, 1]. Weighting the polynomial summands by f
(
i
n

)
yields

the nth Bernstein polynomial for f ,
n∑

i=0

(
n

i

)
xi(1− x)n−if

(
i

n

)
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which can be shown by a clever but completely elementary argument (see, for
example, George F. Simmons’ book Introduction to Topology and Modern Analysis
[?]) to converge to f .

7.6. Exercise. Suppose X is a compact T2 space. X is metrizable if and only if
C(X,R)co is separable.

8. Elementary Results on Topological Groups

For the material of the next two sections the primary references are Pontryagin,
Topological Groups, 2nd Ed. [?] and Nachbin, The Haar Integral [?] and Chevalley,
Theory of Lie Groups [?].

A topological group is a triple (G, ·,T) where (G,T) is a topological space and
(G, ·) is a group and for which

Mult : G×G → G defined by Mult(h, g) = h · g is continuous and

Inv : G → G defined by Inv(g) = g−1 is a homeomorphism

where G×G has product topology.

8.1. Exercise. The assumption of continuity for the group operation and the in-
verse operation can be replaced, equivalently, by the single assumption

Combo : G×G → G defined by Combo(h, g) = h · g−1 is continuous.

Any subgroup of a topological group is itself a topological group with subspace
topology. A product group formed from an indexed set of topological groups is a
topological group with product topology.

In this section and the next we presume that G is the underlying set

of a topological group with identity e.

If A and B are subsets of G we define AB and gA and Ag in the obvious ways
and define A−1 = {g−1 | g ∈ G}. So (AB)−1 = B−1A−1 and (A−1)−1 = A and
(AB)C = A(BC).

If A ⊂ P(G) and g ∈ G define gA = {gA | A ∈ A} and define Ag similarly.

We define N to be the set of open neighborhoods of e. If g ∈ G and A is a
neighborhood of g then Ag−1 is a neighborhood of e. It follows then that Ng is the
set of all open neighborhoods of g, and gN = Ng.

8.2. Exercise. In this exercise A and B are subsets of G and x, y ∈ G.

(i) A is open if and only if A−1 is open.

(ii) A ∈ Ny exactly when A−1 ∈ Ny−1.

(iii) A is a neighborhood of x if and only if x−1A is a neighborhood of e.

(iv) If A is open then AB and BA are open.

(v) If A contains x and B contains y and A or B is open then AB ∈ Nxy.

(vi) Nx = {xA | A ∈ N} = {Ax | A ∈ N}.
(vii) For each neighborhood C of xy there is A ∈ Nx and B ∈ Ny with AB ⊂ C.

(viii) If A is closed then so is A−1.

(ix) If A is closed and B is compact then AB is closed.
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(x) If A is compact then so are A−1 and xA and Ax.

(xi) If A is connected then so are A−1 and xA and Ax.

(xii) A net n in G converges to p if and only if np−1 converges to e.

We point out here that the Exercise 8.2 implies that a neighborhood base at e
entirely determines the topology on G. This has powerful implications.

8.3. Exercise. (i) If e has a compact neighborhood then G is locally compact.

(ii) If e has a neighborhood base consisting of connected sets then G is locally
connected.

(iii) If V is the connected component containing e then V −1 = V and gV is the
connected component containing g.

(iv) If V is the connected component containing e then V is a topologically closed
and an algebraically normal subgroup of G. Note: We distinguish by context the
group theoretic and topological meanings of the word “normal” in a topological
group.

(v) Suppose e has a compact neighborhood and G is separable. Then G is σ-
compact.

8.4. Exercise. (i) If A and B are compact in G then AB is compact. (hint: Apply
Tychonoff’s Theorem and use the fact that the image under a continuous function
of a compact set is compact.)

(ii) Suppose A is compact and A generates G. This means that G =
⋃∞

i=1 A
i.

So G is σ-compact.

(iii) If A is any neighborhood of e and G is connected then G =
⋃∞

i=1 A
i.

(iv) If A is any connected neighborhood of e then
⋃∞

i=1 A
i is the connected com-

ponent containing e.

Let M denote the members A ∈ N with A = A−1. These are called symmetric

open neighborhoods of e. M is, actually, the set of all A ∩A−1 for A ∈ N.

8.5. Exercise. For this exercise A and B are subsets of G and g, x, y ∈ G

(i) gM = Mg, and this set is a neighborhood base at g.

(ii) If e has a countable neighborhood base then e has a countable nested neigh-
borhood base of symmetric open sets.

(iii) If e has a countable neighborhood base then G is CI .

