
TOPOLOGY

LARRY SUSANKA

Abstract. This is an appendix for a book I have (mostly) written on measure
theory. It constitutes an introduction to point-set topology, oriented toward
some applications to analysis.

It is an essentially self-contained presentation and rather thorough as far
as it goes, though it does reference in a few places material of the rest of the
text regarding notation, the Integers, the Axiom of Choice and other matters.
Most of those references are to Chapter One “Some Preliminaries” which has
been included here.
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1. Functions

A relation, or more precisely a binary relation, is a nonempty subset of some
product set S × T = { (s, t) | s ∈ S and t ∈ T }, the set of ordered pairs formed
from nonempty sets S and T . The domain of a relation f consists of the set of
first components of any member of f , while the range consists of the set of second
components, and these sets can be denoted Domain(f) and Range(f) respectively.

Relations are used to model many different ideas, but three basic kinds of rela-
tions will be of interest over the next few sections. The first of these is the familiar
concept of “function.”

A function f (sometimes also called a map) from S to T , described by f : S →
T , is a relation as above with domain S and range contained in (not necessarily equal
to) T and which has the following property: (a, b) ∈ f and (a, c) ∈ f ⇒ b = c.

These properties insure that there is one and only one ordered pair in f having
a as first coordinate for every member a of S. Note that the concept of function is
domain dependent: the same set of pairs thought of as a subset of R × T , where
S is contained in but not equal to R, won’t be a function. And there is a certain
latitude with regard to T : it can be replaced in the description f : S → T by any set
containing Range(f). Often, though, it is T itself under study and how Range(f)
sits (or could sit) in T reflects important information about T .

If f is a function, the notation f(a) or fa is used for b ∈ T when (a, b) ∈ f .
Occasionally a function will be said to index its range, and in this case the range
is said to be indexed by the domain, whose members are called indices.

If A is a set, f(A) = { f(s) | s ∈ A ∩ S } and f−1(A) = { s ∈ S | f(s) ∈ A }.
Both sets can be empty. If f−1({t}) contains at most a single member of S for each
t ∈ T we call f one-to-one and if f(S) = T we say f is onto T .

If f is one-to-one and onto T then f can be used to construct a function
f−1 : T → S by defining f−1(t), for each t ∈ T , to be that member s of S with
f(s) = t. This second definition of f−1 is an abuse of notation that could cause
ambiguity in case, for example, both t and {t} are members of T .

If f is one-to-one but not onto T then f cannot be used to define f−1 as a
function from T to S. However f−1 would be a function thought of as the set of
pairs { (f(s), s) | s ∈ S } in f(S)× S.

The restriction of a function f : S → T to a nonempty set A ⊂ S is denoted
f |A and defined to be { (a, b) ∈ f | a ∈ A }. f |A is a function with domain A. If g is
a function with domain W and S ⊂ W and g|S = f then g is called an extension
of f .

Here are a few more items of notation:

The set of all functions from S to T will be denoted T S.

If T is the two element set {0, 1}, T S will sometimes be denoted 2S.

The set of all subsets of a set S will be denoted P(S), called the power set
of S.
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If A and X are any sets, the notation X − A = { x ∈ X | x /∈ A } is used.
X −A is called the complement of A in X .

If A and X are nonempty sets and f : A → P(X) the notation
⋃

a∈A fa
denotes { x ∈ X | x ∈ fa for some a ∈ A }. The notation

⋂
a∈A fa denotes

{ x ∈ X | x ∈ fa for every a ∈ A }.

Sets S and T with similar properties can arise from different sources. Recog-
nizing that two sets are essentially the same in some way often comes through the
presentation of a one-to-one function g : S → T that is onto T . When we have
this in mind, we will say that S and T are identified and that g identifies the
element s ∈ S with the element g(s) ∈ T . The notation s ↔ g(s) can be used to
illustrate such an identification. These identifications can range in utility from a
trivial convenience to something more substantial, a shift in context. For instance,
on the trivial side, if n is a positive integer, the set {1, . . . , n} can be identified
with {0, . . . , n− 1} through the function described by x ↔ x− 1. More substantial
examples of this vocabulary in action follow.

2S can be identified with P(S) via f ↔ { a ∈ S | f(a) = 1 }.
Suppose S0, . . . , Sn−1 are nonempty sets for some integer n > 2. Define
S0×S1×S2 to be S0×(S1 × S2). More generally, S0×· · ·×Sn−1 is given by a
recursive definition as S0×(S1 × · · · × Sn−1). This last is called the set of all
“ordered n-tuples” formed from the Si in the specified order. Let W denote

the set of all functions f : {0, . . . , n − 1} → ⋃n−1
i=0 Si having the property

that f(i) ∈ Si for i = 0, . . . , n− 1. Then S0 × · · · × Sn−1 can be identified
with W by (a0, . . . , an−1) ↔ f where f(k) = ak for k = 0, . . . , n− 1.

2. Equivalence Relations

Our second use of relations is the standard method used by mathematicians to
lump together objects that are manifestly different but which are similar in some
way. In this context we focus on the similarities and ignore other properties.

An equivalence relation on S is a relation P ⊂ S×S that has three properties:

(a, a) ∈ P ∀a ∈ S and (reflexivity)

(a, b) ∈ P ⇒ (b, a) ∈ P and (symmetry)

(a, b) ∈ P and (b, c) ∈ P ⇒ (a, c) ∈ P. (transitivity)

For equivalence relations, the notation a ∼ b is usually used when (a, b) ∈ P.

A partition of any set S is a set of subsets of S whose union is S and whose
pairwise (that is, each pair of them) intersections are void (that is, the empty
set.) Any pair of sets whose intersection is empty is called disjoint, and a union
of pairwise disjoint sets is called a disjoint union.

After presenting an equivalence relation on S, one would typically form, for each
a in S, sets [a] = { b | a ∼ b }. These sets are called equivalence classes and
together form a partition of S denoted S/P or S/∼. Often any member of an
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equivalence class will be used to refer to the whole class without comment, and it
is the set of classes that is of primary interest.

Alternatively, any partition of a set S could be used to form an equivalence
relation on the set, where a ∼ b precisely when a and b are in the same partition
member.

Most people have seen equivalence relations from grade school. The rational
numbers constitute a very important first example.

Let S be the set of all ordered pairs of integers represented as c/d where d 6= 0.
(For a discussion of the construction of the integers, see Section 5.) We say that
c/d ∼ e/f if and only if cf = ed. It is easy to show this is an equivalence relation.
For each c/d in S let [c/d] = { e/f ∈ S | cf = ed }. The sets [c/d] form a partition
of S. Any ordered pair might be called upon to represent the whole class. That is
what is meant by “2/6 = 4/12.” The collection of these classes is normally referred
to as the rational numbers, denoted Q.

The operations [a/b] + [c/d] = [(ad + bc)/(bd)] and [a/b][c/d] = [(ac)/(bd)] are
well defined.

In this context, “well defined” means that the operations, defined here using
particular representations of the equivalence classes involved, do not in fact depend
on which representative is used. Statements of this kind, wherever found in
the text, require proof. If not obvious or proved in the text, the reader should
supply the proof as an exercise, or simply accept the statement as true. Since all
books contain errors, oversights, misstatements or infelicitous phrasing, the former
course is the safer.

