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1. Notation.

To get started, we assume given the set of integers Z, sometimes denoted

{ . . . ,−2, −1, 0, 1, 2, . . . }.
As part of this assumption we suppose that the reader knows about the oper-
ations of addition and multiplication on integers and their basic properties,
and also the usual order relation on these integers.

In particular, the operations of addition and multiplication are commuta-
tive and associative, there is the distributive property of multiplication over
addition, and mn = 0 implies one (at least) of m or n is 0.

The set N consists of the non-negative integers.

All lower case individual variable symbols referred to in a mathematical
discussion such as a, b, c, d, r, s, t, x, y, p, q, . . . will denote integers.

Any sets to which we refer will be subsets of Z, and will be denoted by
capitol letters such as S, T or V .

We presume you have heard of and understand the arithmetic of the
rational numbers but will never refer to rational numbers except through
an explicit ratio p/q of integers. Rational numbers are not “first-class”
entities in our discussion. We say two representations p/q and m/n refer
to the same rational number exactly when pn = qm, and in that case write
p/q = m/n. If a rational number has representation m/1 we identify that
rational number with the integer m.

For the sake of brevity we will often use the following symbols, which are
in common usage among math folk:

∃ “There Exists”
∃! “There Exists a Unique” or “There Exists One and Only One”
∀ “For All”
| “Divides”
∤ “Does Not Divide”
⊂ “Is a Subset of ”
∈ “Is an Element of ” or “In”
⇒ “Implies”
⇔ “Implies and is Implied By” or “If and Only If”
s.t. “Such That”
∅ “the Empty Set”
□ “End of Proof” or “Quod Erat Demonstrandum” or “Q.E.D.”

Much of the content of this collection of notes is adapted from the very
readable Burton Elementary Number Theory [Bur07] and the classic Hardy
and Wright An Introduction to the Theory of Numbers [HW79], while ex-
pansion upon basic algebra facts can be found in Herstein Topics in Alge-
bra [Her75]. Those authors are not responsible for any misinterpretations
or errors or typos which the reader may find herein.
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2. Well Ordering and Induction.

The results of this section are the bricks and mortar of the house we will
build. The extent to which the first five are Axioms, to be assumed, or
Theorems, to be proven, must be addressed elsewhere. Please assume these
five results as your starting point.

Except1 in Section 23, declarative statements in the text such as remarks,
theorems, lemmas, propositions and corollaries are all to be proven or justi-
fied by the interested student. That includes filling any lacunae in arguments
or proofs presented in the text.

Few proofs are given explicitly in the first few sections of text but later, as
the results become more difficult, proofs (or outlines of proofs) are generally
provided.

2.1. Theorem. The Well Ordering Principle:
Every nonempty set S ⊂ N contains a least element.

2.2. Theorem. Archimedean Order Property:
∀a, b ∈ N with a > 0 ∃! least n s.t. an > b.

2.3. Theorem. Finite Induction (I):
If S ⊂ N and 0 ∈ S and (k ∈ S ⇒ k + 1 ∈ S) then S = N.

2.4. Theorem. Finite Induction (II):
If S ⊂ N and 0 ∈ S and (whenever k > 0 and j ∈ S ∀ 0 ≤ j < k then k ∈ S )
then S = N.

2.5. Theorem. Suppose a, b are positive integers and m is an integer.
(i) a ≤ b⇔ −a ≥ −b.
(ii) a ≤ b⇔ a+m ≤ b+m.
(iii) ab ≥ am⇔ b ≥ m.
(iv) If m = ab then both a ≤ m and b ≤ m. And if a > 1 then b < m.
(v) If ∅ ̸= S and S ⊂ N and ∃n ∈ N s.t. s ≤ n ∀s ∈ S

then S contains a largest member.

2.6. Theorem. The Binomial Theorem:
If n > 0 then (a+ b)n =

∑n
k=0

(
n
k

)
akbn−k where

(
n
k

)
= n!

k! (n−k)! .

2.7. Theorem. The Division Algorithm:
∀a, b with b > 0 ∃! r, q for which a = bq + r and 0 ≤ r < b.

1Section 23 is a review of the RSA cryptosystem. To understand how public-key
systems operate in practice you must accept several specific results as “given.” This
is a natural gateway to the further study of number theory.
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3. Intervals of Integers.

3.1. Definition. An interval of integers is a set of the form

Ij,k = { j + t | 0 ≤ t < k } for positive integer k and any integer j.

We will use Πj,k to denote the product of the members of Ij,k. This might
be represented (imprecisely) as

Πj,k = j (j + 1) (j + 2) · · · (j + k − 1).

3.2. Remark. Π1,k is the number often indicated by k! and for positive j

the binomial coefficient
(
j+k−1
j−1

)
is Πj,k/Π1,k.

We would like to conclude that the ratio Πj,k/Π1,k is an integer for any
j and positive k. In our remark here we restrict attention to positive j.

The ratio is obviously an integer if either j or k are 1.

If Πj,k/Π1,k fails to be an integer then it fails to be an integer for some
least k and, for that k, some least j, both of which must exceed 1.

We are assuming, by this, that both

j (j + 1) · · · (j + k − 2)

(k − 1)!
and

(j − 1) j (j + 1) · · · (j + k − 2)

k!
=

(
j − 1

k

)
j (j + 1) · · · (j + k − 2)

(k − 1)!

are whole numbers. But if that is true then

Πj,k/Π1,k =
j (j + 1) · · · (j + k − 1)

k!

=
j (j + 1) · · · (j + k − 2)

(k − 1)!

(
j + k − 1

k

)
=

j (j + 1) · · · (j + k − 2)

(k − 1)!

(
j − 1

k

)
+

j (j + 1) · · · (j + k − 2)

(k − 1)!

is the sum of two integers and therefore, itself, an integer. This is contrary
to assumption. We conclude the ratio must be an integer for all positive j
and k.

This implies (if you have no other way of seeing this) that the coefficients
in the binomial theorem are integers.

3.3. Proposition. Πj,k/Π1,k is an integer for any j and any positive k.
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4. Greatest Common Divisor and Least Common Multiple.

4.1. Definition. We write a|b (read as “ a divides b”) when a ̸= 0 and
b = ka for some k. We write a ∤ b when a ̸= 0 and b = ka + r for some k
and r with 0 < r < |a|.

4.2. Remark. (i) The values of k and r in the definition above are unique
for each nonzero a and b.

(ii) If a ̸= 0 then for each b either a|b or a ∤ b.
(iii) If a|b and b|a then a = ±b.

4.3. Definition. A nonempty set S is called an ideal if xs1 + ys2 ∈ S
whenever s1 and s2 are in S and any x, y ∈ Z. We say “S is closed under
linear combinations with coefficients in Z.”

The set { 0 } is obviously an ideal, called the trivial ideal. Z itself is an
ideal. If n is any integer the set nZ defined to be {nx | x ∈ Z } is an ideal,
called the ideal generated by n.

4.4. Lemma. (i) If n is any integer and S is an ideal the set nS defined
to be {nx | x ∈ S } is an ideal.

(ii) If T is another ideal, the set S + T defined to be
{x+ y | x ∈ S, y ∈ T } is an ideal and S + T = T + S.

(iii) If V is another ideal then S + (V + T ) = (S + V ) + T .
(iv) If T ⊂ V then V + T = V .
(v) For nonzero i and j, jZ ⊂ kZ⇔ k|j.
(vi) jZ+ kZ = kZ⇔ jZ ⊂ kZ.

4.5. Theorem. If S is a nontrivial ideal there exists
a unique positive n for which S = nZ.

Proof. Let n be the least positive member of S. Obviously nZ ⊂ S. Suppose
k ∈ S. So there are numbers j and r with 0 ≤ r < n with k = jn+ r. But
then r = k − jn ∈ S, and the minimality of n among such numbers forces
r = 0. So S ⊂ nZ. □

4.6. Definition. For ideals S and T define ST to be { st | s ∈ S and t ∈ T }.

4.7. Corollary . If S and T are ideals so is ST . In fact, if
S = jZ and T = kZ then ST = (jk)Z = j(kZ).

4.8. Definition. Suppose a, b are not both 0. We write d = gcd(a, b) when
d|a and d|b and whenever c|a and c|b then c|d. The number d is called the
greatest common divisor (short form: GCD) of a and b. Greatest
common divisors exist.



6 LARRY SUSANKA

4.9. Theorem. d = gcd(a, b) is the least positive integer that
can be formed as d = ax+ by for x, y ∈ Z.

Therefore aZ+ bZ = dZ, and
whenever aZ+ bZ = nZ then n = ±d.

4.10. Remark. Some texts define gcd(a, b) for integers a and b in a slightly
different way: as the positive integer d for which d|a and d|b and if c|a and
c|b then c ≤ d. The two definitions are equivalent.

4.11. Proposition. If b ̸= 0, gcd(a, b) = |b| ⇔ a = bm for some m.

4.12. Definition. Suppose a, b are not both 0. The numbers a and b are
said to be relatively prime or, synonymously, coprime whenever
gcd(a, b) = 1.
This is equivalent to the condition aZ+ bZ = Z.

4.13. Definition. Suppose a1, . . . , ak are all nonzero for some k > 2. We
write d = gcd(a1, . . . , ak) when d|ai∀i and whenever c|ai∀i then c|d. There
actually is a number of this kind for every finite set of ai, and this number
d is called the greatest common divisor of these ai.

4.14. Theorem. d = gcd(a1, . . . , ak) is the least positive integer that
can be formed as d = a1x1 + · · ·+ akxk for xi ∈ Z.
This is equivalent to the condition a1Z+ · · ·+ akZ = dZ.

4.15. Proposition. Suppose a1, . . . , ak are all nonzero for some k > 2.
gcd(a1, . . . , ak) = gcd(gcd(a1, . . . , ak−1), ak).

4.16. Lemma. (i) For positive d, gcd(a, b) = d if and only if
d|a and d|b and gcd

(
a
d ,

b
d

)
= 1.

(ii) If gcd(a, b) = ax+ by then gcd(x, y) = 1.

(iii) Euclid’s Lemma: If a|bc and gcd(a, b) = 1 then a|c.
(iv) If a|c and b|c and gcd(a, b) = 1 then ab|c.
(v) If k > 0 and a, b are not both 0 then

gcd(ka, kb) = k gcd(a, b).

4.17. Theorem. If a > b > r ≥ 0 and a = bk + r
then gcd(a, b) = gcd(r, b).
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4.18. Remark. Iterating the calculation identified in Theorem 4.17 provides
a means of producing d = gcd(a, b) which can also be used to calculate the
x, y pair for which ax + by = d. This process is called the Euclidean
Algorithm, described in book VII of Euclid’s2 Elements.

As an example we produce gcd(10600, 113).

Using long division we find, successively:

10600 = 113 · 93 + 91, 113 = 91 · 1 + 22, 91 = 22 · 4 + 3, 22 = 7 · 3 + 1.

This means

gcd(10600, 113) = gcd(113, 91) = gcd(91, 22) = gcd(22, 3) = gcd(3, 1)

at which point the process terminates by repetition at a value of 1.

But working backwards (which takes fewer multiplication steps than the
number of divisions used above) we also have

1 =22− 7 · 3 = 22− 7 · (91− 22 · 4) = 29 · 22− 7 · 91
=29 · (113− 91)− 7 · 91 = 29 · 113− 36 · 91
=29 · 113− 36 · (10600− 113 · 93) = (29 + 36 · 93) · 113− 36 · 10600
= 3377 · 113− 36 · 10600.

which produces 1 as the required combination of 113 and 10600.

4.19. Definition. If a and b are nonzero we write lcm(a, b) = m if m > 0
and a|m and b|m and whenever a|c and b|c then m|c. The number m is
called the least common multiple (shorter form: LCM) of a and b.

4.20. Proposition. If a and b are nonzero then lcm(a, b) = ab
gcd(a,b) .

4.21. Corollary . For nonzero a and b, lcm(a, b) = ab⇔ gcd(a, b) = 1.

2Euclid of Alexandria circa 300 BCE reputedly assembled and organized and improved
the work of previous mathematicians in The Elements. Earlier mathematicians who prob-
ably contributed included Pythagoras circa 570-495 BCE, Hippocrates of Chios 470-410
BCE and Eudoxus of Cnidus circa 408-355 BCE. It is the most successful text ever written,
having been used continuously in one form or another for over 2000 years as the primary
text for mathematical instruction in Europe and the Islamic countries.
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5. A Theorem of Lamé.

Gabriel Lamé3 showed that the Euclidean Algorithm will terminate at
the greatest common divisor using a predictable, and manageably small,
number of steps. This may be the first recorded example (1844) of “time to
terminate” for an algorithm, a subject of vital importance today.