(iv) For each x, y ∈ G and each neighborhood C of xy there is a single set
A ∈ M for which all six of the sets xyAA, xAyA, xAAy, AxyA, AxAy and AAxy
are contained in C. (hint: Use continuity of Mult to find a set in M of each type
and take the intersection of all of them.)

(v) In particular, since ee = e this implies that for any C ∈ N there is an A ∈ M

with AA ⊂ C.

(vi) For any C ∈ N there is an A ∈ M with An ⊂ C.

(vii) Suppose C ∈ N. Then C ⊂ CC−1. (hint: Pick p ∈ C. Then pC ∈ Np so
(pC) ∩ C 6= ∅. So there are x, y ∈ C with px = y. So p = yx−1 ∈ CC−1.)
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(viii) For any C ∈ N there is an A ∈ M for which A ⊂ AA ⊂ C.

(ix) It now is easy to show that topological groups are T3. It is more difficult
to prove but true (implied by Proposition 9.9 in the next section) that topological
groups are CR.

(x) If G is T0 then G is T2.

(xi) G is T2 if and only if {e} is closed.

8.6. Exercise. (i) If B is any neighborhood base at e and S ⊂ G, show that

S =
⋂

B∈B

BS.

(hint: If p ∈ S then every neighborhood of p contains a point of S. Each B−1p
for B ∈ B is a neighborhood of p, so there is s ∈ S and b ∈ B with s = b−1p. So
p ∈ BS. Since this can be done for every B ∈ B we conclude that S ⊂

⋂
B∈B

BS.
On the other hand, suppose p ∈ ⋂B∈B

BS and J ∈ Np. If we can find a member of

S in J we will have S ⊃
⋂

B∈B
BS. Since J is open there is a member M of M with

Mp ⊂ J . So there is a B ∈ B with B ⊂ M and then we have both Bp ⊂ Mp ⊂ J
and also B−1p ⊂ Mp ⊂ J . By assumption p = bs for some s ∈ S and b ∈ B so
b−1p = b−1bs = s ∈ J .)

(ii) If G is CI then every closed set is a Gδ set.

8.7. Exercise. Suppose H is a subgroup of G.

(i) H is a subgroup of G.

(ii) If H is a normal subgroup of G then H is a normal subgroup of G.

(iii) The center of G is closed.

(iv) If H is open then H is closed.

(v) If H is normal and discrete and G is connected then H is a subset of the
center of G. (hint: If H is normal then gHg−1 = H for each g ∈ G. If h ∈ H
find A ∈ M with AhA = {h}. In particular, aha−1 = h for all a ∈ A. Since
G =

⋃∞
i=1 A

i we find that h commutes with all members of G.)

Both continuous functions and homomorphisms between topological groups are
important, as you might expect.

8.8. Exercise. (i) Suppose f ∈ Hom(G,H) where G and H are topological groups.
If f is continuous and H is T2 then Ker(f) is closed.

(ii) For a ∈ G define La : G → G by La(g) = ag and Ra : G → G by Ra(g) = ga.
These maps are called, respectively, the left and right translations by a. These
functions are homeomorphisms. The set of left translations forms a group with
composition. So does the set of right translations.

(iii) Inner automorphisms are homeomorphisms on any topological group.

(iv) Suppose f ∈ Hom(G,H) where G and H are topological groups. f is con-
tinuous if and only if f−1(A) ∈ N for each A ∈ M, where in this case M denotes
the symmetric open neighborhoods of e in H and N denotes the open neighborhoods
of e in G.
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Any topological spaceX is called homogeneous if for each pair x, y ∈ X there is
a homeomorphism h : X → X with h(x) = y. The quality of being a homogeneous
topological space is referred to as homogeneity.

Any set of homeomorphisms from X onto X generates a group of homeomor-
phisms. In the context of algebraic group theory, this set acts on X by function
evaluation. Using that vocabulary, X is homogeneous if and only if there is a group
of homeomorphisms for which this action is transitive.

Examining the effect of the function Lyx−1 on G we see that any topological
group is homogeneous. A transitive action is created by using the group of left or
the group of right translations.

A function f : G → R is called uniformly continuous with respect to the

group operation if for each ε > 0 there is a set Vε ∈ M so that xy−1 ∈ Vε implies
|f(x)− f(y)| < ε.

8.9. Exercise. (i) f : G → R is continuous if and only if for each x ∈ G and each
ε > 0 ∃Vx,ε ∈ M so that yx−1 ∈ Vx,ε implies |f(x)− f(y)| < ε.