Q has multiplicative and additive identities [b/b] and [0/b] respectively, otherwise
known as 1 and 0.

Another example is the usual representation of vectors in the plane as “arrows”
with a given length and direction. One takes the point of view that a vector is
determined by these two quantities alone and its location is irrelevant. So a vector
is really a class of arrows that are alike in these two ways. One refers to the whole
class by identifying any member of the class. In the world of vector operations such
as vector addition or scalar multiplication the usual representative for a class is the
arrow with tail at a specified origin, with coordinate axes centered there. With this
choice the coordinates of the tip alone suffice to describe the class, and common
vector operations are conveniently calculated.

The concept of equivalency, along with the companion concept of identification,
can be seen throughout mathematics.

3. Order Relations

In this section we try to extract the essence of the idea of “less than” as thought
of in the following three examples:

3 is said to be “less than” 7 on the number line because it is to the left
when one represents the real numbers ordered as a line in the usual way.
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Consider a desk covered with many layers of paper. We might say one piece
of paper is “less than or equal to” another if its distance to the table top
is equal or less than the other: an ordering by “height above the table.”

We think of one set as “bigger than or equal to” another if it contains the
other. Sets can be said to be ordered by containment, a very important
example.

The relations we use to model these ideas are called order relations.

A preorder on a set S is a relation P ⊂ S × S that has the reflexivity and
transitivity properties: ((a, a) ∈ P ∀a ∈ S) and ((a, b) ∈ P and (b, c) ∈ P ⇒
(a, c) ∈ P ).

The notation a ≤ b will be used to indicate that (a, b) ∈ P , while a < b will
indicate that (a, b) ∈ P but (b, a) /∈ P.

Suppose B ⊂ S. b is called an upper bound for B (in S if the specificity is
warranted) if b ∈ S and a ≤ b ∀a ∈ B. If B has an upper bound, B is called
bounded above. If, further, c ∈ S and a ≤ c ∀a ∈ B ⇒ b ≤ c then b is called a
least upper bound for B. If b is a unique least upper bound for B (that is, the
only one) then b is also called the supremum of B, denoted supB or sup(B). The
supremum of a set {a, b}, if it exists, is denoted a ∨ b. An element b of S is called
maximal if c ∈ S and b ≤ c ⇒ c ≤ b.

A function b : J → S is called bounded above if its range is bounded above.
The supremum of a function b is denoted sup(b) or

∨
α∈J b(α) and is defined to

be sup{ b(α) | α ∈ J } whenever the supremum exists. In the case of J = N, the
nonnegative integers, a function b : N → S is called a sequence in S. In this case
the notation

∨∞
i=0 b(i) can be used in place of

∨
i∈N

b(i). When J = {k, k+1, . . . , n}
we may write

∨n
i=k b(i) rather than

∨
α∈J b(α).

The definitions of ≥, >, lower bound, bounded below, greatest lower
bound, infimum, inf B, inf(B), a∧b, minimal, inf(b),

∧
α∈J b(α),

∧∞
i=0 b(i) and∧n

i=k b(i) are the obvious adaptations of the list of definitions above with ordered
pairs (that is, inequalities) reversed.

A set or function as above is called bounded if it is bounded both above and
below. Otherwise, it is called unbounded.

Since functions are defined to be sets there is potential for ambiguity in the
definitions just given involving functions, which focus on the order properties in
the range alone. The ordered pairs in a function will not usually have an order
specified for them so this will rarely be an issue.

The preorder P is called a partial order if, in addition to reflexivity and tran-
sitivity, we have:

a ≤ b and b ≤ a ⇒ a = b.

A partial order can be created from any preorder on a set S by the following
process: Let a ∼ b if and only if a ≤ b and b ≤ a. Consider the set of equivalence
classes S/∼ generated by this equivalence relation. We will say [a] ≤ [b] precisely
when a ≤ b. This relation is well defined (that is, it does not depend on the
representatives of the classes used to define it) and a partial order on S/∼.
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Note that if P is a partial order, least upper bounds and greatest lower bounds are
unique if they exist. Also, in this case, if b is maximal, a ∈ S and b ≤ a then b = a.
A similar result holds if b is minimal.

If P is a preorder and A ⊂ S, A is called a chain if Preorder
whenever a and b are in A then either a ≤ b or b ≤ a. / | \

Chain Partial Directed
If P is a preorder and for each pair a and b in S one \ / | \ /
can find c in S such that a ≤ c and b ≤ c we say that Total Tree Lattice
P directs S, and S with P is called a directed set. \ | /

Well
P , or sometimes S with P , is called a lattice if it is a partial order for which each
pair of elements has a greatest lower bound and a least upper bound.

If S with partial order P is itself a chain, P is called a total order. In some
contexts a total order is also called a linear order.

A total order on S which has the property that every nonempty subset of S
contains a minimal element is called a well order.

For brevity, one often refers to S as “ordered by P ,” P is said to “order S”
and S is said to “have the order P .” This vocabulary is extended to the various
types of orders. Sometimes, when this will not cause ambiguity, the set S will be
said to be ordered and the specific order P will be understood to exist without
explicit mention. As an example of this vocabulary in use we have the following
interesting result:

Every subset of well ordered S is itself well ordered with the order inherited
from S.

We define, for each α in preordered S, the sets Iα and Tα to be { β ∈ S | β <
α } and { β ∈ S | β ≥ α }, respectively. They are called initial and terminal
segments in S, respectively. Note that the Tα are distinct for different values of
α in partially ordered S, but the Iα need not be distinct. They will be distinct if
S is totally ordered.

If S is partially ordered and α, β ∈ S and β > α we say that β is a successor to
α and α is a predecessor to β. If, further, there is no other member of S between
α and β we say that β is an immediate successor to α and α is an immediate
predecessor to β.

Suppose S is a generic well ordered set. Unless there is a compelling reason to
deviate, it will be standard practice to denote the first element of S as 0 and the
second member by 1. For α ∈ S, we will use α + 1 to denote the least successor
to α. Unless α is the supremum of S, this immediate successor to α will always
exist in well ordered S. α + 1 is called the successor to α and α is called the
predecessor to α + 1. The vocabulary recognizes the fact that there can be at
most one immediate successor or immediate predecessor in any totally ordered set.
Any member of S except the first that cannot be written as α + 1 for some α
in S is called a limit member of S. A limit member has predecessors (many of
them) but no immediate predecessor.

If S is partially ordered and if, for each α ∈ S, the initial segment Iα is well
ordered with the order inherited from S we call S with this order a tree. A branch
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of a tree is a nonempty subset B of S which is a chain with the induced order and
which is maximal in the following sense: for each s ∈ S, either s ∈ B or {s} ∪B is
not a chain.

A root of a tree S is a member r of S for which S = Tr. A tree S is called
rooted if it has a unique root.

3.1. Exercise. (i) Is it true that the intersection of two or more (distinct) branches
in a rooted tree is an initial segment?

(ii) If S is a tree and r ∈ S then Tr is a rooted tree.