Before proving this result we define and discuss (a little) the Fibonnaci4

sequence, used in the proof to follow.

This sequence is defined inductively by F0 = 0, F1 = 1 and generally, for
n > 1, by Fn+1 = Fn + Fn−1. Thus F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 =
8, F7 = 13 and so on.

The following lemma guarantees that the Fibonacci sequence gains at
least one (base 10) digit in length every five steps along the sequence.

5.1. Lemma. Fn+5 > 10 · Fn for all n ≥ 2.

Proof. F7 = 13 > 10 · F2 = 10. So we have the result for n = 2.

And if n ≥ 3 we have

Fn+5 = Fn+4 + Fn+3 = Fn+3 + Fn+2 + Fn+3 = 2(Fn+2 + Fn+1) + Fn+2

= 3 · Fn+2 + 2Fn+1 = 3(Fn+1 + Fn) + 2Fn+1 = 5Fn+1 + 3Fn

= 8Fn + 5Fn−1.

Since the sequence is non-decreasing we know Fn = Fn−1 + Fn−2 ≤ 2Fn−1

and the result is proved. □

5.2. Proposition. Lamé’s Theorem
Using the Euclidean algorithm as above to produce the greatest common di-
visor of two numbers terminates after no more than 5 times the number of
digits (base 10) of the shorter of the two numbers.

Proof. Suppose x and y are positive and x > y and the Euclidean algorithm
requires exactly n steps to produce the greatest common divisor of these
two numbers.

3Gabriel Lamé 1795-1870.
4Leonardo Fibonnaci, 1175-1250, who introduced his eponymous numbers and the

Hindu-Arabic number system in general to Europeans and studied their properties, was
an Italian mathematician with extensive contact with the Arabic world through his travels
in Northern Africa.
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Letting x = xn and y = xn−1 we reproduce this sequence of divisions
below.

xn = mn · xn−1 + xn−2

xn−1 = mn−1 · xn−2 + xn−3

...

x3 = m3 · x2 + x1

x2 = m2 · x1 + x0

x1 = m1 · x0

In each line but the last, xk, xk−1, xk−2 are in strictly decreasing order
with mk at least 1. In the last line the least common denominator, x0 is less
than x1 and m1 is at least 2.

That means that the smallest possible numbers that would reproduce a list
of equations like this are Fibonnaci numbers with xk = Fk+2 for 0 ≤ k ≤ n.

So x5 (if there is a term like this) must have at least one more digit than
x0, and x10 must have at least one more digit than x5 and so on. Since
x0 itself has at least one digit, the complete number of divisions on the
list, n, cannot exceed 5 times the number of digits of xn−1 as stated in the
proposition. □

We note that the Fibonacci numbers F12 = 144 and F11 = 89 provide an
example where the Euclidean algorithm does require 10 divisions to achieve
the last line of the calculation, showing that the number 5 of the proposition
cannot be improved upon.

6. Linear Diophantine Equations.

6.1. Definition. A Diophantine Equation is an equation that is to be
solved for integer values of any variables involved.

6.2. Proposition. The Diophantine5 Equation ax + by = c in variables x
and y has a solution exactly when gcd(a, b) = d|c.

In that case, and if x0, y0 is any particular solution, all others can be
found among the paired numbers

x = x0 +
b

d
t, y = y0 −

a

d
t for any integer t

which are (each pair) solutions for every t.

5Diophantus of Alexandria circa 200-300 AD
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6.3. Remark. If Diophantine Equation ax+by = c has a solution then those
solutions are exactly the solutions of a

dx+ b
dy = c

d and this last equation is
of the form rx+ sy = m where gcd(r, s) = 1.

So if you can find x and y (by the Euclidean Algorithm, for instance)
so that rx + sy = 1 then a particular solution to our original equation will
be given as x0 = mx and y0 = my. All other solutions can be found as
x = mx0 + st, y = my0 − rt as prescribed in Proposition 6.2.

As another point, we have a method for finding a particular solution to
ax + by = d where d = gcd(a, b). This tells us about all the others. The
x values all differ from each other by b

d t while the corresponding y values

differ by −a
d t for the same integer t. In particular, if a and b are nonzero we

can always choose the value of x to satisfies 0 ≤ x < b
d , and there is only

one solution for which the x value satisfies that inequality.

7. Prime Factorization.

7.1. Definition. A number p > 1 is called prime if

a|p⇒ a = ±1 or a = ±p.
A number exceeding 1 that is not prime is called composite.
A negative number is called composite if its negative, which
is positive, is composite.

Note that the numbers 0, −1 and 1 are neither prime nor composite.

7.2. Proposition. If p is prime then for any a,

gcd(a, p) = 1 or gcd(a, p) = p.

7.3. Lemma. If p is prime and p|ab then p|a or p|b.

7.4. Corollary . If p is prime and p| q1 · · · qk then p|qi for some i.
If all the qi are themselves prime then p = qi for some i.

The following theorem can now be proved by induction.

7.5. Theorem. The Fundamental Theorem of Arithmetic
Every positive integer has a unique factorization as a product of prime pow-
ers, where the primes are listed in order of increasing size.

This result, when prime power exponents are 1, was proved in books VII
and IX of Euclid’s Elements.
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7.6. Remark. There are an infinitude of distinct primes.6

8. Intn, mod n Arithmetic and Fermat’s Little Theorem.

8.1. Definition. When n > 1 we write a ≡ b mod n to mean a = b+ kn
for some k. This is read aloud as “a is congruent to b mod n.” This is
equivalent to the condition: n|(a− b).

n is called the modulus of the congruency.

An assertion that several numbers are congruent can be combined in a
single line using only one mod n indication.

a ≡ b ≡ c mod n

may be preferred to

a ≡ b mod n and b ≡ c mod n.

In contrast, the expression

a = b ≡ c mod n

means that a is numerically equal to b which is congruent to c mod m.

If 0 ≤ r < n and b ≡ r mod n the number r is called the residue7 of b
mod n. Each number has one and only one residue for each modulus.

Sometimes it is convenient to refer to c mod n as a single number, and
when we do it is to this residue that we refer.

We say numbers are distinct mod n if they have different residues mod
n. We say numbers are equivalent mod n if they have the same residues8.
We say a number satisfying some condition is unique mod n if all numbers
satisfying that condition have the same residue.

8.2. Lemma. If a ≡ b mod n and c ≡ d mod n
then a+ c ≡ b+ d mod n and ac ≡ bd mod n.

8.3. Lemma. Suppose d = gcd(c, n).
(i) ca ≡ cb mod n exactly when a ≡ b mod n

d .

(ii) ca ≡ b mod n exactly when d|b and c
d · a ≡

b
d mod n

d .

6What do you think the word “infinitude” means here?
7In some sources this is called the least non-negative residue.
8“Equivalent mod n” and “congruent mod n” are widely used synonymous expressions.
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8.4. Remark. Lemma 8.2 implies that if a ≡ b mod n then ak ≡ bk mod n
for any positive k and, in fact, f(a) ≡ f(b) mod n for any polynomial f
with integer coefficients.

Lemma 8.3 (i) tells us when/how we can “cancel” common factor c in
a statement asserting congruency involving mod n arithmetic to obtain an
equivalent congruency. If gcd(c, n) = 1, you can always do it.

Also if m is prime, ab ≡ 0 mod m⇒ a ≡ 0 mod m or b ≡ 0 mod m. If
m is composite you cannot draw this conclusion.

8.5. Definition. We define, for integer m and nonzero k the set

[m]k = m+ kZ = {m+ kn | n ∈ Z }.
Each integer is in one and only one of the sets

[0]k, [1]k, [2]k, . . . , [k − 1]k

and each of these sets consists of numbers with shared residue mod k. The
sets are called the congruency or residue (synonymous) classes mod
k. Sometimes they are also called k-congruency classes. Whatever you
call them, there are k of these sets of integers and their collective, the set of
these classes, will be denoted9 Intk.

The statement [a]k = [b]k is identical in meaning to a ≡ b mod k.

8.6. Definition. Given residue classes [m]k and [n]k define

[m]k + [n]k = [m+ n]k and also [m]k · [n]k = [m · n]k.

8.7. Remark. In view of Theorem 8.2, these operations don’t depend on the
representatives m and n chosen for the congruency classes: any equivalent
numbers could have been chosen and would yield the same sum or product
congruency classes10. These operations are associative and mod k multipli-
cation distributes over mod k addition. Addition is commutative and there
is an additive identity so Intk with these two operations is an example of
what mathematicians call a ring.

Since multiplication is also commutative, this ring is called commutative.
Since there is a multiplicative identity this ring is called unitary. An in-
teger m and the modulus k are relatively prime if and only if [m]k has a
multiplicative inverse. Whenever [m]k · [j]k = [1]k we will call m and j mod
k multiplicative inverses (to each other.) If k is prime every nonzero

9Many texts use Z/kZ or Zk to denote this collective. The former is ugly and the latter
clashes with an identical notation for the k-adic integers, which we do not consider here.

10Any definition given for sets of integers by operations on a generic member of the set
must be shown to be unambiguous: that the result is independent of which representative
is picked. When this is true we say the operation or construction iswell defined. Showing
a definition given this way is well defined is not optional.
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member of Intk has a multiplicative inverse and the only integers without
mod k multiplicative inverses are the multiples of k.

A commutative unitary ring for which every nonzero element has a mul-
tiplicative inverse is called a field. The real numbers and the complex
numbers and the rational numbers are fields, which do not concern us here.
For prime k we have created finite fields.

8.8. Lemma. If p is prime then [a]p[b]p = [0]p if and only if at least one of
a or b is a multiple of p: that is, [a]p = [0]p or [b]p = [0]p.

8.9. Theorem. Fermat’s Little Theorem11:
If p is prime then ap ≡ a mod p for all a.

Proof. If a is 1 (or any multiple of p) the result is obvious.

Suppose we know the result for integer a. Then

(a+ 1)p = ap +

(
p

1

)
ap−1 + · · ·+

(
p

p− 1

)
a+ 1

by the binomial theorem. p divides each middle term on the right, so

(a+ 1)p ≡ ap + 1 ≡ a+ 1 mod p.

The result now follows for all positive a by induction on a. The case of
non-positive a is left to the reader. □

8.10. Remark. By this result, for prime p and any a we have [a]pp = [a]p.
An alternative phrasing is that the polynomial equation Xp −X = 0 has p
distinct solutions in Intp. Every member of Intp satisfies that equation.

9. The Chinese Remainder Theorem.

9.1. Lemma. The equation ax ≡ b mod n in variable x has a solution
exactly when d|b where d = gcd(a, n). If it does have a solution then there
are exactly d distinct mod n solutions. Each of these solutions is equivalent
to the x component of one of the solution pairs

x = x0 +
n

d
t, y = y0 +

a

d
t for t = 0, . . . , d− 1

11Pierre de Fermat 1607-1665. Strikingly, Fermat was a lawyer, not a professional
mathematician. That makes his numerous contributions to precursor work for infinitesimal
calculus, analytic geometry, probability, optics and, especially, number theory all the more
impressive. At the time he did not publish, but letters containing his many results and
sent to mathematician friends made his results known. The importance of his many
contributions to number theory were not fully understood until the time of Euler, 80
years later.
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where x0, y0 is any particular solution pair to the equation

a

d
x− n

d
y =

b

d
.

This particular solution can be found as suggested in Remark 6.3.

9.2. Corollary . If gcd(a, n) = 1 the congruency ax ≡ 1 mod n has one
solution mod n.

9.3. Remark. Corollary 9.2 tells us that if a is relatively prime to n then
[a]n has a multiplicative inverse. But if gcd(a, n) ̸= 1 then [a]n does not
have a multiplicative inverse.

9.4. Theorem. The Chinese Remainder Theorem:
Suppose n1, . . . , nk are pairwise relatively prime positive numbers
and a1, . . . , ak are any nonzero numbers.

Then the system of equations

x ≡ ai mod ni for i = 1, . . . , k

has a unique solution mod n, where n = n1 · · ·nk.

Proof. Let Nj = n/nj for each j. So gcd(Nj , nj) = 1 for each j. So there is
exactly one solution mod nj for equation Njx ≡ 1 mod nj for each j. Let
xj denote this solution. Then

x = a1N1x1 + · · ·+ akNkxk

is a solution to the system of equations, as can be readily checked.