(ii) Suppose f : G → R is uniformly continuous with respect to the group opera-
tion. Then f is continuous. (hint: Suppose f is uniformly continuous with respect
to the group operation and f(a) = r and ε > 0. Find Vε so xy−1 ∈ Vε implies
|f(x)− f(y)| < ε. Then a ∈ Vεa ⊂ f−1((r − ε, r + ε)). )

(ii) If G is compact and f : G → R is continuous then f is uniformly continuous
with respect to the group operation. (hint: If G is compact and f continuous and
ε > 0 find for each g ∈ G open sets Ag, Bg ∈ M with AgAgg ⊂ Bgg ⊂ f−1((f(g)−
ε, f(g) + ε)). The collection of sets of the form Agg covers G so select a finite
subcover Agigi for i = 1, . . . , n. Let W ∈ M be the intersection of all the Agi .

Suppose xy−1 ∈ W . So y ∈ Agjgj for some j. Then xg−1
j = xy−1yg−1

j ∈ WAgj ⊂
AgjAgj ⊂ Bgj . So |f(x)− f(y)| ≤ |f(x)− f(gi)|+ |f(y)− f(gi)| < 2ε. )

(iii) Consider the positive real numbers (0,∞) with the usual topology as a topo-
logical group with multiplication as group operation, and also as a metric space
with the usual metric. Consider a function f : (0,∞) → R where R has the usual
topology and the usual metric. We have created two concepts of uniform continuity
for a function such as f : uniform continuity with respect to the group operation
in the domain and uniform continuity between these two metric spaces. Are these
properties equivalent for f? Is one condition stronger than the other?

9. The Homogeneous Space of Cosets in a Topological Group

In this section we will be working with cosets of a subgroup K in a

topological group G, and doing so in a way that emphasizes topological rather
than purely algebraic properties. New notation will simplify the details of some
proofs.

If A and B are subsets of G we let A ∗B = {aB | a ∈ A}. So AB is the union
of all the left cosets found in A ∗B.

If A ⊂ P(G) define A ∗B to be {A ∗B | A ∈ A}. So A ∗B ⊂ P(G ∗B).

If K is any subgroup of the topological group G we give G ∗ K the quotient
topology: that is, A is open in G ∗ K exactly when the union of the members of
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A is open in G. This is the largest topology on G ∗K for which the quotient map
q : G → G ∗K given by q(g) = gK is continuous.

Though we use only left coset spaces in this section, the reader is invited to
observe that all results proved for left coset spaces hold for right coset spaces as
well.

The quotient map is open: q(A) = A ∗K is open exactly when the union of its
members, which is AK, is open in G. We note that when A is open so is AK. If T
is the topology on G then T ∗K is the quotient topology on G ∗K.

9.1. Exercise. Suppose K is any subgroup of G. Then G ∗ K is a homogeneous
space. (hint: Show that the function LhK defined by LhK(cK) = hcK is a homeo-
morphism.)

9.2. Exercise. If A is an open cover of S in G then A ∗ K is an open cover of
S ∗K in G ∗K.

9.3. Exercise. If A ⊂ G and K is any subgroup of G and B = AK then BK = B
and B ∗K = A ∗K. Every open set in G ∗K can be written in one and only one
way as B ∗K where B is open in G and consists of a union of cosets of K.

9.4. Exercise. Suppose f : G → Y is continuous, where Y is any topological space.

If f is constant on every coset in G∗K then f̃ : G∗K → Y defined by f̃(cK) = f(c)
is continuous.

9.5. Exercise. (i) If B is any neighborhood base at e in G then B ∗K is a neigh-
borhood base at K in G ∗K.

(ii) If B is an open neighborhood base at e and A ⊂ G ∗K then

A =
⋂

B∈B

(B ∗K)A.

(iii) If G is CI then every closed subset of G ∗K is a Gδ set.

(iv) G ∗K is T2 if and only if K is closed. (hint: Suppose K 6= dK. K closed
implies there is an open set A containing d but not e, and B = A − K is open
and contains d but no member of K. So BK is open, contains d and contains no
member of K. So q(BK) = B ∗K is open in G ∗K and contains dK. Now appeal
to the homogeneous nature of G ∗K.)

9.6. Exercise. (i) If n : E → G is a net in G and nK converges to pK in G ∗K
then there is a net m : E → K for which nm converges to p in G.

(ii) If K and G ∗K are both compact then G is compact.

9.7. Exercise. If K is any subgroup of G and both K and G ∗ K are connected
then G is connected. (hint: Suppose G = A∪B where A and B are open. So A∗K
and B ∗K are open in connected G ∗K = (A ∗K) ∪ (B ∗K). So there is a coset
cK ∈ (A ∗K) ∩ (B ∗K). So there is a member of A in cK and also a member of
B in cK. So A ∩ (cK) and B ∩ cK are nonempty and relatively open in connected
cK, and so these sets have nonempty intersection. So A ∩B is nonempty.)