If S is well ordered and A is any union or any intersection of initial segments
then A is either all of S or itself an initial segment. To see this, let α be the least
member of S, if any, that is not in A. Then A is Iα. Similarly, if A is any union
or intersection of terminal segments in well ordered S, then A is itself a terminal
segment or void.

3.2. Exercise. Suppose S is a well ordered set. Prove:

S = Iα ∪ Tα for every α in S I0 = ∅ T0 = S

Tα is never empty Iα+1 = Iα ∪ {α} whenever α+ 1 is defined.

A function f : A → B between two preordered sets is called nondecreasing if
f(α) ≤ f(β) whenever α ≤ β. f is called increasing if f(α) < f(β) whenever α <
β. Neither condition implies that f is one-to-one. However if the order on A is a
total order, the second condition does imply that f is one-to-one.

f is called nonincreasing if f(α) ≥ f(β) whenever α ≤ β. f is called decreas-
ing if f(α) > f(β) whenever α < β.

f is called monotone if it is nonincreasing or nondecreasing. If f is nondecreas-
ing and f−1 exists and is nondecreasing, f is called an order isomorphism and
A and B are said to be order isomorphic.

3.3. Exercise. (i) In the definition of order isomorphism, if A is totally ordered,
the requirement that f−1 be nondecreasing is redundant.

(ii) Suppose f : A → B is nonincreasing, where A is totally ordered and B is
well ordered. Then f is eventually constant: that is, there is an a ∈ A for which
c ≥ a implies f(c) = f(a).

(iii) If S is well ordered, S is order isomorphic to { Iα | α ∈ S } ordered by
containment.

(iv) If S is partially ordered, S is order isomorphic to { {α}∪Iα | α ∈ S } ordered
by containment.

(v) If S is partially ordered, S is order isomorphic to {Tα | α ∈ S } ordered by
reverse containment: that is, Tα < Tβ if Tα 6= Tβ and Tα ⊃ Tβ.

Parts (iii) through (v) of the exercise show that any partial order—and well
orders in particular—can be thought of as containment orders on families of subsets
of S in several ways.
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4. The Integers

We sketch in some detail the recognition of a set we will identify with the natural
numbers, as you have come to know them from ordinary counting and grade-school
arithmetic.

To get things started, the following assumption, to be accepted without proof,
is required.

Axiom of the Empty Set:

There exists a set, denoted ∅, which has no elements.

Without this (or some similar) assumption, we cannot conclude that there are
any sets whatsoever! That would mean all our discussions about sets have been
about nothing, a situation tailor-made for irony if ever there was one. We accept
this axiom.

If X is a set, for now we will let X∗ be the set {X} ∪X .

We let 0 = ∅, 1 = 0∗, 2 = 1∗, 3 = 2∗ and so forth. Another way of writing this
is: 0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2} and so on.

To complete the definition of the natural numbers it is necessary to invoke an-
other axiom of set theory, called the Axiom of Infinity. Essentially this axiom
asserts that there exists an infinite set.

Axiom of Infinity:

There exists a set A with ∅ ∈ A and such that whenever X is a set and
X ∈ A then X∗ ∈ A.

Note that the intersection of any pair of sets of the type whose existence is
guaranteed by this axiom is also of this type.

Let A be one of these sets. The natural numbers, denoted N, consist of the
intersection of all subsets S of A for which ∅ ∈ S and such that whenever X is a
set and X ∈ S then X∗ ∈ S. In light of the last observation, N does not depend on
the specific choice of A, only that there is at least one such set.

It is only because of the Axiom of Infinity that we know that N, which we might
have carelessly denoted { 0, 1, 2, 3, . . .}, is actually a set, and therefore eligible to
participate in the various set operations.

The empty set is said to have 0 elements. If S is a nonempty set and n is a
positive integer (that is, n ∈ N and n 6= 0) we say S has n elements if there is
a one-to-one and onto function f : S → n. We say S is finite if it has n elements
for some n ∈ N. S is called infinite if it is not finite. We will discuss this concept
again in Sections ?? and ??.

The natural numbers are ordered by containment. Henceforth, if n ∈ N we will
use n+ 1 in preference to n∗.

The definition of N is just what we need to create Proof by Induction. If we
have some property P which is either true or false for members of N, let S = {n ∈
N | P is true for n }. If 0 ∈ S and if n ∈ S implies n+ 1 ∈ S then S is a set of the
kind whose existence is asserted in the Axiom of Infinity. Since N is the intersection
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of all such sets, S = N. In other words, we can conclude that P is true for every
member of N.

As an exercise using induction, show that every member of N except 0 can be
written as n+ 1 for some n ∈ N.

Then show that S = {n ∈ N | n ⊂ k or k ⊂ n for all k ∈ N } actually equals N.
This implies that N with containment order is totally ordered.

Define B to be the set:

{n ∈ N | if k ∈ S ⊂ N for some k ⊂ n then S contains a least member. }

Obviously ∅ ∈ B and it is not hard to show that if n ∈ B then n + 1 ∈ B. We
conclude that B = N so N is well ordered by containment order.

We can use this to show that a set C cannot have both m elements and n
elements for natural numbers n 6= m. Let S consist of those members s of N for
which there is a member n of N, n 6= s, and a set C which has both s elements and
n elements. Obviously ∅ /∈ S, so every member of S has the form k + 1 for some
natural number k. Should S be nonempty, it would contain a least member, and
this leads easily to a contradiction. We conclude S is empty, and there is at most
a single natural number n for which the statement “C has n elements” is true.

Note that each positive integer n is, itself, a well ordered set which has n elements.
Any natural number n is, in fact, the initial segment In in N.

N is an infinite set. To see this, suppose h : N → k + 1 is one-to-one and onto.
Then h(m) = k for some m ∈ N. Define f : N → N by f(a) = a when a < m and
f(a) = a + 1 if a ≥ m. But then h ◦ f : N → k is one-to-one and onto. Since it is
obvious that there can be no one-to-one function h : N → 1, the result follows.

Our next steps, left to the energetic reader, are to define negative integers and
then the integers, denoted Z, comprised of the natural numbers and the negative
integers. The order on N is used to form a total order on Z. The usual arith-
metic operations are then defined and shown to obey the commonly listed algebraic
properties.

Addition and multiplication of integers can be defined now, but demonstrating
that they have the usual properties such as commutativity, the distributive law and
so on using the tools we have to this point is a lengthy series of applications of
induction. Connecting these operations to the order relation on the integers also
requires more than a bit of work.

For instance, if a, b and m are positive integers and m = ab then both a ≤ m
and b ≤ m. And if a > 1 then b < m. But what does it take, exactly, to prove
that? Laying out every last detail about basic integer arithmetic is a big project,
falling under the heading of number theory and logic. Gottlob Frege and Bertrand
Russell are among the luminaries who broke teeth on it. You might wish to review
Exercises ?? and ?? and the more sophisticated techniques assembled in Appendix
??. In this work we will simply assume various “obvious” facts about integers.

With the integers in hand, one can define the rational numbers, Q, as suggested
in Section 2.
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4.1. Exercise. Till now we have had no specific well ordered sets (other than N

and its initial segments) with which to work. Now we can create examples.

(i) Let S denote the set
{
m+ n

n+1 | n,m ∈ N

}
with the usual order from Q.

Show that S is well ordered.