If x is another solution then nj divides x−x for each j so n divides x−x
and we have uniqueness mod n. □

9.5.Remark. This theorem was, apparently, first recorded some time around
or after 400 AD in the work Sunzi Suanjing , a title roughly translated as
“Classic Mathematical Facts by Master Sun.”12

In the Chinese Remainder Theorem it is necessary that the ni be pairwise
relatively prime. It is easy to produce systems with no solution otherwise.

12This is not the military strategist Sun Tzu, who authored “The Art of War” sometime
around 500 BCE. Almost nothing is known about this mathematician, from which it is
deduced that he was not a government official or from a family of high standing. The
nature of the problems he solves in this work suggests he was, possibly, a Buddhist and
interested in various social issues.
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10. RelPrimen, Euler’s Theorem and Gauss’ Theorem.

10.1. Definition. For positive integer n define RelPrimen to consist of
those nonzero residue classes, members of Intn, with residues which are
relatively prime, or coprime, to n.

Every member of RelPrimen has a multiplicative inverse, and the product
of two members of RelPrimen is also in RelPrimen. But the sum of two
members of RelPrimen might not be in RelPrimen, even when n is prime.

For a given positive number n, ϕ(n) is the number of positive numbers
not exceeding n which are coprime to n: that is, ϕ(n) is the number of
classes in RelPrimen. For historical reasons ϕ is referred to as the Euler13

totient function.

So ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2 and so on.

10.2. Remark. Obviously, if p is prime ϕ(p) = p− 1. It is not hard to show
that ϕ(pk) = pk − pk−1 for prime p and k > 0.

And ifm and n exceed 1 and are relatively prime then ϕ(mn) = ϕ(m)ϕ(n).

To see this we explicitly count relatively prime integers as follows.

Arrange the numbers between 1 andmn in an n-row-by-m-column rectan-
gle. Each column consists of those numbers in the array with identical mod
m residue. So all but ϕ(m) of these columns may be immediately deleted
from consideration, since the other columns have residues that share a non-
trivial factor with m. Each remaining column has ϕ(n) numbers coprime,
also, to n and the result follows.

10.3. Theorem. For coprime m and n greater than 1 we have

ϕ(mn) = ϕ(m)ϕ(n)

This implies that if n = pk11 pk22 · · · p
nj

j is the factorization of integer n

(assumed to exceed 1) into the product of positive powers of distinct primes
then:

10.4. Corollary .

ϕ(n) = (pk11 − pk1−1
1 )(pk22 − pk2−1

2 ) · · · (pkjj − p
kj−1
j ).

10.5. Remark. RelPrimen with mod n multiplication has useful and inter-
esting properties. For instance if [a]n is in RelPrimen the list

[a]n, [a
2]n, [a

3]n, . . . , [a
k]n, . . .

must begin to repeat at some smallest integer k+1 and since [a]n[b]n = [ab]n
for any b it follows that [ak]n = [1]n and so [a]n[a

k−1]n = [1]n.

13Leonhard Euler 1707-1783
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So the mod n multiplicative inverse of [a]n is actually a power of [a]n.

This smallest k is called the order of the element [a]n, denoted on(a).

10.6. Theorem. The order of any element of RelPrimen must divide ϕ(n).

Proof. To see this examine the two lists

[ja]n, [ja
2]n, . . . , [ja

k]n [ta]n, [ta
2]n, . . . , [ta

k]n

for integers j and t relatively prime to n and where k is the order of [a]n.

There are no repeated classes on either list, and if the first list shares
even one member with the other list then they are the same list. And every
member of RelPrimen is on one list. □

We have, immediately, the following result.

10.7. Corollary . Euler’s Theorem
If n ≥ 2 and gcd(a, n) = 1 then

aϕ(n) ≡ 1 mod n.

If n is prime then ϕ(n) = n − 1 so an−1 ≡ 1 mod n for every integer
coprime to n: in particular, for all numbers between 1 and n− 1. However
if n is composite and if ϕ(n) has a common factor t with n − 1 it is still
possible that there could be an element [a]n ∈ RelPrimen of order t, and if
there is we have an−1 ≡ 1 mod n. So a “behaves as if” n is prime, since it
satisfies one of the consequences it would have to satisfy if n were prime.

This effect can be extreme if n− 1 and ϕ(n) share many factors.

However if a and b are coprime to n and if an−1 ≡ 1 mod n but bn−1 ̸≡ 1
mod n then (a · b)n−1 ̸≡ 1 mod n. So for every a that behaves, by this test,
as if n is prime there will be a paired relatively prime integer a · b that fails
to behave as if n is prime. The conclusion below follows.

10.8. Corollary . If n ≥ 2 and there exists a single [b]n ∈ RelPrimen for
which bn−1 ̸≡ 1 mod n then no more than half the elements of RelPrimen
have order that divides n− 1.

Recall that for positive integers m and n, gcd(m,n) = d exactly when
gcd

(
m
d ,

n
d

)
= 1.

So if Ad is the number of positive integers m not exceeding n for which
gcd(m,n) = d we have Ad = ϕ

(
n
d

)
. That means

n =
∑
d|n

Ad =
∑
d|n

ϕ
(n
d

)
=
∑
c|n

ϕ (c)

where the sums are taken over positive divisors of n.

We have, therefore, proven one of many theorems due to Gauss14:

14Karl Friedrich Gauss 1777-1855
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10.9. Theorem. Gauss’ Theorem

For positive n we have n =
∑
c|n

ϕ (c)

11. Lagrange’s Theorem and Primitive Roots.

11.1. Remark. If n = a b for a and b exceeding 1 then the first degree
polynomial function f(x) = a · x has at least two values that are multiples
of n, namely 0 and f(b).

This implies that the polynomial function defined on Intn by

g(x) = [a]nx

has at least two roots: that is, there are at least two different residue classes
in Intn that satisfy the equation g(x) = [0]n.

This is unlike the situation in R or C where the number of distinct roots
of a polynomial cannot exceed the degree of the polynomial.

However if n is prime we do recover this useful fact.

Note that if n is prime then Intn is a field so if g is any nonzero polynomial
we can multiply g by the multiplicative inverse of its leading coefficient to
produce a polynomial with exactly the same roots but which has leading
coefficient [1]n. Such polynomials are called monic. If we can prove the
result for monic polynomials of a certain degree we will have it, thereby, for
any polynomial of that degree.

11.2. Theorem. Lagrange’s15 Theorem:
Suppose p is prime and that polynomial g(x) with coefficients in Intp has
degree d > 0. Then g has at most d distinct roots in Intp.

Proof. The result is obviously true when polynomial g has degree 1. Assume
we have the result for all polynomials of degree less than some degree d and
that g is monic with degree d and has (at least) d distinct roots r1, r2, . . . , rd
in Intp. Then the polynomial

g(x)− (x− r1) (x− r2) · · · (x− rd)

has degree lower than d but has d distinct roots. So it is the zero polynomial:
that is, g(x) = (x− r1) (x− r2) · · · (x− rd). But then if c is any member of
Intp not among the ri all of the factors c − ri are nonzero and hence the
product of all of them is nonzero. So g cannot have any roots but those
already enumerated: g has exactly d roots.

We conclude, invoking Finite Induction (II), that no polynomial of this
type has more distinct roots than its degree. □

15Joseph-Louis Lagrange 1736-1813
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11.3. Remark. If f is a polynomial with coefficients in Z we can create a
polynomial on Intn via

f(x) = adx
d + · · ·+ a1x+ a0 ←→ g(X) = [ad]nX

d + · · ·+ [a1]nX + [a0]n.

Any of the coefficients of f which are multiples of n are zero in Intn so the
degree of g may be lower than the degree of f .

11.4. Corollary . Suppose p is prime and that polynomial f(x) with coef-
ficients in Z has degree d > 0. Unless all coefficients of f are multiples
of p the value of f is a multiple of p for integers in at most d distinct
p-congruency classes.

Now on to a different matter.

It may happen that on(a) = ϕ(n) and if so every member of RelPrimen
is some power of [a]n. In this case a is called a primitive root mod n.

11.5. Theorem. If p is prime there is a primitive root mod p. In fact, there
are exactly ϕ(c) elements of order c in Intp for every positive factor c of
ϕ(p) = p− 1.

Proof. We know by Gauss’ Theorem that p− 1 =
∑

c|(p−1) ϕ (c).

Let Ψ(c) be the number of members of Intp of order c. We know Ψ(c) is
nonzero only for divisors of p − 1, and every member of Intp is counted in
one Ψ(c).

So we have shown

p− 1 =
∑

c|(p−1)

Ψ(c) =
∑

c|(p−1)

ϕ (c) .

We will show that corresponding terms in the sums are equal, which yields
the statement of the theorem.

We do this by showing that Ψ(c) ≤ ϕ(c) for every divisor c of p− 1.

It is obvious that Ψ(c) ≤ ϕ(c) whenever Ψ(c) = 0.

And if Ψ(c) ̸= 0 then there is an element [a]p of order c.

[a]p, [a]2p, . . . , [a]cp = [1]p

provides a list of c distinct solutions to the equation

xc = [1]p.

By Lagrange’s Theorem there can be no more solutions so this list contains
all members of Intp whose order divides c. There are ϕ(c) of these powers
of [a]p whose orders are not just divisors of c but exactly c.

The desired conclusion follows. □
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11.6. Remark. Note that if t is a primitive root mod p then

(tk)
p−1
2 ≡ 1 or − 1 mod p depending on if k is even or odd.

In particular, we have t
p−1
2 ≡ −1 mod p.

12. Wilson’s Theorem.

Suppose p is prime.

Lagrange’s Theorem implies that the only value(s) of x for which

x2 ≡ 1 mod p

are of the form x = 1+ t ·p and x = −1+ t ·p for arbitrary integers t. (These
classes of solutions are equivalent if p = 2.)

So in Intp the only solutions to X2 = [1]p are

X = [1]p and X = [−1]p = [p− 1]p.

The other nonzero members of the field Intp can be organized into distinct
multiplicative-inverse pairs which means that

(p− 1)! = 1(p− 1) · (1 + a multiple of p).

So (p− 1)! ≡ −1 mod p.

On the other hand if some number n is exceeds 1 but is not prime then
it can be factored into two smaller unequal positive integers or n = k2 for
some k exceeding 1.

In the first case, if n = ab for unequal a and b then both a and b are
among the factors of (n− 1)! so (n− 1)! ≡ 0 mod n.

In the second case, such as n = 22 = 4, we have 3! = 6 = 2 mod 4.

More generally, if n = k2 for k exceeding 2 then both 2k and k are among
the list of factors of (n− 1)! so, again, we have (n− 1)! ≡ 0 mod n.

These facts, assembled, yield:

12.1. Theorem. Wilson’s Theorem16:
Integer n ≥ 2 is prime if and only if (n− 1)! ≡ −1 mod n.

12.2. Remark. An alternative proof can be created using Fermat’s Little
Theorem, Lagrange’s Theorem and the polynomials

f(x) = (x− 1) (x− 2) · · · (x− (p− 1)) and g(x) = xp−1 − 1.

For prime p exceeding 2 every nonzero member of Intp is a root of both
equations (after you replace all coefficients by their p-congruency classes)
but the difference of these two polynomials is degree p− 2 and therefore by

16This theorem was stated as true by Ibn al-Haytham 965-1040 AD around 1000 AD
and again, about 750 years later, by John Wilson 1741-1793. Lagrange gave the first
actual proof in 1771.
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Lagrange’s Theorem must be the zero polynomial. So the constant terms of
these two polynomials coincide.

Though an interesting result for other reasons, direct use of Wilson’s
Theorem as a “prime detector” is computationally tractable only when it is
unnecessary.

13. Polynomial Congruencies: Reduction to Simpler Form.

13.1. Remark. We produced, in Section 6.1, conditions for solution of Dio-
phantine equations ax + my = c which, when transformed into modular
arithmetic, corresponds to solutions to the first degree polynomial equation

ax− c ≡ 0 mod m.

We found that there will be a solution exactly when d = gcd(a,m) divides
c, and enumerated the d distinct mod m classes of solutions when a solution
exists. If x0 is any solution all others are of the form

xi = x0 + i · m
d

and these solutions are all in one of the (distinct) conjugacy classes[
x0 + i · m

d

]
m

for i = 0, . . . , d− 1.

These congruence classes correspond to the solutions in Intm of the first
degree equation

[a]m ·X = [c]m.

We also learned how to solve systems of first degree congruencies in Sec-
tion 9, the Chinese Remainder Theorem.

The next step is to solve quadratic and higher-degree congruencies and
equations.

Suppose f is any polynomial f(x) = anx
n + · · · + a1x + a0. For integer

m ≥ 2 let g(X) be the associated polynomial with coefficients in Intm given
by g(X) = [an]mXn + · · ·+ [a1]mX + [a0]m.