9.8. Lemma. Suppose K is any subgroup of G. Then the homogeneous space G∗K
is T3.
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Proof. Suppose A ∗ K is an open subset of G ∗ K containing the member K of
G ∗K, where A is open in G and AK = A. So A contains a member of K and it
follows that e ∈ A.

We want to find an open set B ∗K in G ∗K with K ∈ B ∗K ⊂ B ∗K ⊂ A ∗K.

Since e ∈ A we know from Exercise 8.5 there is a set B ∈ M with B ⊂ BB ⊂ A.

Suppose b ∈ BK. Then since Bb is open and contains b there is a point in
Bb ∩ (BK) which evidently can be written as both b1b and b2k for b1, b2 ∈ B and
k ∈ K. So b = b−1

1 b2k ∈ BBK ⊂ AK = A.

K ∈ q(BK) ⊂ q
(
BK

)
⊂ A ∗K.

By continuity of q we know that q
(
BK

)
⊂ q(BK). If we can show that q

(
BK

)

is closed we will have the reverse containment and hence equality of these two sets.

For each k ∈ K the homeomorphism Rk takes BK onto BK. This implies that
Rk also takes BK onto BK. Thus BKK = BK. We conclude that BK is a union
of cosets of K. Since every point of G is in exactly one coset, the set W = G−BK
is open and also a union of cosets. So WK = W and q(W ) is open and is the
complement of q

(
BK

)
which is therefore closed.

So K can be separated in G ∗K from closed sets in G ∗K which do not contain
K. The conclusion now follows by invocation of homogeneity. �

The following result is stronger than the one given above. It’s proof is reminiscent
of Urysohn’s Lemma and is patterned after the proof found in Pontryagin [?]. We
show here that any coset space formed from any subgroup of a topological group
is CR. Since G itself is homeomorphic to the coset space G/{e} the result below
applies to G: any topological group is CR.

9.9. Proposition. Suppose K is any subgroup of G. The homogeneous space G∗K
is CR.

Proof. We will prove that if C ∗K is open and K ∈ C ∗K where CK = C is open
in G then the “point” K and the closed set G ∗K − C ∗K can be separated by a
Urysohn function. The homogeneity of G∗K allows us then to conclude that G∗K
is CR.

We note as above that e ∈ C. We saw in Exercise 8.5 that for any member of
N, such as C, there is an A ∈ M for which A ⊂ AA ⊂ C.

An appeal to induction allows us to conclude that there are sets Ak ∈ M for
k ∈ N with Ak+1 ⊂ Ak+1 ⊂ Ak+1Ak+1 ⊂ Ak for all k and where A0A0 ⊂ C.

For any 0 ≤ k < n we find that An · (AnAn−1 · · ·Ak+1) ⊂ Ak. To see this apply
the fact that AjAj ⊂ Aj−1 for each j to pairs on the list, starting on the leftmost
pair j = n and working your way to the right. Note also that if any set in the list
is missing, or if any set on the list is replaced by a set with larger subscript, the
product cannot contain more elements and we still have containment.

Denote the dyadic rationals in the open unit interval by

D =

{
p

2q

∣∣∣∣ p, q are positive integers and 0 < p < 2q
}
.
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Each dyadic in this set has a representation as
p

2q
=

a1
2

+
a2
22

+ · · ·+ aq
2q

where each ai is 0 or 1, and the representation can be extended to a sum of terms
with arbitrarily large denominators by choosing aj = 0 for all j > q. With this
convention, there is a unique sequence of numerators associated with each r.

Define for each r the set F (r) = A
aq
q A

aq−1

q−1 · · ·Aa1

1 K where the corresponding

factor is replaced by {e} when ai = 0.

Each F (r) ⊂ A1A1K ⊂ A0K ⊂ C. Each F (r) contains K, and actually is an
open set consisting of a union of cosets of K. The union of all the F (r) is then an
open set consisting of a union of cosets of K, and contained in A0K ⊂ C.

We will show that if r < s then F (r) ⊂ F (s).

If r < s then the dyadic representations of r and s differ at some first term
corresponding to subscript j. So s and r can be represented as

r =
a1
2

+ · · ·+ aj−1

2j−1
+

0

2j
+

aj+1

2j+1
+ · · ·+ aq

2q

s =
a1
2

+ · · ·+ aj−1

2j−1
+

1

2j
+

bj+1

2j+1
+ · · ·+ bq

2q
.