(ii) For any f ∈ NN let

Support(f) = {n ∈ N | f(n) 6= 0 }.
Define F to be those members of NN for which Support(f) is a finite set. For f ∈ F

let mf denote the greatest member of Support(f).

We will define an order ≤R on F called reverse lexicographic order.

Declare f ≤R f . Suppose f, g ∈ F and f 6= g. Let j be the last integer for which
f(j) 6= g(j). Declare f ≤R g if f(j) < g(j).

Show that F is well ordered with ≤R. (hint: First show transitivity and conclude
that ≤R is a total order. With that in hand, suppose H is a subset of F with at
least two members. Let n1 denote the least mf of any f ∈ H. Let

H1 = { f ∈ H | mf = n1 } and G1 = { g ∈ H1 | g(n1) ≤ f(n1) ∀f ∈ H1 }.
If G1 contains a single member we stop: this member is the minimal member of
H. If G1 contains more than one member, let n2 denote the smallest integer for
which there is some g ∈ G1 with g(n2) 6= 0 but g(k) = 0 for all k with n2 < k < n1.
Possibly, n2 = n1 − 1. Now let

G2 = { g ∈ G1 | g(n2) ≤ f(n2) ∀f ∈ G1 }.
If G2 contains a single element it is the least member of H. If G2 contains more than
a single member we can continue, creating by this procedure a strictly decreasing
list n1, n2, . . . in N. Such a list cannot be infinite in any well ordered set. It must
terminate at some least nk, and the sole member of Gk is the minimal member of
H.)

What is the role of the “finite support” condition for members of F?

(iii) Define F1 to be those members f of F with mf = 0 or 1. This set inherits
the reverse lexicographic well order from F. How is this order on F1 related to that
on S from part (i)?

(iv) We will define a different order ≤L on F called lexicographic order. De-
clare f ≤L f . Suppose f, g ∈ F and f 6= g. Let j be the first integer for which
f(j) 6= g(j). Declare f ≤L g if f(j) < g(j) and g ≤L f otherwise. Though F is
totally ordered with ≤L, it is not well ordered.

The difference between ≤R and ≤L boils down to the following fact. In a well
ordered set it is impossible to have a strictly decreasing sequence, but it is certainly
possible to have a strictly increasing one.

(v) Suppose A and B are disjoint well ordered sets. Create an order on A ∪ B
corresponding to “elements of A all follow any element of B,” while retaining the
given orders on A and B. Show that this order is a well order.

(vi) Sometimes it will be convenient in certain arguments to have a well ordered
set with a last member. In general, well ordered sets might not have a last member.
Suppose C is well ordered with first element a1 and more than one element. Give
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A = C − {a1} the inherited well order and let B = {a1}. Using (v) create a well
order on C that does have a last member.

(vii) Suppose A and B are well ordered sets. Create a well order on a subset of
AB analogous to the reverse lexicographic order ≤R we created for F in part (ii).

5. The Real Numbers

We will now make one of the common definitions of the real numbers and dis-
cuss some important properties of this set. The following construction is due to
Dedekind.

Let Q+ be the set of nonnegative rational numbers. We define R+ ⊂ P(Q+) to
consist of exactly those sets A of nonnegative rational numbers with the following
three properties:

(i) A has no largest member and

(ii) q ∈ A ⇒ p ∈ A ∀p ∈ Q+ with p ≤ q and

(iii) A 6= Q+.

R+ is (obviously) nonempty and called the set of nonnegative real numbers.
Sometimes a nonnegative real number, created this way, is also called a Dedekind
cut.

If r and s are nonnegative real numbers, we say r < s if r 6= s and r ⊂ s.

This relation is a total order on R+ but it is not a well order. In fact no explicit
well order of the real numbers is known.

If r and s are nonempty (that is, “positive”) members of R+ and t ∈ R+ we
define binary operations “+” and “·” by:

t+∅ = t and r + s = { u ∈ Q+ | u < q + p for some q ∈ r and p ∈ s },
t ·∅ = ∅ and r · s = { u ∈ Q+ | u < q · p for some q ∈ r and p ∈ s }.

It is an exercise to show that r + s and r · s are nonnegative real numbers and
the operations satisfy the commonly listed properties of addition and multiplication
with multiplicative identity given by { [a/b] ∈ Q+ | 0 < a < b } and additive identity
∅, which will henceforth be denoted 1 and 0, respectively. Multiplicative inverses
exist for positive real numbers.

Note that this is the third usage for the symbol 1 in this section. 1 ∈ N was
defined to be {∅} and 1 ∈ Q+ was defined as a set of ordered pairs { a/a | a ∈
Z and a 6= 0 }. We unify these disparate definitions by identifying n ∈ N with
[n/1] ∈ Q, and q ∈ Q+ with { p ∈ Q+ | p < q } ∈ R+.

Let S be any nonempty set of nonnegative real numbers. If S has an upper
bound in R+, we can show that

⋃
A∈S A ∈ R+. In fact it is the supremum of S.

Let S be any nonempty set of nonnegative real numbers.
⋂

A∈S A might actually
contain a largest rational. If it does not, then

⋂
A∈S A ∈ R+ and is the infimum of

S. If it does contain a largest rational, remove that rational from the intersection.
The result is now in R+ and is the infimum of S.
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If r : N → R+ is a nondecreasing sequence of nonnegative real numbers that is
bounded above we let

lim
n→∞

rn = sup{ rn | n ∈ N }

If r : N → R+ is a nonincreasing sequence of nonnegative real numbers let

lim
n→∞

rn = inf{ rn | n ∈ N }

In either case, this number is called the limit of the corresponding sequence.

At this point it is an exercise to extend all of the above to a definition of the
negative real numbers and then to the real numbers—consisting of both non-
negative and negative real numbers. Extend the total order on the nonnegative real
numbers to the real numbers. Then define multiplication, division, addition
and subtraction for these numbers, and show they have the familiar properties.
Define absolute value. Define limits of bounded monotone sequences of real
numbers.

Henceforth we let R denote the real numbers.

Define intervals [a, b), (a, b), (a, b], (−∞, b), (−∞, b], (a,∞), [a,∞) and [a, b]
for real numbers a and b with a ≤ b. The standard topology on R is that formed
from a basis consisting of all intervals (a, b) with a, b ∈ Q.

If r : N → R is a bounded sequence we define

lim sup(r) = lim
n→∞

(sup{ rk | k ∈ N and k > n }) and

lim inf(r) = lim
n→∞

(inf{ rk | k ∈ N and k > n })

Since the supremum and infimum above are being taken over smaller and smaller
sets, the sequences whose limits are referred to are monotone and the limits are
defined.

When these limits are equal we refer to their common value as the limit of the
sequence r and denote this number by limn→∞ rn. When the limit exists and is
L we say the sequence converges or, when specificity is required, converges to
L.

In applications, it is common for sequence values rn to be defined only for n in
a terminal segment of N. Limits, if they exist, depend only on the value of r on
any terminal segment. So when considering limits, we might define rn values in any
way that is convenient or not at all for n in any particular initial segment of N.

Show that ||a|−|b|| ≤ |a−b| ≤ |a|+|b|. This is known as the triangle inequality.