Of course the degree of g might be less than n since [an]m could be [0]m.

So we seek solutions to the polynomial congruency or (completely
equivalently) solutions to the polynomial equation in Intm given by

f(x) ≡ 0 mod m ⇐⇒ g(X) = [0]m.

This is a generalization of an important case, the general quadratic
congruency

αx2 + βx+ γ ≡ 0 mod m ⇐⇒ [α]mX2 + [β]mX + [γ]m = [0]m.
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13.2. Remark. Suppose m = s · t where gcd(s, t) = 1 and, somehow, we
find integers x1 and x2 for which

f(x1) ≡ 0 mod s and f(x2) ≡ 0 mod t.

It is easy to show that any number s-equivalent to x1 is also a solution
to the first congruency, and any number t-equivalent to x2 is a solution to
the second congruency.

By the Chinese Remainder Theorem there is a solution x3 to the simul-
taneous congruencies

x ≡ x1 mod s and x ≡ x2 mod t

and this solution x3 is mod s · t = m unique.

So x3 + j ·m for various integers j are all, and the only, solutions to the
simultaneous congruencies above.

And conversely any solution to f(x) ≡ 0 mod m must satisfy the two
simultaneous congruencies.

An easy extension of this argument implies that if m = pk11 · p
k2
2 · · · p

kj
j is

the prime factorization of m into the product of distinct prime powers then
any solution to

f(x) ≡ 0 mod m

will also be a solution to each

f(x) ≡ 0 mod pkii .

And if we can find solutions to all of the the prime-power congruencies
we can use the Chinese Remainder Theorem to find all solutions to f(x) ≡ 0
mod m that correspond to (the prime power classes of) the selected solu-
tions to the individual congruencies, and the Chinese Remainder Theorem
guarantees that the solution is unique mod m.

Of course if there is more than one prime power class of solutions for a
given prime power modulus, as there likely will be in many cases, we will
have to look at all possible combinations of these classes for various prime
powers upon which we will apply the Chinese Remainder Theorem. This
may well be tedious, but it does have the virtue of specificity: we will know
exactly with which combinations we must work to produce our complete list
of solutions and each combination will produce a unique mod m solution to
the original equation.

And if any of the prime power congruencies fails to have a solution then
the original congruency has no solution either.

We enshrine this key fact as a theorem.
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13.3. Theorem. if m = pk11 · p
k2
2 · · · p

kj
j is the prime factorization of m into

the product of distinct prime powers then every solution of

(i) f(x) ≡ 0 mod m

is a solution of

(ii) f(x) ≡ 0 mod pkii for each i.

Therefore, a necessary condition for the existence of a solution to (i) is that
each congruency (ii) have a solution.

Conversely, if each congruency (ii) has a solution then every combination
of solutions selected (one for each prime power) can be used to construct a
solution to (i) via the Chinese Remainder Theorem.

So it seems we can focus on prime power congruencies in our hunt for
solutions to a polynomial congruency.

13.4. Remark. Given polynomial f(x) = anx
n+· · · a1x+a0 and m as above

we select one of the constituent prime powers pk for m. There are various
ways of simplifying the subsequent work.

We can reduce the coefficients ai to non-negative values all less
than pk. We want solutions to

f(x) = anx
n + · · · a1x+ a0 ≡ 0 mod pk

and, for convenience, when we mention a specific solution x we can (if
we wish) choose it so that it is non-negative and less than pk.

If the ai share a common factor of pj so ai = pj · bi for all i and if j ≥ k
this congruency is trivial: any integer is a solution. But otherwise, the
congruency is equivalent to

f(x)

pj
= bnx

n + · · ·+ b1x+ b0 ≡ 0 mod pk−j .

Therefore we may assume that there is no common p-power factor among
the nonzero coefficients. And if the nonzero coefficients share any other fac-
tor then that factor has a mod pk−j multiplicative inverse so the congruency
can be multiplied by that inverse without altering the solution set.

So we may, and do, make the simplifying assumption that if
there is more than one non-zero coefficient the greatest common
factor of these non-zero coefficients is 1. We will also assume that
we really are working with an nth degree polynomial here: that
after reduction as above an ̸= 0.

With these reductions we have arrived at a mod pk congruency and where

f(x) = xn or f(x) = pjxn + an−1x
n−1 + · · ·+ a0.

The first case is trivial to solve and in the second case 0 ≤ j < k and
there is at least one non-zero term among the coefficients a0, . . . , an−1 and
at least one of these does not have a factor of p.
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14. Polynomial Congruencies: Solutions.

14.1.Remark. Recall that any polynomial can be expanded in a finite power
series around any point, and in our case we can produce the representation

f(x+ u) = f(x) +
f ′(x)

1!
u+

(
f ′′(x)

2
u2 + · · ·+ f (n)(x)

n!
un

)

= f(x) + f ′(x) · u+ u2

(
f ′′(x)

2
+ · · ·+ f (n)(x)

n!
un−2

)
.

The kth derivatives f (k)(x) in this formula are terms of the form

j · (j − 1) · · · (j − k + 1) · aj · xj−k+1

and in view of Proposition 3.3 the ratios j·(j−1)···(j−k+1)
k! are all integers.

Therefore the parenthesized term in the last line of the power series repre-
sentation of f(x+ u) is an integer, which is then multiplied by u2.

We note for later that if g is any polynomial and p|g(x) for some x then
p|g(x + v · p) for any integer v. Therefore, for each x all or none of the
numbers g(x+ v · p) are divisible by p.

Now suppose we have polynomial f and k ≥ 2. Examining the power
series, if 0 < v < p we have

f(x+ v · pk−1) = f(x) + f ′(x) · v · pk−1 + v2 · p2k−2M(v)

for an integer M(v) depending on x and v. Observe 2k − 2 ≥ k.

When finding solutions, it will be useful to note that if f(x) ̸≡ 0 mod pk

but p|f ′(x) then f(x + v · pk−1) ̸≡ 0 mod pk for any v with 0 ≤ v < p. In
other words if x is not a mod pk solution and p|f ′(x) then x+v ·pk−1 cannot
be mod pk solutions either for any of these v.

On the other hand if p ∤ f ′(x) and assuming only that x is a mod pk−1

solution then there can be at most one mod pk solution among the numbers
x+ v · pk−1 for v = 0, . . . , p− 1, as can be seen by examining a difference

f(x+ v · pk−1)− f(x+ w · pk−1).

Now suppose we have solution x0 to f(x) ≡ 0 mod pk. So f(x0) = c · pk
for some c and we can choose x0 itself so that 0 ≤ x0 < pk, and we will make
that mod pk equivalent choice.

Then for some v with 0 ≤ v < p we have 0 ≤ x0− v · pk−1 < pk−1 and the
number x1 = x0 − v · pk−1 is among the solutions to f(x) ≡ 0 mod pk−1.

With this setup in hand, we have

f(x0) = f(x1 + v · pk−1) = f(x1) + f ′(x1) · v · pk−1 + pkN

for an integer N .
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So if p|f ′(x1) the number x1 must also be a solution to f(x) ≡ 0 mod pk,
and it follows that x1 + v · pk−1 is a solution not only for the specified value
of v but for any value of v, and these various possible v values (include v = 0
here) provide a total of p distinct mod pk solutions to f(x) ≡ 0 mod pk.
They are, of course, different versions of the same mod pk−1 solution but
the pk modulus is able to distinguish them.

But if p ∤ f ′(x1) for some known pk−1 solution x1 (we don’t know x0
here—we want to find it) then at most one of the numbers on the list

x1, x1 + pk−1, x1 + 2 · pk−1, , . . . , x1 + (p− 1) · pk−1

could be a pk solution. And the v that corresponds to this potential solution,
if it exists, must satisfy

−f ′(x1) · v ≡
f(x1)

pk−1
mod p.

Under these conditions a unique v with 0 ≤ v < p − 1 that satisfies this
congruency can be found. However it still must be verified for this calculated
v that the assumption that produced the congruency, namely that there is
a value of v for which x1 + v · pk−1 is a mod pk solution, is valid.

14.2. Remark. So we now have a method for finding all the solutions to

f(x) = pjxn + an−1x
n−1 + · · ·+ a0 ≡ 0 mod pk

by “working up” from lower p-power congruencies, assuming we can find all
solutions to at least one of these.

If there are s solutions to a lower mod pi congruency the method we
outline below requires the evaluation of f(x) and f ′(x) on each solution. It
could (but often won’t) produce as many as s·p different mod pi+1 solutions.
The total number of necessary evaluations, moving up from the mod pi

solutions to the mod pk solutions, will usually be far fewer than the worst-
case of pk evaluations which would be required by selecting a representative
from each of the classes in Intpk to find all mod pk solutions directly. As
we have seen in Corollary 11.4, the number of mod p solutions (the typical
starting case of i = 1) cannot exceed n unless p divides all coefficients, a
situation we forbid by preliminary reduction.

If j ≥ i > 0 the leading term is congruent to 0 mod pi, so the polyno-
mial is actually of lower degree and under our conditions it is not the zero
polynomial.

Generally, you can replace the polynomial congruence with one that is
equivalent for that p-power. For instance if you are starting at level i = 1
for p = 7 an expression like x8 + 9x + 8 ≡ 0 mod 7 could be replaced17

(Fermat’s Little Theorem) by x+ 9x+ 1 ≡ 3x+ 1 ≡ 0 mod 7. Remember

17Technically speaking, x8+9x+8 and 3x+1 are not equivalent mod 7 as polynomials
which, by definition, must have terms of identical degree and congruent corresponding
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though, as you move up the p-power congruencies, to replace reductions
with those appropriate to that p-power from the original polynomial.

You may choose judiciously where to start this procedure though i = j
or i = 1 may be good choices. Choosing the starting i value to be larger is
better if you can solve the resulting polynomial congruency.

If at any point in the following description we arrive at a congruency with
no solution the the original congruency has no solution.

We proceed as follows. Suppose k is at least 2.

Find all solutions, if you can, for the congruency f(x) = pjxn+an−1x
n−1+

· · ·+ a0 ≡ 0 mod pi for some i with 0 < i < k.

Each mod pi+1 solution, if any, will be pi+1 equivalent to one of the
numbers x+ v · pi for some v = 0, . . . , p− 1 and some mod pi solution x.

Suppose x is among these mod pi solutions, chosen so that 0 ≤ x < pi.

If pi+1|f(x) check to see if p|f ′(x) and if it does every number of the form
x+ v · pi for v = 1, . . . , p− 1 is also a mod pi+1 solution. Include them all.

If pi+1 ∤ f(x) but p|f ′(x) the numbers x+v ·pi are not mod pi+1 solutions.
Rule them all out.

If pi+1|f(x) but p ∤ f ′(x) the numbers x+v ·pi are not mod pi+1 solutions
unless v = 0. Include x in the list of mod pi+1 solutions, rule the others out.

If pi+1 ∤ f(x) and p ∤ f ′(x) solve the congruency

−f ′(x) · v ≡ f(x)

pi
mod p

for v with 0 < v < p. There will be just one value of v under our conditions,
and this calculated value will provide the only possible mod pi+1 solution of
the form x + v · pi, but it must be determined if pi+1 actually does divide
f(x+ v · pi). Include it or not depending on this.

Proceed through the list of mod pi solutions until each has been ruled
out, included alone, used to find a single v for which x + v · pi is a mod
pi+1 solution or included and expanded into p different numbers which are
pi equivalent but which are distinct mod pi+1 solutions.

Finally, proceed for g steps, until i+ g = k.

14.3.Remark. We give some examples of these methods in action, following
the treatment in An Introduction to the Theory of Numbers [NZ62] by Niven
and Zuckerman.

Solve x2 + x + 7 ≡ 0 mod 33.

f(x) = x2 + x+ 7 ≡ 0 mod 3 has the single solution 1 by inspection.

coefficients. However they produce mod 7 equivalent output when evaluated at any integer,
which is what we care about here.
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f(1) = 9 and f ′(x) = 2x+1 and 3|f ′(1) so 1 and 4 and 7 are all solutions
to x2 + x+ 7 ≡ 0 mod 9.

27 ∤ f(1) = 9 but 3|f ′(1) so 1, 10 and 19 are ruled out as mod 27 solutions.

27|f(4) = 27 and 3|f ′(4) = 9 so 4, 13 and 22 are all mod 27 solutions.

27 ∤ f(7) = 63 and 3|f ′(7) = 15 so 7, 16 and 25 are ruled out as mod 27
solutions.

So the mod 27 classes of 4, 13 and 22 are the solutions.