That means F (s) and F (r) look like

F (r) =Aaq
q · · ·Aaj+1

j+1 A0
jA

aj−1

j−1 · · ·Aa1

1 K

F (s) =Abq
q · · ·Abj+1

j+1 AjA
aj−1

j−1 · · ·Aa1

1 K.

We noted above that A
aq
q · · ·Aaj+1

j+1 ⊂ Aj and the conclusion F (r) ⊂ F (s) is
immediate.

We now define φ : G → [0, 1] as follows. If g is in any of the F (r) we let
φ(g) = inf{r ∈ D | g ∈ F (r)}. If g is in none of these sets we let φ(g) = 1. We
note first that since each F (r) is comprised of a union of cosets of K that φ is
constant on each coset. Note also that if φ(g) ≤ r < 1 then g ∈ F (r).

Also, if x is in any of the cosets of G ∗K − C ∗K then φ(x) = 1 and if x ∈ K
then φ(x) = 0. It only remains to show that φ is continuous: in fact, we show below
that φ is uniformly continuous with respect to the group operation. An appeal to

Exercise 9.4 then shows that φ will induce a Urysohn function φ̃ on G ∗K with the
necessary properties.

Suppose f(x) < 1 and k > 0. Find an integer p with 0 < p < 2k − 1 and with
p−1
2k

≤ f(x) ≤ p
2k

= r. Note that x ∈ F (r).

r = a1

2 + a2

22 + · · ·+ ak

2k
where each ai is 0 or 1. Because p < 2k − 1, not all the ai

can be 1. Let j correspond to the subscript of the last zero value of ai and define

s = a1

2 + · · ·+ aj−1

2j−1 + 1
2j . So s− r = 1

2j −∑k
L=j+1

1
2L

= 1
2k
.

We note that x ∈ F (r) ⊂ F (s). Observe that

F (r) =Ak · · ·Aj+1A
0
jA

aj−1

j−1 · · ·Aa1

1 K

F (s) =AjA
aj−1

j−1 · · ·Aa1

1 K

so AkF (r) =Ak(Ak · · ·Aj+1)A
0
jA

aj−1

j−1 · · ·Aa1

1 K ⊂ AjA
aj−1

j−1 · · ·Aa1

1 K = F (s).
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With this construction and observation out of the way, we will proceed to show
that φ is uniformly continuous with respect to the group operation.

Suppose x, y are elements of G with yx−1 in the neighborhood Ak of e for integer
k > 1. By symmetry of Ak we have xy−1 also in Ak so without loss presume that
0 ≤ φ(x) ≤ φ(y) ≤ 1. We will show that φ(y)− φ(x) < 1

2k−1 .

As above, select integer p with p−1
2k

≤ f(x) ≤ p
2k

= r. If p = 2k or p = 2k − 1 the

desired inequality is obvious, so we presume that p < 2k − 1. Since 0 < r < s =
r + 1

2k
< 1 we have defined above both F (r) and F (s) and x ∈ F (r) ⊂ F (s).

Since yx−1 ∈ Ak we have yx−1F (r) ⊂ AkF (r) ⊂ F (s). Since x ∈ F (r) this gives
y ∈ F (s), which implies φ(y) ≤ s = r + 1

2k
. �

Recall that when K is a normal subgroup left and right cosets coincide and G∗K
is a group, usually denoted G/K.

9.10. Lemma. Suppose K is a normal subgroup. Then G/K is a topological group.

Proof. We need to show that in G/K multiplication and inversion are continuous.
We will let Mult and Inv denote multiplication and inversion in G/K.

Let S ∗K be an open neighborhood of cK, where S is open in G and SK = S.
Suppose aKbK = cK. S = q−1(S ∗K) is open and contains ab so there is B ∈ M

with aBbB ⊂ S. So Mult(q(aB) × q(bB)) ⊂ S ∗ K. This means there is an
open neighborhood of each point in Mult−1(S ∗K) inside of Mult−1(S ∗K). We
conclude that Mult is continuous in G/K.

Continuity of Inv is left to the reader. �

Suppose given a continuous homomorphism f : G → H onto H and let K =
Ker(f).

If B is open in H then A = f−1(B) is open in G. Moreover, if a ∈ A and k ∈ K
then f(ak) = f(a)f(k) = f(a)e = f(a) so AK = A and we conclude that A is the
union of cosets of K. Since these cosets form a partition of G, the complement of
A is a union of cosets too.

We know that as groupsG/K andH are isomorphic by the isomorphism f̃ : G/K →
H defined by f̃(xK) = f(x). This isomorphism is continuous by the previous para-
graph.