Show that the limit of a sequence r exists and is a number L exactly when the
limit of the sequence |r − L| exists and is 0.

Two sequences r and s are called equivalent if limn→∞ |rn − sn| = 0. The
exercises above can be used to show that equivalent sequences converge or not
together, and if they converge it is to the same limit.

A sequence r is called a Cauchy sequence if limn→∞(sup{ |rn − rk| | k > n })
exists and is 0.
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It is a fact that a sequence of real numbers converges precisely when it is Cauchy,
and the definition of equivalent sequences from above forms an equivalence relation
on the set of convergent sequences.

These last concepts can be used in an alternative construction of the real num-
bers. One examines the set of all Cauchy sequences of rational numbers, and
partitions that set using the equivalence relation for sequences defined above. This
does involve the creation of a preliminary definition of limit, but only for rational
sequences that converge to 0. The set of these classes constitute the real numbers
in this formulation.

There is a more general concept of limit that pops up sometimes. This is where
the indexing set is a more general directed set and not necessarily N, and we might
as well define it here.

If J is a directed set, a function r : J → Y is called a net in Y . A net is a
generalization of the idea of a sequence.

Now suppose r : J → R is a net in R and L ∈ R. We call L the limit of the net

r and write rα
α−→ L if and only if ∀ε > 0 ∃α ∈ J so that α ≤ β ⇒ |rβ − L| < ε.

Limits of nets in R, when they exist, depend only on the values of the net on
any particular terminal segment of J . So when considering these limits, we are free
to modify or define the rα values in any way that is convenient or not at all for α
outside of any terminal segment of J . Also, it is possible that J has a supremum,
σ = sup(J). In that case the limit is simply the number rσ.

When the limit of a net in R exists we say the net converges or, when specificity
is required, converges to L.

A net in R has at most one limit.

In case J = N, show that limn→∞ rn exists and equals L if and only if r converges

as a net and rn
n−→ L.

Suppose D is a nonempty subset of R and c ∈ R. Make D into a directed set by
a 4 b if and only if |c− a| ≥ |c− b|. Now suppose that D ⊂ A ⊂ R and f : A → R.
The function f |D is a net in R which might converge.

In case c /∈ D and D contains a set of the form { x ∈ R | x 6= c and |x− c| < ξ }
for some ξ > 0 and if f |D converges, a limit of this net is denoted limx→c f(x).

If there is any D satisfying the conditions above then the existence of
limx→c f(x) and its unique value do not depend on the particular D (satisfying
the specified conditions) used in its definition, and the set D will usually not be
mentioned explicitly.

The various properties of R, such as the total order on R and the existence
of suprema and infima of bounded subsets of R, have numerous consequences of
importance here. The reader should recall, prove, look up or accept the following
miscellaneous facts about the real numbers. The various topological concepts can
be found in Appendix ??.

5.1. Exercise. (i) Suppose f : (a, b) → R and c ∈ (a1, b1) ⊂ (a, b). limx→c f(x) ex-
ists and equals L if and only if limn→∞ f(xn) exists and equals L for every sequence
x : N → (a1, c) ∪ (c, b1) with limn→∞ xn = c.
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(ii) If limx→c f(x) and limx→c g(x) both exist and equal L and M respectively,
then limx→c(f(x) + g(x)) and limx→c(f(x)g(x)) exist and limx→c(f(x) + g(x)) =
L + M and limx→c(f(x)g(x)) = LM . If M 6= 0 then limx→c(1/g(x)) exists and
equals 1/M .

(iii) f : (a, b) → R is continuous (with respect to the subspace topology on (a, b))
if and only if limx→c f(x) exists and equals f(c) for all c ∈ (a, b).

(iv) Constant functions are continuous, and the product and sum of continuous
functions with common domain are continuous.

(v) If f : (a, b) → (c, d) and g : (c, d) → R are continuous then so is g ◦ f .
(vi) The function f : (0,∞) → (0,∞) defined by f(x) = x2 is one-to-one and

onto (0,∞). Its inverse function is denoted f−1(x) =
√
x. These functions are

continuous and nondecreasing on their respective domains.

(vii) The function g : (0,∞) → (0,∞) defined by g(x) = 1/x is one-to-one and
onto (0,∞). It is its own inverse function. It is continuous and nonincreasing.

(viii) A ⊂ R is compact if and only if A is closed and bounded. This is the
Heine-Borel Theorem.

(ix) Suppose f : (a, b) → R is continuous and [a1, b1] ⊂ (a, b). Let B = { f(x) |
x ∈ [a1, b1] }. Suppose inf(B) ≤ L ≤ supB. Then ∃c ∈ [a1, b1] with f(c) = L. This
is called the Intermediate Value Theorem.

(x) Suppose f : (a, b) → R is continuous. If K is a compact subset of (a, b) then
f(K) is compact. If J is a subinterval of (a, b) then f(J) is an interval.

(xi) If f : (a, b) → (c, d) is one-to-one and onto and continuous then the inverse
function f−1 : (c, d) → (a, b) is continuous.

(xii) If f : (a, b) → R is continuous, the values of f on Q ∩ (a, b) determine the
values of f on all of (a, b).

(xiii) If a is a sequence of real numbers we define a new sequence S, called the
sequence of partial sums of a, by Sn =

∑n
k=0 ak. A sequence formed this way is

called a series. Sometimes S converges. When it does its limit is denoted
∑∞

k=0 ak
and the series is said to converge. If Sn does not converge it is said to diverge.
If
∑∞

k=0 |ak| exists the series S is said to converge absolutely and it is a fact that
if a series converges absolutely then it converges. If the series converges but does
not converge absolutely we say that the series converges conditionally.

When discussing the existence of the limit
∑∞

k=0 ak, we often say that the symbol∑∞
k=0 ak itself converges, diverges or converges absolutely or conditionally.

(xiv) Suppose
∑∞

k=0 ak converges absolutely, and b is a real valued sequence.

Define for each k ∈ N the number ck =
∑k

i=0 ak−ibi.

If
∑∞

k=0 bk converges then so too does
∑∞

k=0 ck and
(

∞∑

k=0

ak

)(
∞∑

k=0

bk

)
=

∞∑

k=0

ck =

∞∑

k=0

(
k∑

i=0

ak−ibi

)
.

(xv) The series En(x) =
∑n

k=0
xk

k! converges absolutely for each real x. The
limit is denoted ex. The function Exp : R → (0,∞) defined by Exp(x) = e

x is
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one-to-one and onto (0,∞). Its inverse is denoted Ln. For each real x and y,
e
x+y = e

x
e
y. Exp and Ln are continuous and nondecreasing on their respective

domains.

(xvi) The series
∑n

k=0 x
k converges absolutely to 1

1−x for each x ∈ (−1, 1).

(xvii) The series Sn(x) =
∑n

k=0
(−1)kx2k+1

(2k+1)! and Cn(x) =
∑n

k=0
(−1)kx2k

(2k)! converge

absolutely for each real x. Their limits are denoted Sin(x) and Cos(x), respectively,
and the functions formed from these values are called the Sine and Cosine func-
tions. They are continuous.