Solve x2 + x + 7 ≡ 0 mod 34.

81 ∤ f(4) = 27 and 3|f ′(4) so none of 4, 31 or 58 are mod 81 solutions.

81 ∤ f(13) = 189 and 3|f ′(13) so none of 13, 40 or 67 are mod 81 solutions.

81 ∤ f(22) = 513 and 3|f ′(22) so none of 22, 49 or 76 are mod 81 solutions.

So there are no solutions to this congruency.18

Solve x2 + x + 7 ≡ 0 mod 73. − 56, 55

0 and 6 are the only mod 7 solutions, by inspection. f ′(x) = 2x+ 1.

7 ∤ f ′(0) = 1 and 49 ∤ f(0). Solve −1 · v ≡ 1 mod 7.

This gives v = 6 so 0 + 6 ∗ 7 = 42 is a mod 49 solution.

7 ∤ f ′(6) = 18 and 49|f(6) = 49. So 6 is a mod 49 solution.

73 = 343 ∤ f(42) = 1813 and 7 ∤ f ′(42) = 85.

For x = 42 solve 1813/49 = 37 ≡ −85 · v mod 7.

This is equivalent to 2 ≡ 6 · v mod 7.

So v = 5 and the mod 73 solution is 42 + 5 ∗ 49 = 287.

For x = 6 solve 49/49 = 1 ≡ −13 · v mod 7.

This is equivalent to 1 ≡ 1 · v mod 7 which has solution v = 1.

So 6 + 1 · 49 = 55 is a mod 73 solution.

So the mod 73 classes of 287 and 55 are the solutions.

Solve x5 + x4 + 1 ≡ 0 mod 34.

1 is the only mod 3 solution, by inspection. f ′(x) = 5x4 + 4x3.

9 ∤ f(1) = 3 and 3|f ′(1) = 9.

There are no mod 32 solutions so there are no mod 34 solutions.

18We used the fact that 3|f ′(4), determined in the previous example. We know then
that 3|f ′(13) and 3|f ′(22) since both 13 and 22 differ from 4 by a multiple of 3.
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Solve 25x3 + x + 57 ≡ 0 mod 53.

Starting with mod 25 this is x+ 7 ≡ 0 mod 25 with solution x = 18.

f ′(x) = 75x2 + 1 and 5 ∤ f ′(18) = 24301.

125|f(18) = 145875 so the class of 18 is the only mod 125 solution.

Solve x2 + 5x + 24 ≡ 0 mod 36.

We need to solve

x2+5x+24 ≡ x2+5x+6 ≡ 0 mod 9 and x2+5x+24 ≡ x2+x ≡ 0 mod 4

and apply the Chinese Remainder Theorem to the solution combinations.

The first congruency has solutions 6, 7 and the other has solutions 0, 3.

Note 9(1) + 4(−2) = 1 so, for instance, 9(1) = 1− 4(−2).
The simultaneously congruent solutions will be mod 36 congruent to

a1 · 4 · (−2) + a2 · 9 · (1)
where a1 is a solution to the mod 9 congruency and a2 is a solution to the
mod 4 congruency.

6 · 4 · (−2) + 0 · 9 · (1) = −48 ≡ 24 mod 36

6 · 4 · (−2) + 3 · 9 · (1) = −21 ≡ 15 mod 36

7 · 4 · (−2) + 0 · 9 · (1) = −56 ≡ 16 mod 36

7 · 4 · (−2) + 3 · 9 · (1) = −29 ≡ 7 mod 36

So the mod 36 classes of 7, 15, 16 and 24 are the solutions.

15. The Quadratic Formula.

To solve a general real quadratic equation one uses the quadratic for-
mula, and the key step in that solution is the possibility of evaluating the
square root in the formula.

A general quadratic mod m congruency has the form

αx2 + βx+ γ ≡ 0 mod m.

But now we will make a specific restriction.

We will presume in this section that m ∤ 4 · α.

In view of the result of Theorem 13.3 the case of m = pk is of primary
interest to us.

Multiplying the quadratic equation by 4α produces

4α2x2 + 4αβx+ 4αγ ≡ 0 mod m.
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and adding β2 − β2 we have

4α2x2 + 4αβx+ β2 + 4αγ − β2 ≡ 0 mod m

and then
( 2αx+ β )2 ≡ β2 − 4αγ mod m.

So we can turn this equation into a linear equation and attempt to solve
that provided we have a way to find all mod m square roots of A = β2−4αγ.

If we cannot find square roots of A then, under our conditions, there will
be no solution to the quadratic congruency.

Further, given success there, we are guaranteed to find solutions (using
our ruminations about solutions of Diophantine equations) when and only
when

d = gcd(2α,m) |
√
A− β

and for each
√
A for which this condition holds there will be d distinct mod

m solutions to the original quadratic.

If in fact d = 1 we have at most one solution for each
√
A.

So it seems we must consider square roots for various moduli. Some data
for specific small moduli might be a place to start, as found in the nearby
table.

Of course 0 and 1 always are their own square roots, and the numbers
which have square roots, listed in the columns in the table, are symmetric,
due to the fact that if a has a square root x for modulus m then m− x is a
second square root for that modulus.

We take up the issue of square roots (and their existence) in more detail
in subsequent sections.

16. Square Roots for Prime Power Moduli.

16.1. Lemma. Suppose p is an odd prime and gcd(a, p) = 1.
Suppose also k > j ≥ 1 and we have found a solution for x2 ≡ a mod pj.
This solution can be used to find an explicit solution to x2 ≡ a mod pk.

Proof. Suppose x2 ≡ a mod pj for some j ≥ 1. So x2 = a+ c · pj for some
integer c. It may be that p|c in which case x2 ≡ a mod pj+1.

But if not, since x can have no factor of p there is a number y so that
2xy ≡ −c mod p. Thus 2xy = −c+ z · p for some integer z.

Now Let w = x+ y · pj .

w2 =
(
x+ y · pi

)2
= x2 + 2xypj + y2p2j

= a+ c · pj + (−c+ z · p) pi + y2p2j = a+
(
x+ y2pj−1

)
pi+1.

So w2 ≡ a mod pj+1.
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modulus

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
12 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 = 4 1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
32 = 9 1 4 3 2 1 0 9 9 9 9 9 9 9 9 9 9
42 = 16 1 4 2 0 7 6 5 4 3 2 1 0 16 16 16
52 = 25 1 4 1 7 5 3 1 12 11 10 9 8 7 6
62 = 36 1 4 0 6 3 0 10 8 6 4 2 0 17
72 = 49 1 4 9 5 1 10 7 4 1 15 13 11
82 = 64 1 4 9 4 12 8 4 0 13 10 7
92 = 81 1 4 9 3 11 6 1 13 9 5
102 = 100 1 4 9 2 10 4 15 10 5
112 = 121 1 4 9 1 9 2 13 7
122 = 144 1 4 9 0 8 0 11
132 = 169 1 4 9 16 7 17
142 = 196 1 4 9 16 6
152 = 225 1 4 9 16
162 = 256 1 4 9
172 = 289 1 4
182 = 324 1

So either x is already a mod pj+1 square root of a, or it can be used to
produce one.

We continue this process up to exponent k and the result is proved. □

16.2. Remark. Square roots for both members of Int2 exist, an uninterest-
ing case.

In Int4 we have

[1]24 = [1]4 and [3]24 = [9]4 = [1]4.

So if a is coprime to 4 then a has a mod 4 square root exactly when a ≡ 1
mod 4. Both members of RelPrime4 are square roots of [1]4. Of course
[0]24 = [2]24 = [0]4 so [0]4 also has two square roots.

02 = 0 and 12 = 1 and 22 = 4 and 32 = 9 = 1 + 8

and 42 = 16 = 2 ∗ 8 and 52 = 25 = 1 + 3 · 8
and 62 = 36 = 4 + 4 ∗ 8 and 72 = 49 = 1 + 6 · 8.

So in RelPrime8 only [1]8 has a square root, and all four elements of
RelPrime8 are square roots of [1]8. The classes [3]8, [5]8 and [7]8 have no
square roots.

Among the rest of the members of Int8 only the classes [0]8 (roots [0]8
and [4]8) and [4]8 (roots [2]8 and [6]8) have square roots. [2]8 and [6]8 have
no square roots.
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16.3. Lemma. Suppose a is odd.
(i) x2 ≡ a mod 2 always has a solution: every member of [1]2.
(ii) x2 ≡ a mod 4 has a solution only when a ≡ 1 mod 4.
(iii) x2 ≡ a mod 2k for k ≥ 3 has a solution exactly when a ≡ 1 mod 8.

In the proof of (iii) we show how to calculate, from a solution to x2 ≡ a
mod 23, an explicit solution to x2 ≡ a mod 2k when k > 3.

Proof. We demonstrated the lemma to be true (see the table) up to modulus
24 = 16 by examining all cases.

Suppose x2 ≡ a mod 2k for some k ≥ 3. Since a is odd so too is x, which
must therefore be of the form x = 1 + 2 · r. But then

x2 = 1 + 4r + 4r2 = 1 + 4r(1 + r)

and whether r is even or odd the term 4r(1 + r) is divisible by 8. So it is
necessary that a ≡ 1 mod 8 for a square root to exist.

Suppose we know that for a specific k, at least three, that x2 ≡ a mod 2k

whenever a ≡ 1 mod 8 and suppose a is such a number with mod 2k square
root x.

Thus x2 = a+ r · 2k for some integer k.

If r is even, then x is also a mod 2k+1 square root of a.

But r may be odd. In that case, since both x and a are odd there exists
y for which xy = −r + 2j. So now(

x+ y · 2k−1
)2

= x2 + 2 · x · y · 2k−1 + y2 22(k−1)

= a+ r · 2k + 2 · (−r + 2j) · 2k−1 + y2 22(k−1)

= a+ j · 2k+1 + y2 22(k−1) ≡ a mod 2k+1.

So either the mod 2k square root x is already a mod 2k+1 square root
of a, or it can be used to produce one which, it should be noted, is also a
different mod 2k square root of a.

The result now follows by induction on the exponent on the modulus. □

16.4. Theorem. Suppose a = 2j · α where α is odd and j ≥ 0.
(i) x2 ≡ a mod 2 always has a solution.
If j > 0 the solution set is [0]2. If j = 0 the solution set is [1]2.

(ii) x2 ≡ a mod 4 has a solution exactly when (j is at least 2) or (j = 0
and α ≡ 1 mod 4).

(iii) x2 ≡ a mod 2k for k ≥ 3 has a solution exactly when (j ≥ k) or ( j
is even and x2 ≡ α mod 2k−j has a solution.),
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17. Euler’s Criterion and the Legendre Symbol.

17.1. Remark. We identify below a condition, found by Euler, under which

x2 ≡ a mod p ⇐⇒ Y 2 = [a]p (Y = [x]p)

will have solutions for prime p.

The a for which these solutions exist are called quadratic (or p-quadratic)
residues. The other integers are called quadratic non-residues.

The proof of the following result is trivial, but the result itself is impor-
tant.

17.2. Lemma. Suppose p is prime and a, b are p-quadratic residues.
So are ab and a−1 and a+ np for any n.

17.3. Remark. When p = 2 the situation is trivial, so we concentrate on
odd primes.

The Legendre19 Symbol is traditionally employed in this discussion,
and we define it for odd prime p (pronounced “a on p”) by(

a

p

)
=


1 if a is a p-quadratic residue and a ̸≡ 0 mod p

0 if a ≡ 0 mod p

−1 if a is a p-quadratic non-residue.

a = 0 is certainly a p-quadratic residue and also j2 for j = 1, 2, . . . , p−1
2 .

If 1 ≤ j < k ≤ p−1
2 then k2− j2 = (k− j)(j+ k) and both factors are less

than prime p so these two squares are not congruent quadratic residues.

Therefore there are at least p−1
2 distinct nonzero classes of quadratic

residues in Intp.

By Fermat’s Little Theorem if [a]p ̸= [0]p we have(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
≡ 0 mod p.

But if a is congruent to x2 then the left factor is congruent to 0 and the right
factor is not. This means that there can be at most p−1

2 distinct nonzero
classes of quadratic residues in Intp, and therefore exactly that many.

All the remaining nonzero classes, the classes of quadratic non-residues,
correspond to integers that make the second factor a multiple of p. For these

classes a
p−1
2 ≡ −1 mod p.

In any event, we have the following criterion for quadratic residue status.

19Adrien-Marie Legendre 1752-1833
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17.4. Theorem. Euler’s Criterion:(
a

p

)
≡ a

p−1
2 mod p (for odd prime p).

a is a p-quadratic residue depending on whether a
p−1
2 ≡ 1 mod p, in

which case it is, or a
p−1
2 ≡ −1 mod p, in which case it’s not, or a

p−1
2 ≡ 0

mod p, in which case it is, trivially. The three cases exhaust all possibilities.