However f̃ need not be a homeomorphism. Suppose f(A) fails to be open in H
for some open set A in G. Then q(A) = A ∗K is open in G/K because the union

of its members is the open set AK. But f̃(q(A)) = f(AK) = f(A) is not open. So

f̃ cannot have continuous inverse.

9.11. Lemma. Suppose f ∈ Hom(G,H) and f is onto H. The induced function

f̃ : G/K → H is a homeomorphism exactly when f is both open and continuous.

Proof. See the remarks above. �

9.12. Exercise. Suppose V is the connected component of e in G. Show that G/V
is totally disconnected. If G is locally connected then G/V is discrete.
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9.13. Exercise. (i) The set {e} is a normal subgroup of G, and G/{e} is T2. It is

now obvious (Exercise 9.5) that if H is normal and G/H is T2 then {e} ⊂ H.

(ii) Recall the commutator subgroup G(1) of G from Exercise ??. It is the smallest
subgroup containing all finite products of elements of the form aba−1b−1 for a, b ∈ G.
G(1) is normal and if H is any normal subgroup of G then G/H is abelian if and

only if G(1) ⊂ H. The topological group G/G(1) is abelian and T2. If G/H is

abelian and T2 for any normal H then G(1) ⊂ H.

9.14. Exercise. Page through Appendix ?? and find twenty five topological groups
which are not discrete. Find twenty five subgroups, not all discrete. Think about the
homogeneous spaces produced as coset spaces of your groups. In particular, consider
the topological groups from Exercise ??.

10. Uniformities

The concept of a uniform structure follows naturally from the discussion of topo-
logical groups above, abstracting a concept of “uniform closeness” over the whole
space that is encapsulated in that earlier context in the ability of the symmetric
neighborhoods of the identity to capture global topological properties.

We begin with some notation involving elements of P(G×G) for a nonempty set
G. In this section we let ∆ = { (x, x) | x ∈ G }, the diagonal of the product space.
If A ∈ P(G × G) we define A−1 to be the set of those (y, x) for which (x, y) ∈ A
and A[x] = { y | (x, y) ∈ A }. Finally, for A,B ∈ P(G×G) define A ◦B to be those
(x, z) for which there is a y ∈ G with (x, y) ∈ A and (y, z) ∈ B.

A uniform structure on G is a collection of sets U ⊂ P(G × G) with the
following properties:

(i) ∆ ⊂ A ∀A ∈ U.
(ii) A ∈ U ⇒ A−1 ∈ U.
(iii) A ∈ U ⇒ ∃C ∈ U with C ◦ C ⊂ A.
(iv) A,B ∈ U ⇒ ∃C ∈ U with C ⊂ A ∩B.
(v) A ∈ U and A ⊂ B ⊂ G ⇒ B ∈ U.

Items (i) and (ii) can be, roughly, translated as “points are arbitrarily close to
themselves” and “if x is close to y then y is close to x. Item (iii) could be construed
as the analog of the statement “every sphere of given radius contains a sphere with
half that radius.”

If U only satisfies (i) through (iv) it is called a uniformity. Each uniformity is
contained in a unique smallest uniform structure, called the uniform structure

generated by the uniformity. Two uniformities are called equivalent if they
generate the same uniform structure.

The analog of the T2 property is the following.

(vi) ∆ =
⋂

A∈U
A.

If a uniformity U satisfies (vi) it is called separating.

If U is a uniformity and x ∈ G let Tx = {A[x] | A ∈ U }. Declare S ⊂ G to be
open if for each s ∈ S there is a member of Ts contained in S. Then the collection
of all these open sets constitute a topology on G, and each Tx is a neighborhood
base at x for this topology, called the topology generated by U.
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It is not true that every A[x] is an open set with this topology. However the
collection of interiors A[x]o of sets of this form constitute a base for the topology.

Also, if G×G has the product topology with respect to this topology then the
collection of interiors {Ao | A ∈ U } is also a uniformity, equivalent to U.

Any two uniformities generating the same uniform structure also generate the
same topology, but the converse is quite false.

Dugundji has a particularly clear approach to uniform structures, characterizing
their properties through covers.

Let A be a set of covers of a set G. A will be called a uniformizing family of

covers of G if, whenever A,B ∈ A there is a member E of A which is a barycentric
refinement of both A and B. The family is called separating if whenever x, y ∈ G
and x 6= y then there is a member B ∈ A with x /∈ StarB({y}).

The topology generated by a uniformizing family A is that generated by

{StarA({y}) | A ∈ A, y ∈ G }.
This collection of sets is actually a base for a topology. In fact, if S is any set open
with respect to this topology then for each s ∈ S there is a member As ∈ A with
StarAs

({s}) ⊂ S. Then

S =
⋃

s∈S

StarAs
({s}).