(xviii) If a and b are real valued sequences define ∆an = an+1 − an and ∆bn =
bn+1 − bn for each n ∈ N. Then for 0 ≤ m < n

n∑

k=m

ak ∆bk = an+1bn+1 − ambm −
n∑

k=m

bk+1 ∆ak

which is called the summation by parts formula for series. In case the sequence
ab converges, the left sequence of partial sums converges exactly when the right
sequence of partial sums does.

(xix) Suppose a and c are real valued sequences and we want to discover facts

about the convergence of Sn =
∑n

i=0 aici. We define bk =
∑k

i=0 ci. Then ∆bn−1 =
cn. The following equality of partial sums is called Abel’s transformation and is
useful in several common applications.

Sn =

n∑

k=0

ak ck = a0 c0 +

n∑

k=1

ak ∆bk−1 = an+1bn −
n∑

k=0

bk ∆ak.

(xx) If the sequence a/b converges to a nonzero constant L then the series∑∞
k=0 ak converges exactly when

∑∞
k=0 bk converges.

(xxi) Suppose a is a sequence of non-zero numbers. Then limn→∞ |an+1| / |an|
exists exactly when limn→∞ |an|1/n exists. In case this common limit exists define
R to be the reciprocal of the limit (if the limit is 0 let R = ∞.) For real x the series∑∞

k=0 akx
k is called a power series and R is called the radius of convergence

of the series. This power series converges whenever |x| < R.

(xxii) Suppose a is a sequence of non-zero numbers and L = |an|1/n. If L = 0 the
power series

∑∞
k=0 akx

k converges absolutely for all x. If L = ∞ the power series
converges only for x = 0. Otherwise, let R = 1/L. The power series converges
absolutely if |x| < R and diverges if |x| > R. This result is called the Cauchy-
Hadamard Theorem.

Finally, we get to the issue of specific common representations of real numbers.

If p is an integer bigger than 1, we can represent any real number between 0 and
1 as

∑∞
k=1

ak

pk where the sequence a consists of integers with 0 ≤ an < p for all n.

This representation is not quite unique as stated.

Sequences a that terminate, for some n, with an 6= 0 and ak = 0 for all k > n
and exactly one sequence b with bk = p − 1 for all k > n generate series for the
same real number.
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However this is the only duplication in the representation, so uniqueness is ac-
quired by forbidding all representations that use sequences b that terminate in
bk = p− 1 for all k > n for some n.

With this convention, any real number can be represented uniquely (for each
p and some k ≥ 0) as

±
(

k∑

n=0

a−np
n +

∞∑

n=1

an
pn

)
where

(i) 0 ≤ aj < p for all j ≥ −k and

(ii) a−k 6= 0 unless k = 0 and

(iii) the sequence does not terminate with aj = p− 1 for all j > m for any m.

The case of p = 10 corresponds to the ordinary decimal representation of
numbers, while p = 2 and p = 3 generate the binary or dyadic and ternary
representations.

We will take one further step in the progression ∅ → 1 → N → Q → R.
The complex numbers, denoted C, consist of the set of all ordered pairs of real
numbers with operations of addition and multiplication given by (a, b) + (c, d) =
(a+c, b+d) and (a, b)∗(c, d) = (ac−bd, ad+bc). An alternative way of representing
an ordered pair of real numbers (a, b) thought of as a complex number is using the
symbol a+ bi. If z = a+ bi is a complex number, a is called its real part, and b is
called its imaginary part. This is purely a notational device: we are associating
real number a with ordered pair (a, 0) and bi with (0, b). z = a − bi is called the

conjugate of z. The magnitude of z is
√
a2 + b2 and denoted |z|. Note that

if z 6= (0, 0) then (1, 0) = z
(

z
|z|2

)
. The map that associates x in R with (x, 0) in

C preserves the arithmetic operations on R and sends the multiplicative identity
there to the multiplicative identity in C, so the range of this map can (and will) be
identified with R.

5.2. Exercise. A sequence of complex numbers zn = an+ bni converges to complex
number w = x + yi exactly when both limn→∞ an = x and limn→∞ bn = y. This
happens exactly when the real sequence |w − zn | converges to 0. Adapt Exercise
5.1 wherever necessary to handle series of complex numbers. Then define the series

En(z) =
∑n

k=0
zk

k! and show it converges absolutely for every complex z and define

e
z to be the limit. If w and z are complex show that ez+w = e

z
e
w and if z = a+bi

then

e
z = e

a
e
bi = e

a (Cos(b) + i Sin(b) ) .

Delete the negative x axis and the origin from the complex plane and define an
inverse to a piece of the exponential function there. If you want this logarithm
to be continuous, what choices do you have? Could you delete another half-line
terminating at the origin and define another logarithm with this domain?
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6. An Axiomatic Characterization of R

Let A be any field containing a copy NA of N and a copy QA of Q. By this we
mean that NA and QA are subrings of A containing the identity of A and which
are ring isomorphic to N and Q respectively. If A contains a copy of N in this
sense then, since it is a field, it must contain a copy of Q, and these subrings are
unique if they exist for a given ring A. We are simply positing here that A have
characteristic 0.

If this field A is equipped with a linear order < satisfying

(i) x+ y > 0 whenever x, y > 0

(ii) xy > 0 whenever x, y > 0

(iii) x+ z > y + z whenever x > y

we call A an ordered field. Both Q and R are ordered fields.

If both x and −x were positive (i.e. greater than 0) we would have by (i) that
0 > 0, contradicting the assumption that our order is a linear order. So if x 6= 0 at
most one of x or −x is positive.

If −1 > 0 then (ii) implies (−1)(−1) = 1 > 0, contradicting (i). So −1 < 0.
Using this in (iii) yields 0+1 > −1+1 so 1 > 0. Repeated application of (iii) yields
n + 1 > n > 0 for all positive integers n. In particular, we can never have n = 0.
So the ordered field properties imply that the underlying field has characteristic
0: we do not need to assume it.

An ordered field has the quality of Dedekind completeness or DKC provided
that each subset which is bounded above has a least upper bound.

The real numbers as we have built them constitute a Dedekind complete ordered
field. Every property of the real numbers used in analysis follows from just a few
properties: those which define a field, the properties defining a linear order, (i),
(ii), (iii) and DKC.

An ordered field has the Archimedean order property or AOP if, for each
x, y ∈ A with 0 < x < y there is an n ∈ NA so that y < nx.

These properties have consequences, a few of which are explored below.

6.1. Exercise. We will presume that A is an ordered field as above.

(i) x > 0 exactly when −x < 0. (ii) x < y exactly when 0 < y − x.

(iii) 0 < x and 0 < y < z implies 0 < xy < xz.

(iv) x < 0 and y < 0 implies xy > 0. (v) x < 0 and y > 0 implies xy < 0.

(vi) x > 0 exactly when 1
x > 0. (vii) 0 < x < y exactly when 0 < 1

y < 1
x .

6.2. Exercise. Suppose A is an ordered field as above.

Define |0| = 0. If x is nonzero in A, either x > 0 or −x > 0 but not both. Define
|x| to be x or −x, chosen so that |x| > 0.

(i) For each x, y ∈ A, show that |xy| = |x||y|.
(ii) For each x, y ∈ A, show that |x+ y| ≤ |x|+ |y|.
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6.3. Exercise. Suppose A is an ordered field as above.