17.5. Corollary . Suppose p is an odd prime and b, c are integers.

Then

(
b · c
p

)
=

(
b

p

)(
c

p

)
and

(
b+ np

p

)
=

(
b

p

)
for any n.

17.6. Corollary . Suppose p is an odd prime and a is any integer. Then

a = (−1)i · 2j · p1 . . . pk · pm ·N2

for primes p1, . . . , pk not p or 2 and i, j are 0 or 1 and p ∤ N .

Then

(
a

p

)
=

(
(−1)i

p

)(
2j

p

)(
pm

p

)(
p1
p

)
· · ·
(
pk
p

)
.

17.7. Remark. In Corollary 17.6 the case where m ̸= 0 is trivial, so we

can reduce the problem of calculating a general
(
a
p

)
to that of finding(

−1
p

)
,
(
2
p

)
and

(
q
p

)
for odd primes q less than p.

17.8. Remark. We expand a little on the material of Remark 17.3.

If we have a primitive root mod p we can be a bit more explicit about the
p-quadratic residues. Suppose t is a primitive root mod p for odd prime p.

The residues of the list t, t2, . . . , tp−1 are exactly the numbers 1, 2, . . . , p−1
in some order and half of the members of the first list, the p−1

2 numbers
with even exponents, are p-quadratic residues. The odd exponent terms are
the quadratic non-residues.

Generally if x2 ≡ y2 mod p and x ̸= 0 mod p then x ≡ ±y mod p.

So there are three possibilities for solutions to x2 ≡ a mod p.

First x ≡ 0 mod p. Second, p = 2 and there is just one solution, 1 ≡ −1
mod 2. Third, there are exactly two congruence classes of solutions and if
r is a residue of one solution p− r is the residue of the second. On of these
residues is no more than p−1

2 while the other is, at least, p+1
2 .

As an example, assuming p to be odd, since
(
t
p−1
2

)2
≡ 1 mod p and

t
p−1
2 ̸≡ 1 mod p it must be that t

p−1
2 ≡ −1 mod p.
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Any a ≡ tk mod p for some k and then a
p−1
2 ≡ tk

p−1
2 . If k is even a is a

p-quadratic residue and a
p−1
2 ≡ 1 mod p. But if k is odd a is a p-quadratic

non-residue and a
p−1
2 ≡ −1 mod p.

This is an alternative argument for Euler’s Criterion.

18. A Lemma of Gauss.

Again we presume p is an odd prime and this time assume a to be rela-
tively prime to p.

Examine the list of p−1
2 numbers

a, 2 · a, 3 · a, . . . ,
p− 1

2
· a.

These numbers have nonzero mod p residues and also must have distinct
residues.

We index and list these residues in increasing order as

0 < r1 < r2 < · · · rk ≤
p− 1

2
<

p+ 1

2
≤ rk+1 < · · · < rk+n < p

where, as indicated, k has been chosen to be the index of the greatest residue
not exceeding p−1

2 .

The integer n is the number of these residues which are p+1
2 or larger.

k + n = p−1
2 so, as far as we know, we could have n = 0.

Consider the new list of p−1
2 numbers

r1, r2, . . . , rk, p− rk+1, . . . , p− rk+n.

which are all bigger than 0 and no larger than p−1
2 .

We know there there are no repeats among the first k, nor are there any
duplicate numbers among the last n.

And if one of the first group is duplicated among the last group, say
rj = p − rt, then for certain positive integers i1 and i2 not exceeding p−1

2 ,
and for two other integers i3 and i4 we would have

rj = p− rt ←→ i1a+ i3p = p− (i2a+ i4p)

and therefore (i1 + i2)a = p(1− i4 − i3).

This is impossible, in view of the fact that 0 < i1+ i2 < p. So there are no
duplicates among these p−1

2 positive numbers, none of which exceeds p−1
2 .

Therefore the numbers r1, r2, . . . , rk, p−rk+1, . . . , p−rk+n are nothing

more than a rearrangement of the numbers from 1 to p−1
2 .
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We now have

a
p−1
2 1 · 2 · 3 · · · p− 1

2
= 1 · a · 2 · a · 3 · a · · · p− 1

2
· a

≡ r1 · r2 · · · rk+n mod p

≡ (−1)nr1 · · · rk · (p− rk+1) · · · (p− rk+n) mod p

≡ (−1)n 1 · 2 · 3 · · · p− 1

2
mod p

and we conclude that a
p−1
2 ≡ (−1)n mod p.

Appealing to Euler’s Criterion we have proven a result that would likely
be called a theorem if attributed to anyone but Gauss:

18.1. Theorem. Gauss’ Lemma:
If p is an odd prime and a is a positive integer with gcd(a, p) = 1 and n is
the number of residues of numbers on the list

a, 2 · a, 3 · a, . . . ,
p− 1

2
· a

which exceed p−1
2 then, in terms of the Legendre symbol,(

a

p

)
= (−1)n.

In other words, a is a p-quadratic residue or not depending on whether n
is even or odd.

Now we prove a technical lemma based on Gauss’ Lemma which we will
use in our proof of the Quadratic Reciprocity Law, Theorem 20.1.

For integers r, s and t with t > 0 we say r ≤ s
t exactly when r · t ≤ s.

For every fraction s
t there is20 a largest integer r for which r ≤ s

t .

We denote it by the symbols
[
s
t

]
, the “greatest integer in s

t
.”

18.2. Lemma. If n is the number defined in Gauss’ Lemma above for odd
integer a and odd prime p then

n ≡

p−1
2∑

j=1

[
ja

p

]
mod 2

and therefore by Gauss’ Lemma(
a

p

)
= (−1)

∑ p−1
2

j=1

[
ja
p

]
.

20That there is such an integer for an s, t combination and that it would be the same
if calculated using any rational a

b
equivalent to s

t
requires a little argument.
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Proof. Recall the list

a, 2 · a, 3 · a, . . . ,
p− 1

2
· a.

and their properly ordered mod p residues

0 < r1 < r2 < · · · rk ≤
p− 1

2
<

p+ 1

2
≤ rk+1 < · · · < rk+n < p

For each j between 1 and p−1
2 we have

j · a =

[
ja

p

]
· p+ rij

where rij is counted among the n “big residues” if it exceeds p−1
2 .

Adding together all the j · a we have

p2 − 1

8
· a =

p−1
2∑

j=1

j · a = p ·

p−1
2∑

j=1

[
ja

p

]
+

k∑
i=1

ri +
k+n∑

i=k+1

ri.

In Gauss’ Lemma we showed that the list

r1, r2, . . . , rk, p− rk+1, . . . , p− rk+n

is a reordering of the first p−1
2 positive integers so

p2 − 1

8
=

(
k∑

i=1

ri

)
+ np−

(
k+n∑

i=k+1

ri

)

Subtracting corresponding left and right sides of these equalities produces

p2 − 1

8
· (a− 1) = p ·

−n+

p−1
2∑

j=1

[
ja

p

]+ 2 ·
k+n∑

i=k+1

ri.

Since p and a are odd they are both congruent to 1 mod 2, so the line
above becomes

0 ≡ −n+

p−1
2∑

j=1

[
ja

p

]
mod 2

which is the result we were seeking.
□
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19.
(
−1
p

)
and

(
2
p

)
.

When is −1 is a p-quadratic residue for odd prime p?

This will happen, according to Euler’s Criterion, when and only when
p−1
2 is even, in which case p ≡ 1 mod 4. Assuming p to be an odd prime

the only other possible case is p ≡ 3 ≡ −1 mod 4 and in that case −1 is a
p-quadratic non-residue. We have proved:

19.1. Lemma. An odd prime p must satisfy p ≡ 1 or 3 mod 4.(
−1
p

)
= 1 if p ≡ 1 mod 4 and

(
−1
p

)
= −1 if p ≡ 3 mod 4.

In terms of a direct formula, Euler’s Criterion gives
(
−1
p

)
= (−1)

p−1
2 .

The next lemma involves more cases than we considered in Lemma 19.1.

19.2. Lemma. An odd prime p must satisfy p ≡ 1 or 3 or 5 or 7 mod 8.(
2

p

)
= 1 if p ≡ 1 or 7 mod 8 and

(
2

p

)
= −1 if p ≡ 3 or 5 mod 8.

In terms of a direct formula,
(
2
p

)
= (−1)

p2−1
8 .

Proof. For odd prime p examine the mod p residues of the numbers

2, 2 · 2, 3 · 2, . . . ,
p− 1

2
· 2.

None of these numbers equal or exceed p so they are their own list of
residues, in order. A certain number n of these values will exceed p−1

2 and

according to Gauss’ Lemma
(
2
p

)
= (−1)n. So we need to count how many

of these large residues there are for the four possible mod 8 residues of our
prime p, determining if n is even or odd in each case.

If p = 1 + 8k then p−1
2 = 4k. The first 2k entries on that list (the

numbers up to 4k after multiplication by 2) do not exceed 4k. So p−1
2 −2k =

1+8k−1−4k
2 = 2k are bigger.

If p = 3 + 8k then p−1
2 = 1 + 4k. The first 2k entries on that list (the

numbers up to 4k after multiplication by 2) do not exceed 1 + 4k. So
p−1
2 − 2k = 3+8k−1−4k

2 = 2k + 1 are bigger.

If p = 5+ 8k then p−1
2 = 2+ 4k. The first 2k+ 1 entries on that list (the

numbers up to 4k + 2 after multiplication by 2) do not exceed 2 + 4k. So
p−1
2 − (2k + 1) = 5+8k−1−4k−2

2 = 1 + 2k are bigger.

If p = 7+ 8k then p−1
2 = 3+ 4k. The first 2k+ 1 entries on that list (the

numbers up to 2 + 4k after multiplication by 2) do not exceed 3 + 4k. So
p−1
2 − (2k + 1) = 7+8k−1−4k−2

2 = 2 + 2k are bigger.
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This proves the main result. The direct formula is an easy calculation
applied to p = j + 8k. □

20. The Law of Quadratic Reciprocity.

There are reportedly over a hundred distinguishable proofs of the follow-
ing theorem, six by Gauss alone who created the first complete proof at
age 19. The proof given here, appealing to the technical Lemma 18.2, was
adapted from one of these, and is due to Ferdinand Eisenstein21.

20.1. Theorem. The Law of Quadratic Reciprocity
For distinct odd primes p and q we have(

p

q

)
·
(
q

p

)
= (−1)

p−1
2

· q−1
2 .

That exponent is even unless both p and q are congruent to 3 mod 4 and

in that event
(
p
q

)
= −

(
q
p

)
.

If either is congruent to 1 mod 4 we have
(
p
q

)
=
(
q
p

)
.

Proof. Let R denote the set of points in the plane consisting of all (m,n)

for which 1 ≤ m ≤ p−1
2 and 1 ≤ n ≤ q−1

2 .

R consists of p−1
2 ·

q−1
2 points in a rectangular array in the plane.

None of these points can be on the line py = qx since that would require
p|x and none of our points have first coordinate that large.

The points in R above (i, 0) for an allowable i are

(i, 1) , . . . ,

(
i,

[
iq

p

])
,

(
i,

[
iq

p

]
+ 1

)
, . . . ,

(
i,
q − 1

2

)
and the first

[
iq
p

]
of these are below the line py = qx.

Therefore the number of points inR which are below the line is
∑ p−1

2
i=1

[
iq
p

]
.

Similarly, at height i the points in R are

(1, i) , . . . ,

([
ip

q

]
, i

)
,

([
ip

q

]
+ 1, i

)
, . . . ,

(
p− 1

2
, i

)
and the first

[
ip
q

]
of these are to the left of the line py = qx at height i.

So there are
∑ q−1

2
i=1

[
ip
q

]
points in R above and to the left of this line.

21Ferdinand Gotthold Max Eisenstein 1823-1852
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We have then

p− 1

2
· q − 1

2
=

q−1
2∑

i=1

[
ip

q

]
+

p−1
2∑

i=1

[
iq

p

]
The result now follows immediately from Lemma 18.2.

□

20.2. Remark. Let’s use the facts we have assembled to calculate whether
−59850 is a 29-quadratic residue.

Factoring, we find that −59850 = (−1)(2)(7)(19)(152) and 29 ≡ 1 mod 4
and 29 ≡ 5 mod 8 so(

−59850
29

)
=

(
−1
29

)(
2

29

)(
7

29

)(
19

29

)
= 1 · (−1) ·

(
7

29

)(
19

29

)
.