The connection between uniformizing families and uniformities is as follows.
First, if A is a uniformizing family and B ∈ A let VB ⊂ G×G denote the union of

all B ×B for B ∈ B. Define Ã to be the collection of all these sets for B ∈ A.

Condition (i) for a uniformity is satisfied because each B covers G and (ii) follows

by construction. Now suppose VB ∈ Ã. Let E be a barycentric refinement of B
in A. So if there is a point y ∈ G with (x, y), (y, z) ∈ VE then both x and z are
in StarE({y}), which must be in a member of B. It follows that VE ◦ VE ⊂ VB.

Condition (iv) follows similarly, using the common refinement property. So Ã is a
uniformity.

On the other hand, suppose U is a uniformity. Let Û denote the family of covers
UA for A ∈ U where UA = {A[y] | y ∈ G }.

Condition (iv) for uniformity implies that pairs of members of Û have common

refinements in Û, while condition (iii) guarantees the existence of barycentric re-

finements in Û. So Û is a uniformizing family.

Two uniformizing families are called equivalent exactly when their associated
uniformities are equivalent.

10.1. Exercise. (i) Show that
˜̂
U is equivalent to U and

̂̃
A is equivalent to A.

(ii) Show that the topologies generated by a uniformity and an associated uni-
formizing family are the same.

(iii) Show that this topology is T2 exactly when the uniformity is separating,
which happens exactly when the associated uniformizing family is separating.
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10.2. Exercise. Suppose G is a topological group with identity e and B is any
neighborhood base at e consisting of symmetric open sets. For each A ∈ B let
BA denote the cover {xA | x ∈ G }. This family of open covers L constitutes a
uniformizing family, and the topological group topology on G is that generated by
this uniformizing family.

The family of covers R consisting of {Ax | x ∈ G } for A ∈ B is also a uni-
formizing family and generates the same topology, but it need not be equivalent to
L.

10.3. Exercise. (i) Let d denote a pseudometric on G. For each integer n > 0 let
An denote the set of all open balls with common radius 2−n. This collection of covers
constitutes a uniformizing family of covers, and this family is separating exactly
when d is a metric. The topology generated by the pseudometric is, obviously, that
generated by the uniformizing family of covers.

(ii) It is possible for topologically equivalent metrics d1 and d2 on G to generate
inequivalent uniformizing families.

(iii) For each n > 0 let An ⊂ G × G denote { (x, y) | d(x, y) < 2−n }. Then the
collection of all these sets is a uniformity on G and the topology generated by this
uniformity is the pseudometric topology.

(iv) Let D denote a family of pseudometrics on G. For each integer n > 0 let An

denote the set of all finite intersections for various pseudometrics from D of open
balls with common radius 2−n and common center.

An =

{
k⋂

i=1

Bdi
(x, 2−n)

∣∣∣∣ k > 0, di ∈ D, x ∈ G

}
.

This collection of covers constitutes a uniformizing family of covers, the uni-
formizing family generated by D. This family is separating exactly when D

is separating. The topology generated by the family of pseudometrics is, obviously,
that generated by the uniformizing family of covers.

10.4. Theorem. Suppose A is a uniformizing family of open covers on a set G
which generates the topology on G. Each open cover in the family can be used to
create a pseudometric so that the family D of these pseudometrics generates the
topology on G. A is equivalent to the uniformizing family generated by D.

Proof. For each cover B ∈ A we will create a sequence of covers (via inductive
construction) taken from A as follows.

Let B0 = {G} and B1 = B. Having found Bk for 0 ≤ k ≤ n − 1 let Bn be a
member of A that star refines Bn−1. In words, for each open set S from the cover
Bn, the union of all members of Bn that touch S is contained in a member of Bn−1.

For x, y ∈ G define

F (x, y) = inf{ 2−n | x ∈ StarBn
({y}) }.

Note that x ∈ StarBn
({y}) exactly when y ∈ StarBn

({x}), so F (x, y) = F (y, x).
F (x, y) could be as large as 1, but only if x /∈ StarB({y}). Also, F (x, x) = 0.

For x, y ∈ G let Mx,y denote the set of all sequences P : N → G with P (0) = x
and so that there is an n with Pk = y whenever k ≥ n. These sequences, eventually,
have constant value y. Note that there is a one-to-one correspondence between
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members of Mx,y and members of My,x, obtained by reversing the order of the
“nonconstant part” of each sequence. Now define dB by

dB(x, y) = inf

{
∞∑

i=0

F (Pi, Pi+1)

∣∣∣∣ P ∈ Mx,y

}
.