(i) AOP is equivalent to each of the following three conditions:
For each x > 0 there is an n ∈ NA so that 1

n < x.
For each x > 0 there is an n ∈ NA so that x < n.
For each x > 0 there is a unique n ∈ NA for which n < x ≤ n+ 1.

(ii) DKC implies AOP. (hint: If A does not have AOP then there is a y with
0 < 1 < y but y ≥ m for all m ∈ NA. So NA is bounded above. If A had DKC there
would be a least upper bound p ∈ A for NA. Show that p− 1 must also be an upper
bound for NA, a contradiction. So A cannot have DKC.)

(iii) DKC implies that sets in A which are bounded below have infima.

(iv) Q has AOP but not DKC so AOP does not imply DKC.

6.4. Exercise. Suppose A is an ordered field as above with AOP.

(i) If B is a subset of A for which s = supB exists then for each integer n > 0
there is a member t ∈ B with s− t < 1

n .

(ii) If r ∈ A then r = sup{ t ∈ QA | t ≤ r }.

6.5. Exercise. If A is a Dedekind complete ordered field then there is a ring iso-
morphism between A and R. This ring isomorphism is unique, and is an order
isomorphism.

We have a collection of properties, axioms if you will, satisfied by the real num-
bers. These axioms are (some of) the axioms of ordinary set theory plus those
axioms associated with a Dedekind complete ordered field. The real numbers as we
have created them constitute a realization or model of the axioms of a Dedekind
complete ordered field “inside” ordinary set theory. We have shown by our con-
struction that these axioms are consistent (if the axioms of set theory are consistent)
and that was an important finding.

However neither the “Dedekind cut” construction of the real numbers nor the
“Cauchy sequence” construction correspond in a compelling way to our simple
intuition about real numbers as, for example, “points on a line.”

In fact, all properties of the real numbers important to analysts follow from the
axioms mentioned above, not from the details of construction employed
in forming our particular realization.

It is these axioms which capture some of our intuition about real numbers, not
any particular construction. The last exercise guarantees that if someone produces
a different realization of these axioms, their underlying object shares all essential
features with ours. We are free, when that is convenient, to remember the axioms
and forget as irrelevant their particular embodiment.

Finally, it is worth noting that the usual identification of the real numbers with
all the points on a line is not set in stone. It is not implied by the ancient concept
of a line, nor by the standard practices of the inventors of calculus who routinely
employed “infinitesimals,” since replaced by limits. Practitioners of nonstandard
analysis use a larger ordered field called the hyperreal numbers ∗R in place of



TOPOLOGY 19

R. The hyperreal numbers contain positive numbers smaller than any real number,
and limit-taking is replaced by hyperreal arithmetic.

The main technical challenges involved in transferring nonstandard results to the
standard world were overcome by Abraham Robinson, the creator of this subject,
in 1960.

Though conceptually attractive, it is currently unclear if this approach offers net
advantages over standard analytic technique.

7. [−∞,∞]X and RX

[−∞,∞] is called the set of extended real numbers and defined to be R ∪
{−∞,∞}, where members of R have their usual properties and ±∞ are not real
numbers and have the order, addition and multiplication properties that would
seem reasonable for “infinitely large” numbers.

For example, −∞ ≤ a ≤ ∞ ∀a ∈ [−∞,∞]. If a > 0 we define a · ∞ = ∞
a · (−∞) = −∞ and a +∞ = ∞ and (−a) · ∞ = −∞ and (−a) + (−∞) = −∞.
We also define −∞ · 0 = ∞ · 0 = 0. However −∞+∞ is not defined. The symbols
±∞ have no multiplicative inverses.

Every set in [−∞,∞] is bounded above and below by ∞ and −∞ respectively.
We abuse vocabulary and declare a subset of [−∞,∞] to be bounded above or
below if it is bounded by a real number in the specified sense. With this usage,
the bounded sets in [−∞,∞] and R are the same.

[−∞,∞] is a compact topological space, where neighborhoods of a point in R

are sets containing an open interval around that point, neighborhoods of −∞ are
those sets containing an interval of the form [−∞, a), and neighborhoods of ∞ are
those sets containing an interval of the form (a,∞].

Suppose J is a directed set, such as N. Recall that for each j ∈ J the symbol
Tj denotes the terminal segment of J consisting of those members n of J for which
n ≥ j.

If r : J → [−∞,∞] is a net, each r (Tj) is a set of extended real numbers, and
any such has both supremum and infimum in [−∞,∞]. So, for example, both
u(j) = sup r (Tj) and l(j) = inf r (Tj) are defined for each j ∈ J and so form
extended real valued nets l and u defined on J . u and l are are monotone: u is
nonincreasing while l is nondecreasing.

The reader should investigate the modifications to the definition of limits of real
valued sequences needed to make sense out of notation such as

lim sup(r) = L or lim inf(r) = L or rα
α−→ L

when L is an extended real number and r is a net in [−∞,∞]. In particular it must
be verified that this definition agrees with the previously defined limit for a real
valued net, when the former limit existed.

For sets X and Y , recall that Y X is the set of functions from X to Y . When
Y has a partial order, there is a partial order induced on Y X given by f ≤ g ⇔
f(a) ≤ g(a) ∀a ∈ X . This is called the pointwise order on Y X .
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Infima and suprema of indexed sets of functions, such as { fα | α ∈ J } ⊂ Y X ,
are themselves members of Y X whose values on each x ∈ X are indicated by:

(
∨

α∈J

fα

)
(x) =

∨

α∈J

fα(x) and

(
∧

α∈J

fα

)
(x) =

∧

α∈J

fα(x)

provided, of course, that the “pointwise” infima and suprema exist in Y for every
x ∈ X .

Note that these definitions depend on the existence of limits in Y . If Y ⊂ W ,
an infimum or supremum might exist in WX but not in Y X .

There is a notational issue that should be observed here. If fα ∈ Y X , we already
have a definition for the infimum and supremum of a function fα, namely:

∨

x∈X

fα(x) = sup{ fα(x) | x ∈ X } and
∧

x∈X

fα(x) = inf{ fα(x) | x ∈ X }

Confusion can arise when there are functions with multiple arguments or if multiple
infima and suprema are being calculated if care is not taken in specifying order and
arguments. Consider, for example:

∨

α∈J

(
∧

x∈X

fα(x)

)
and

∧

x∈X

(
∨

α∈J

fα

)
(x).

There is no reason to think the two will be equal.

Note that Y is a lattice ⇔ Y X is a lattice.

More generally, infima and suprema always exist in Y X precisely when such
always exist in Y . These always exist if Y = [−∞,∞] but not if Y = R.

Suppose f : J → [−∞,∞]X , where J is a directed set. We say f converges

pointwise to a function f̂ provided fα(b)
α−→ f̂(b) ∀b ∈ X. To describe this situation

and to assert the existence of such a limit we will write fα
α−→ f̂ or, when J = N,

we often write limn→∞ fn = f̂ .

For f and g ∈ [−∞,∞]X , we define f · g by (f · g)(a) = f(a)g(a) and f + g by
(f +g)(a) = f(a)+g(a) ∀a ∈ X . These are called pointwise multiplication and
addition.