7−1
2 ·

29−1
2 = 42, an even number, so(

7

29

)
=

(
29

7

)
=

(
1

7

)
= 1.

19−1
2 · 29−1

2 = 126, also even, so(
19

29

)
=

(
29

19

)
=

(
10

19

)
=

(
2

19

)
·
(

5

19

)
= (−1) ·

(
5

19

)
since 19 ≡ 3 mod 8. And 5−1

2 ·
19−1
2 = 18 so(

5

19

)
=

(
19

5

)
=

(
4

5

)
=

(
22

5

)
= 1

which gives, finally, (
−59850

29

)
= 1 · (−1) · 1 · (−1) = 1

so yes, −59850 is a 29-quadratic residue.

We could approach this another way too. −59850 ≡ −23 mod 29 so(
−59850

29

)
=

(
−1
29

)
·
(
23

29

)
=

(
23

29

)
since 23 ≡ 1 mod 4. And 23−1

2 · 29−1
2 is even so(

23

29

)
=

(
29

23

)
=

(
6

23

)
=

(
2

23

)
·
(

3

23

)
.

23 ≡ 7 mod 8 so the first term is 1. And 3−1
2 ·

23−1
2 is odd so(

3

23

)
= −

(
23

3

)
= −

(
2

3

)
= −(−1) = 1

since 3 ≡ 3 mod 8.
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One problem with all this, of course, is the number of factors involved
and, most importantly, the initial factorization step, required to use the
Legendre symbols as we have done.

A second problem is that once you know a number is a p-quadratic residue,
how do you find its root?

The answer to the first issue is found in the next section. One answer
to the second question will be found in the section after that. There, the
Tonelli-Shanks Algorithm gives a “successive approximation” method that
converges in polynomial time.

21. The Jacobi Symbol and its Reciprocity Law.

The Jacobi22 Symbol is defined in terms of Legendre Symbols, and its
properties will allow us to calculate Legendre Symbols much more efficiently
if the number involved is large with many factors.

If a is any positive integer coprime to b = p1 · p2 · · · pn where the pi are
odd primes we define the Jacobi Symbol

(
a
b

)
by(a

b

)
=

(
a

p1

)
·
(

a

p2

)
· · ·
(

a

pn

)
.

So if b happens to be prime then Legendre and Jacobi Symbols agree.

The following properties are obvious and require no proof beyond obser-
vation.

21.1. Lemma. If a, b, c and d are positive integers and c and d are odd and
ab is coprime to cd the following equalities hold for Jacobi Symbols (as we
saw and used for Legendre Symbols earlier.)(

ab

c

)
=
(a
c

)(b

c

)
and

( a

cd

)
=
(a
c

)(a
d

)
.

and, whenever a ≡ b mod c (a
c

)
=

(
b

c

)
.

The following lemma is used to prove the main results in Theorem 21.3.

21.2. Lemma. We suppose that a1, a2, . . . an are odd and exceed 2.

a1 · · · an − 1

2
and

n∑
i=1

ai − 1

2
are both even or both odd.

(a1 · · · an)2 − 1

8
and

n∑
i=1

a2i − 1

8
are both even or both odd.

22Carl Gustav Jacobi 1804-1851
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Proof. Because both a1 and a2 are odd (a1−1)(a2−1)
2 is even and

(a1 − 1)(a2 − 1)

2
=

a1a2 − 1

2
−
(
a1 − 1

2
+

a2 − 1

2

)
so the two terms on the right, which are both integers, are even or odd
together.

Similarly,
(a21−1)(a22−1)

8 is even and
a21a

2
2−1
8 is a whole number, a fact which

can be shown by expanding (2k+1)2(2j+1)2− 1 and observing it is always
a multiple of 8. Also

(a21 − 1)(a22 − 1)

8
=

a21a
2
2 − 1

8
− (a21 − 1) + (a22 − 1)

8

so the second fraction on the right must be a whole number too and the two
terms are even or odd whole numbers together.

We have proven both parts of the lemma for the case n = 2.

Suppose now we have proven the lemma for the case of n = k ≥ 2 and
a1, a2, . . . , ak+1 are odd. Let b be the odd number a1 ·a2 · · · ak. By inductive
assumption

b · ak+1 − 1

2
and

b− 1

2
+

ak+1 − 1

2
are both even or both odd and

(b · ak+1)
2 − 1

8
and

b2 − 1

8
+

a2k+1 − 1

8
are both even or both odd

and the terms b2−1
8 and

a2k+1−1

8 are both whole numbers as are, more obvi-

ously, b−1
2 and

ak+1−1
2 .

The results of the lemma now follow by replacing the integers b−1
2 and

b2−1
8 by the appropriate sums involving a1, a2, . . . , ak, using the inductive

assumption that the lemma is true for k factors as a guarantor that “evenness
or oddness” of the term being replaced is retained. □

Using the lemma, it now follows that Legendre and Jacobi Symbols share
other key properties besides those listed in Lemma 21.1, including a Law
of Quadratic Reciprocity for Jacobi Symbols.

21.3. Theorem. If a and c are distinct coprime odd positive integers then

(i)

(
−1
c

)
= (−1)

c−1
2

(ii)

(
2

c

)
= (−1)

c2−1
8

(iii)
(a
c

)
·
( c
a

)
= (−1)

c−1
2

·a−1
2 .
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Proof. (i) Suppose a = a1 · · · an and c = c1 · · · ck expresses the odd positive
numbers a and c as the product of primes. Then(

−1
c

)
=

(
−1
c1

)
·
(
−1
c2

)
· · ·
(
−1
ck

)
= (−1)

c1−1
2 (−1)

c2−1
2 · · · (−1)

ck−1

2

= (−1)
∑k

i=1
ci−1

2 = (−1)
c1·c2···ck−1

2 = (−1)
c−1
2

where the second to last equality in the last line follows from Lemma 21.2.

The proof of (ii) is identical.

(iii) is a little trickier. Suppose c = c1 is prime. We have(a
c

)( c
a

)
=
(a1
c

)(a2
c

)
· · ·
(an

c

)
·
(

c

a1

)(
c

a2

)
· · ·
(

c

an

)
.

Pairing the terms involving specific ai we have(a
c

)( c
a

)
= (−1)

c−1
2

·a1−1
2 · · · (−1)

c−1
2

·an−1
2

= (−1)
c−1
2

·
(∑n

i=1
ai−1

2

)
= (−1)

c−1
2

·a−1
2

with the last equality following, again, from Lemma 21.2. So we have the
result for any odd a coprime to odd prime c.

But now for any c = c1 · · · ck coprime to any odd a we have(a
c

)( c
a

)
=

(
a

c1

)(
a

c2

)
· · ·
(

a

ck

)
·
(c1
a

)(c2
a

)
· · ·
(ck
a

)
= (−1)

c1−1
2

·a−1
2 · (−1)

c2−1
2

·a−1
2 · · · (−1)

ck−1

2
·a−1

2

= (−1)
(∑k

i=1
ci−1

2

)
·a−1

2 = (−1)
c−1
2

·a−1
2 .

21.4. Remark. Recall the calculations in Remark 20.2. Let’s use Jacobi
Symbols to calculate whether −59850 is a 29-quadratic residue without fac-
toring except to remove factors of 2.

−59850 = (−1) · 2 · 29925 and by division 29925 = 1031 · 29 + 26. So(
−59850

29

)
=

(
−1
29

)(
2

29

)(
26

29

)
=

(
−1
29

)(
2

29

)(
2

29

)(
13

29

)
=

(
13

29

)
=

(
29

13

)
=

(
3

13

)
=

(
13

3

)
=

(
1

3

)
= 1.

One potential issue when doing the calculation above involves replacing(
a
b

)
by
(
b
a

)
when a is coprime to b and b is larger than a. The next step is

to write b = ka + r and replace
(
b
a

)
by
(
r
a

)
. We observe here the obvious

fact that if a and r have a nontrivial common factor so too would the pair
a and b.
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So if a and b start out coprime none of the subsequent steps in the cal-
culation will produce a pair of integers upon which the Jacobi Symbol is to
be evaluated that fail to be coprime.

□

22. The Tonelli-Shanks Algorithm for Producing Square Roots.

If you somehow determine that a actually is a p-quadratic residue, the
problem of how to calculate a square root of a mod p remains.

One approach would be to pick a member of Intp and examine all its even
powers till a+ kp appears for some k, an obvious non-starter if p is large.

Any odd prime p is of the form 1 + 4k or 3 + 4k.

If p = 3 + 4k then let r = a
p+1
4 . That exponent is a whole number which

allows us to evaluate it in principle. It can also be evaluated in practice in a
reasonable amount of time. Any positive power of any number mod p can,
a fact that is useful more generally.

Suppose n is a positive integer. Then writing n in base 2 we have

n = 2j + aj−12
j−1 + · · ·+ a1 · 2 + a0 for certain ai all either 0 or 1.

j + 1 is the number of digits in a representation of n in base 2.

an can be calculated by squaring a and then squaring the result and

repeating this j times until a2
j
is reached. Multiplying this by some of the

previously calculated powers (those for which ai ̸= 0) produces an in at most
2j multiplications rather than n multiplications.

In practice, after each step one would reduce the product integer mod p
to keep the size of the numbers no larger than p.

This is called, in the business, “polynomial time” and is regarded as
manageable and the process we have just described is called the exponen-
tiation algorithm.

In any event, by Euler’s Criterion r is seen to be a square root of a:

r2 =
(
a

p+1
4

)2
= a

p+1
2 = a

p−1
2 · a ≡ a mod p.

The other square root is p− r.

The problem remains of how to proceed when p ≡ 1 mod 4.

Suppose a is a p-quadratic residue for such a p. Then a
p−1
2 ≡ 1 mod p.

Half the members of RelPrimep are p-quadratic non-residues.

Find one, call it h. Then h
p−1
2 ≡ −1 mod p.

Write p− 1 in the form s · 2r for odd s and r ≥ 2.
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We will create a sequence of “approximate square roots to a” which must
terminate in no more than r steps at a true square root of a.

This is the Tonelli-Shanks algorithm23.

Let x0 be the mod p residue of a
s+1
2 and k the mod p residue of hs.

So k2
r ≡ hp−1 ≡ 1 mod p and also(

x20
a

)2r−1

≡ as·2
r−1 ≡ a

p−1
2 ≡ 1 mod p

because a is known to be a p-quadratic residue.

So we know the order of the element
x2
0
a is a power of 2, say 2t0 where t0

cannot exceed r − 1.

Suppose now that we have created xi for which
x2
i
a has order 2ti where

ti ≥ 0, as we have done for i = 0.

If ti = 0 we are done, because in that case x2i = a and we have found our
square root. Otherwise ti ≥ 1 and we proceed as follows.

Define xi+1 be the mod p residue of xi · k2
r−ti−1

.

(
x2i+1

a

)2ti−1

≡

x2i

(
k2

r−ti−1
)2

a


2ti−1

≡
(
x2i
a

)2ti−1

·
(
k2

r−ti
)2ti−1

≡
(
x2i
a

)2ti−1

· k2r−1 ≡ (−1)(−1) ≡ 1 mod p

where the (−1) equivalencies are due to the fact that
x2
i+1

a has order exactly

(not less than) 2ti and k2
r−1 ≡ h

p−1
2 ≡ −1 mod p.

It follows that xi+1

a has order dividing 2ti−1. Choose ti+1 so that 2ti+1 is
that order. So ti+1 < ti.

We iterate for n steps until tn = 0. The number n cannot exceed r. Then
xn and p− xn are the two mod p square roots of a.

r itself cannot exceed the number of digits in the binary representation of
p − 1. Using an efficient method to calculate powers (needed to determine

xi+1 ≡ xi · k2
r−ti−1

and the exact order of xi+1) each step takes polyno-
mial time. So the Tonelli-Shanks algorithm itself takes polynomial time to
implement.

There is a probabilistic component here: the selection of a p-quadratic
non-residue h. Half the members of RelPrimep are non-residues, but there
is no absolute guarantee that your first try, or any number of tries up to

23The algorithm was described by Alberto Tonelli in 1891 and placed in modern form
by Daniel Shanks in 1973.
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p−1
2 , will succeed in finding one. The probability of success in n attempts

to locate a non-residue exceeds 1 − 1
2n so this may not be a real worry in

practice.

23. Public Key Encryption.

Our goal here is to understand some of the issues involved in modern
encryption technology and, in particular, we describe a version of the RSA
cryptosystem below.24

The purpose of encryption is to conceal the meaning of a message from
those not authorized by the sender to have that message.