It is obvious that dB(x, x) = 0 and dB(x, y) = dB(y, x) for each x, y ∈ G.

Also, the members ofMx,y that “pass through” z ∈ G constitute a subset ofMx,y

which can be formed by patching a member of Mz,y onto the “end” of a member
of Mx,z. It follows that dB(x, y) ≤ dB(x, z)+ dB(z, y) so dB is a pseudometric on G.

Let D = { dB | B ∈ A }.
If x ∈ StarBn+1

({y}) for n ≥ 1 then F (x, y), and hence dB(x, y), cannot exceed
2−n−1. So the dB-ball of radius 2

−n centered at y contains the set StarBn+1
({y}).

It follows that the topology on G is finer than that generated by D. We now need
the converse conclusion.

To help with this we show that if P ∈ Mx,y then F (x, y) ≤ 2
∑∞

i=0 F (Pi, Pi+1).

The result is obviously true when there is but a single nonzero term in the sum.
We hypothesize that we have the result for all x and y when the nonzero terms
correspond to summation index less than k for some positive k.

Let c =
∑k+1

i=0 F (Pi, Pi+1) where for this sequence P ∈ Mx,y the nonzero terms
correspond to summation index less than k + 1.

Let L denote the largest index with
∑L−1

i=0 F (Pi, Pi+1) ≤ c
2 . Since

k∑

i=0

F (Pi, Pi+1) =

(
L−1∑

i=0

F (Pi, Pi+1)

)
+ F (PL, PL+1) +

(
k∑

i=L+1

F (Pi, Pi+1)

)

(one summation on the right could be empty and hence 0) we have also that

k∑

i=L+1

F (Pi, Pi+1) ≤
c

2
.

Positing that neither sum on the right is empty, our inductive assumption yields

F (x, PL) ≤ 2
c

2
and F (PL+1, Pk+1) ≤ 2

c

2
.

Pick the smallest value of j for which 2−j ≤ c. We conclude that

F (x, PL) ≤ 2−j and F (PL, PL+1) ≤ 2−j and F (PL+1, Pk+1) ≤ 2−j .

So there is a member A of the open cover Bj containing both PL and PL+1.
StarBj

(A), therefore, contains these two points and both x and Pk+1 as well. So

F (x, Pk+1) cannot exceed
1

2j−1 = 2 1
2j ≤ 2c.

The case where one of the sums is empty is left to the reader.

Suppose x ∈ G and j > 1. If dB (x, y) < 2−j then from above we have F (x, y) <
2−j+1 so y ∈ StarBj−1

({x}). So the open ball of radius 2−j formed using dB
centered at x is contained in StarBj−1

({x}), and sets of this form constitute a base
for the topology formed using the uniformizing family of open covers. Coupled with
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the earlier observation, we conclude that the topology generated by this family of
pseudometrics is identical to that topology.

We leave the proof that D generates a uniformizing family equivalent to A as
an exercise. �

10.5. Exercise. (i) If there is a uniformizing family of covers which generates a
given topology then that topology is completely regular. If the family is separating,
G is Tychonoff.

(ii) In the theorem above, the cardinality of D will not exceed that of A. We
conclude that if there is a countable separating uniformizing family of covers which
generates a given topology, then that topology is metric. In particular, a CI and T2

topological group is metrizable.

10.6. Exercise. A metric d on a topological group G is called left invariant if
d(xy, xz) = d(y, z) for all x, y, z ∈ G. The metric is called right invariant if
d(yx, zx) = d(y, z) for all x, y, z ∈ G.

Use a countable symmetric open neighborhood base at the identity e in conjunc-
tion with Theorem 10.4 to show that if G is T2 and CI there is a left invariant
metric which generates the topology on G. Show that there is a right invariant
metric too.
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Stone-Čech compactification, 20

Stone-Weierstrass Theorem, 26

symmetric

neighborhood, 29

topological

group, 28

topologically equivalent

pseudometrics, 2

topology

compact-open, 18

generated by a uniformity, 36

metric, 3

of uniform convergence on compacta, 20

pointwise, 18

pseudometric, 3

totally

bounded, 5

translation, 30

triangle inequality, 2

uniform

convergence, 11

structure, 36

structure generated by a uniformity, 36

uniformity, 36

uniformizing family, 37

generated by pseudometrics, 38

uniformly

closed, 11

continuous for pseudometric spaces, 3

continuous with respect to a group oper-
ation, 31

Urysohn Metrization Theorem, 17

Urysohn, P., 17

Zariski topology, 20
zero

oscillation, 12