One ancient means of encryption is to simply disguise the letters of the
message. For instance the table

A 01 B 02 C 03 D 04 E 05 F 06

G 07 H 08 I 09 J 10 K 11 L 12

M 13 N 14 O 15 P 16 Q 17 R 18

S 19 T 20 U 21 V 22 W 23 X 24

Y 25 Z 26

allows us to disguise “SECRETDECODERRING” as

“ 1905031805200405031504051818091407 ”.

This primitive method of disguising the meaning of the message could
not fool anyone for long, so “encoded” messages of this kind as well as the
original message would both be called “plaintext.” It is our goal to discover
a general method that could turn plaintext, which anyone can understand
with more or less effort, into “ciphertext” which no one, not even the NSA,
can turn back into plaintext by any known method without your permission.
The process of creating ciphertext from plaintext is called encryption. The
process of turning ciphertext into plaintext is called decryption.

Here are the “nuts and bolts” of such a process. You can estimate by
what we know and the comments below that the tasks you are required to
perform at each step can be done, and that factoring the integers involved
cannot be done, by any known method in a practical amount of time (i.e.
polynomial time) for numbers in the range of thousands of digits.

First we create the public/private key-pair to set up the encryption sys-
tem. This is done once and used for any number of encrypted messages.
Second, the sender encrypts and the receiver decrypts a message.

24RSA refers to the names of mathematicians Ron Rivest, Adi Shamir, and Leonard
Adleman who publicized the algorithm in 1978. Apparently the method was invented
(published in documents classified by the British government) in 1973 by the English
mathematician Clifford Cocks.



A FEW FACTS REGARDING NUMBER THEORY 45

(1a) Produce distinct large primes p and q. Let n = pq and calculate
ϕ(n) = (p − 1)(q − 1). We will also need a number w which must be
relatively prime to ϕ(n). For instance w could be a third prime and we
make this choice. To avoid values which are too small or unnecessarily large
we will choose w so that

√
ϕ(n) < w < ϕ(n).

(1b) Calculate d and k with 0 < d < ϕ(n) and wd+ kϕ(n) = 1.

(1c) Destroy all record of p, q, k and ϕ(n). Give the intended recipient of
the encrypted messages the private key d using a very private and secure
method. Destroy all other record of d. Make generally available the public
key consisting of the two numbers w and n.

(2a) Encryption: Turn your message into a plaintext number and break
it into pieces smaller than n. Let message m be one of these pieces of
plaintext, which we assume to be neither 1 nor any multiple of p or q25. .
Note mϕ(n) ≡ 1 mod n. Calculate the unique number c ≡ mw mod n with
0 < c < n. c is the ciphertext. Send c to the private key holder by any
means you like.

(2b) Decryption: The private keyholder calculates the unique number
m ≡ cd mod n with 0 < m < n. The number m is m and the message is
decrypted.

That is all there is to it in practice, though some comments on the steps
listed above are in order.

(1a) To get started, we must produce large primes p, q and w. The level
of security in the encryption scheme is dependent on their size, so we require
them to have binary representation longer than some predetermined number
(typically thousands) of binary digits. So from a practical standpoint it is
important to be able to estimate the likelihood that a randomly chosen
integer is prime.

The incredibly prolific Leonhard Euler proved in 1737 that the prime
numbers, scattered among the integers, are “not very sparse” in the following
sense. He showed that if p1, p2, . . . is a listing of the distinct primes in
increasing order that

∑∞
i=1

1
pi

=∞, a feature this series shares
∑∞

n=1
1
n .

Euler noted that if N is a positive integer none of the pi for i = 1, . . . ,K
are factors of NZ + 1 where Z = p1 · · · pK . Thus each NZ + 1 must have
prime factorization involving only powers of those primes larger than pK .

25If p and q are in the neighborhood of a thousand digits, what is the probability that
some random message violates this constraint? How could you know, before sending the
message, if it was a “problem” m value? How would you “fix it” if by some extreme fluke
your message happens to be a number that does?
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If
∑∞

i=1
1
pi

were to converge we could find K so that
∑∞

i=K+1
1
pi

< 1
2 . We

would have then, for each T ,

T∑
n=1

1

nZ + 1
≤

∞∑
j=0

( ∞∑
i=K+1

1

pi

)j

≤
∞∑
j=0

(
1

2

)j

= 2.

Since
∑T

n=1
1

nZ+1 ≥
∑T

n=1
1

nZ+n = 1
Z+1

∑T
n=1

1
n , and the series on the

right is known to diverge, we have a contradiction.

However “not very sparse” is uselessly vague for practical purposes.

In fact large primes are common. If π(n) is the number of primes not
exceeding n then

lim
n→∞

π(n) ln(n)

n
= 1 (ln(n) is the natural log of n.)

This is thePrime Number Theorem and was proved by both Hadamard
and de la Vallée Poussin in 1896 using techniques invented by Riemann and
his Riemann zeta function.26

So the probability that a randomly selected integer of size no larger than
n is prime is roughly 1/ ln(n) for large n. This tells us how many numbers
of a specified size we should expect to examine before finding a prime, and
this number is manageable, even for huge n. But this result only talks about
limits and we would like even more specificity.

A far more informative result (again, from a practical standpoint) was
proved by Pierre Dusart in 2010 who showed that

n

ln(n)− 1
< π(n) <

n

ln(n)− 1.1

where the first inequality holds for n ≥ 5393 and the second for n ≥ 60184.

A candidate prime j of proper size is randomly selected. If j is prime
then mj ≡ m mod j for all m with 1 ≤ m < j. Even if j is not prime, it still
could happen that mj ≡ m mod j for a positive value (or even all positive
values27) of m coprime to j. Candidate primes j are tested one after an-
other until one is found that “passes this test,” called the Fermat Test, for
a sufficient number of randomly chosen different coprime numbers m.
When that happens j is simply assumed to be prime: an “Industrial Grade

26The mathematicians mentioned here are Jacques Hadamard 1865-1963 and Charles
Jean de la Vallée Poussin 1866-1962 and the great Bernhard Riemann 1826-1866.

27Such numbers are called Carmichael numbers. The smallest is 561 = 3 · 11 · 17,
found by Robert Carmichael in 1910. There are an infinite number of these, but they
become very scarce as their size increases. Exactly how scarce is an important and open
question. For instance, numerical studies find that the probability that a randomly chosen
number less than n = 1021 is Carmichael is about 1 in 5 · 1013. In 1956 Paul Erdös 1913-
1996 proved that there is a positive constant k so that this probability cannot exceed

exp
(

−k·ln(n)·ln ln ln(n)
ln ln(n)

)
for any n. There is good reason to suspect that k is at least 1. For

a number n with 300 decimal digits and if k = 1 this probability is about 1.9 · 10−29.
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Prime” or Fermat pseudoprime, if not an actual prime.28 It is nowadays
not hard to produce numbers with binary representation having length be-
yond a thousand digits and which have an extremely high probability
of being prime. Encryption keys are formed using these.

(1b) Calculate d and k with wd + kϕ(n) = 1 using Euclid’s algorithm.
Select d so that 0 < d < ϕ(n).

(1c) If the public could factorize n it would know ϕ(n) and therefore the
private key d. The key to the security of this system is only the appar-
ently intractable problem of factoring large integers. It seems that
no one knows how to factorize n without exhaustively examining the po-
tential keyspace to determine factors: all numbers, essentially, up to

√
n.

To factorize an integer without small factors whose binary representation
contains 128 digits would seem to require around six months if potential
factors were checked at a rate of 1012 per second. Using 2048 digits creates
a keyspace more than 10250 times larger. The “exhaustion” method of fac-
torization, I think it is safe to say, cannot crack such an integer during the
lifetime of our species. However no one has proven that factorization cannot
be accomplished by some alternative, faster, method. This would break the
RSA cryptosystem. If you discover such a method you are well advised to
consider carefully who to tell, and how to tell them.

(2a) To encrypt, we will indicate how to efficiently calculate c ≡ mw

mod n with an example.

(2b) To decrypt we need to calculate m ≡ cd mod n by the same method.

To see that m = m we note that 0 < m < n and

m ≡ cd ≡ (mw)d ≡ m1−kϕ(n) ≡ m
(
mϕ(n)

)−k
≡ m(1)−k ≡ m mod n.

Given the size restrictions on m and m this means they are equal.

23.1.Remark. There is complete symmetry between private and public key.
In the example above we used a public key to encrypt information only one
private key can decrypt. But a private key could be used to encrypt infor-
mation that only the paired public key could decrypt. You as a ciphertext
recipient want to be sure the message you decrypt actually came from the
right person, and is not a fake message. After all, anyone can use your public
key to create a message only you can decrypt. How would you modify the
encryption system so you can be sure only the expected person could have
sent it? This is the process of creating a digital signature to verify the

28The quality of the pseudoprime (that is, the probability that it is an actual prime)
depends on the number of times it was tested and found to be “prime-like.” If a number
is not a Carmichael number and not a prime then it will fail the Fermat primality test for
at least half of the smaller coprime m values, a fact that follows from Corollary 10.8. So
if it is not a Carmichael number, after passing t “Fermat tests” the probability that it is
prime is at least 1− 1/2t.
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authenticity of documents, and is a vital part of any cryptosystem. (hint:
Each person in an exchange can create their own key-pair.)

24. An Example of Encryption.

First we create a public-private key-pair.

The key-pair maker29 chooses primes p = 101 and q = 107. So n = p · q =
10807. This number should be large enough to defy any known means of
factorization, but of course here it can easily be factored.

Then ϕ(n) = 10600 and w, a number relatively prime to ϕ(n), is selected.
Let’s pick w = 113.

Calculate d and k for which

113 · d+ k · 10600 = 1 and 0 < d < 10600.

We saw in Remark 4.18 that d = 3377 and k = −36, though all we need
here is d.

The private keyholder is given and retains (securely) the private key d =
3377. The numbers w = 113 and n = 10807 are distributed to any potential
message senders. These last two numbers constitute the public key. ϕ(n) =
10600 has served its purpose. The key-pair maker discards ϕ(n) and the
private key d as well.

The only record of the private key must be in one or more secure
locations, accessible to the private keyholder but not to the public.

Let’s say our private keyholder has done all this, and we want to secretly
send the message 100 to him or her.

We calculate 100113 mod 10807 to create ciphertext c = 8382. We send
this ciphertext over a possibly insecure channel.

Our friend, who alone possesses the key d, calculates 83823377 mod 10807.
It is 100 and the plaintext is recovered.

There is only one small wrinkle here: how does one calculate these huge
powers mod 10807? The exponentiation algorithm accomplishes this, as
illustrated below.

The two residues we must calculate to follow the instructions from above
are the residues of the numbers

100113 = 10064 · 10032 · 10016 · 100 and

83823377 = 83822048 · 83821024 · 8382256 · 838232 · 838216 · 8382.
29Often the key-pair maker is an application on the private keyholder’s computer, and

once the key pair is constructed the public key is uploaded to a library of public keys
accessible to anyone and searchable by name or email address of the private keyholder.
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With numbers of this size you can actually use a calculator to keep track
and do the calculations in a few minutes, though it would be a modest job
to program the work on a computer.

To find the residue of a with modulus n for large a simply calculate the
integer part, k, of a/n. So a− k ·n (which is less than n) is the number you
want.

We use a table to keep track of residues with modulus 10807:

1004 ≡ 2829 1008 ≡ 6061 10016 ≡ 2728 10032 ≡ 6768 10064 ≡ 5758.

83822 ≡1617 83824 ≡10202 83828 ≡9394 838216 ≡8081
838232 ≡6667 838264 ≡10505 8382128 ≡4748 8382256 ≡102
8382512 ≡10404 83821024 ≡304 83822048 ≡5960

It still takes a while, but all the work shown above can be done in ten
minutes with a calculator if you are efficient.

Now we have

100113 = 10064 · 10032 · 10016 · 100
≡ 5758 · 6768 · 2728 · 100 ≡ 102 · 2728 · 100 ≡ 8081 · 100 ≡ 8382

and

83823377 = 83822048 · 83821024 · 8382256 · 838232 · 838216 · 8382
≡ 5960 · 304 · 102 · 6667 · 8081 · 8382
≡ 7980 · 6667 · 8081 · 8382 ≡ 10606 · 8081 · 8382
≡ 7576 · 8382 ≡ 100.

For practice, decrypt the ciphertext 4243 and turn it into legible English.30

30It is interesting that for all even powers of 4243 the second two digits of the four-digit
residuals form a number that is 1 larger than the first two. And even powers of a number
like 8383 have residuals with repeating pairs of digits. Do you know why?
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