The multiplication and addition defined above are commutative, and the func-
tions that are constantly one and zero are the multiplicative and additive identities,
respectively. [−∞,∞]X is not a real vector space, but only because addition is not
defined for all pairs of functions.

For any set X define χ : P(X) → 2X by χA(a) =

{
0 if a /∈ A;

1 if a ∈ A.

The map χ is an order isomorphism.

Each χA is called a step or characteristic function and finite real linear
combinations of these are called simple functions.

Note that χA ∨ χB = χA∪B, χA ∧ χB = χA∩B = χA · χB, χA−B = χA − χA∩B

and |χA − χB| = χ(A−B)∪(B−A).
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When G ⊂ P(X), we will use S(G) to denote the set of simple functions con-
structed from the sets in G.

A function that has constant range value t on its whole domain will sometimes
be denoted t, with this usage (and the domain) taken from context. Thus, for
example, χX is sometimes denoted by 1 and 0χX by 0, in yet another use of each
of those symbols.

When H is a subset of [−∞,∞]X , we will use B(H) to denote the bounded
members of H; f ∈ B(H) ⇔ f ∈ H and ∃a ∈ R with 0 ≤ a < ∞ and − a ≤ f ≤ a.

If X is a topological space, let C(X) denote the continuous functions from X to
R.

RX , B(RX) and, when X has a topology, C(X), are all vector lattices: real
vector spaces and lattices. They are also commutative rings with multiplica-
tive identity χX .

7.1. Exercise. S(G) is obviously a (possibly empty) vector space. Give conditions
on G under which S(G) is a vector lattice and a commutative ring with multiplicative
identity χX .

8. The Axiom of Choice

In this section we will discuss an axiom of set theory, the Axiom of Choice.

Every human language has grammar and vocabulary, and people communicate
by arranging the objects of the language in patterns. We imagine that our com-
munications evoke similar, or at least related, mental states in others. We also use
these patterns to elicit mental states in our “future selves,” as reminder of past
imaginings so that we can start at a higher level in an ongoing project and not have
to recreate each concept from scratch should we return to a task. It is apparent
that our brains are built to do this.

But words are all defined in terms of each other. Ultimate meaning, if there
is any to be found, is derived from pointing out the window at instances in the
world, or from introspection. Very often ambiguity or multiple meaning of a phrase
is the point of a given communication, and provides the richness and subtlety
characteristic of poetry, for instance, or the beguiling power of political speech.

Set theory is a language mathematicians have invented to encode mathemat-
ics. But unlike most human languages, this language does everything possible to
avoid blended meaning, to expose the logical structure of statements and keep the
vocabulary of undefined terms to an absolute minimum. Many mathematicians
believe what they do is “art.” But ambiguity and internal discord is not part of
our particular esthetic ensemble.

Most mathematicians believe that, though set theory may be unfinished, it serves
its purpose well. Virtually all mathematical structures can be successfully modeled
in set theory, to the extent that most mathematicians never think of any other way
of speaking or writing.
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Together, the collection of axioms (which, along with logical conventions de-
fines the language) normally used by most mathematicians is called the Zermelo-
Fraenkel Axioms, or simply ZF and the set theory that arises from these axioms
is called Zermelo-Fraenkel Set Theory. You saw explicit mention of two ax-
ioms from ZF, the Axiom of Infinity and the Axiom of the Empty Set, in Section
5. We have used others without mention on almost every page. For example we
have formed power sets.

The Axiom of the Power Set For any set A there is a set P(A) consisting
of all, and only, the subsets of A.

Asserting the existence of a set with this feature is a dramatic and “non-constructive”
thing to do, particularly when the underlying set is infinite. We are not told how
to create this set. We just have a means of recognizing if a set we have in hand is
a member of this power set, or not.

And where, exactly, did that first infinite set come from? The Axiom of Infinity
brings it into existence, out of nothing, simply because mathematicians want infinite
sets and this seems to be a logically consistent way to produce them.

There is another extremely useful—and arguably even less constructive—axiom
which we discuss now.

We will present and presume to be true, wherever convenient, the four equivalent
and useful statements below, one of which is called the Axiom of Choice. This axiom
is frequently abbreviated to AC. The collection of the axioms of standard set theory
plus this axiom is frequently denoted ZFC.

The discussions regarding equivalence of the Axiom of Choice and the other
three statements, and the history associated with them, is a fascinating story which
deserves study by every serious student of mathematics.

The Axiom of Choice: If J and X are sets and A : J → P(X) is
an indexed collection of nonempty sets then there is a function f : J →
X such that f(β) ∈ Aβ ∀β ∈ J . A function with this property is called a
choice function for A.

Essentially, this axiom states that given any generic set S of nonempty sets, there
is a way of selecting one element from each member of S. The other axioms do not
imply that such a selection can be made, unless every member of S has an element
with some unique property, which would allow it to be singled out.

Zorn’s Lemma: If S is a set with a partial order and if every chain in S
possesses an upper bound in S, then S has a maximal member.

Zermelo’s Theorem: Every nonempty set can be well ordered.

Kuratowski’s Lemma: Each chain in a partially ordered set S is con-
tained in a maximal chain in S (that is, a chain in S not contained in
any other chain in S.)

Kuratowski’s Lemma is also often called The Hausdorff Maximal Principle.

That Zorn’s Lemma implies Kuratowski’s Lemma is immediate. Suppose S is
a set with a partial order and and C is a chain in S. Let W denote the set of all
chains in S which contain the chain C, ordered by containment. Any chain in W is
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bounded above by the union of the chain, so Zorn’s Lemma implies that W contains
a maximal member. That maximal member is a chain in S not properly contained
in any other chain in S.

On the other hand, assuming Kuratowski’s Lemma to be true, suppose S is a
set with a partial order and that every chain in S possesses an upper bound in S.
This time let W denote the set of all chains in S. Let X denote a maximal member
of W. So X is a chain in S not contained in any other chain. Let M be any upper
bound for X . By maximality of X , M must actually be in X and cannot be less
than any other member of S: that is, M is maximal in S. So Zorn’s Lemma is true.

In the last two paragraphs we have shown that Zorn’s Lemma and Kuratowski’s
Lemma are equivalent statements.

We will now show that Zorn’s Lemma implies AC. Suppose S is any nonempty
set of nonempty sets and X is the union of all the sets in S. Let B = S × X .
Now let Q denote the set of all subsets of P(B) which are choice functions on their
domains: that is, T ∈ Q exactly when T is nonempty and there is at most one
ordered pair in T whose first component is any particular member of S, and also
s ∈ A whenever (A, s) ∈ T . These are called “partial choice functions.” Order
Q by containment. The union of any chain in Q is a member of Q so Zorn’s Lemma
implies that Q has a maximal member. This maximal member is a choice function
on its domain, which must by maximality be all of S.

The fact that Zermelo’s Theorem implies AC is also straightforward: given any
nonempty set S of nonempty sets, well order the set X =

⋃
S∈S

S. For each S ∈ S

let f(S) be the least element of S with respect to this ordering. f is the requisite
choice function.

The opposite implication is a bit trickier. It involves using a choice function to
create the well order.

Suppose set A has more than one element and f : P(A) − {∅} → A is a choice
function: that is, f(B) ∈ B whenever ∅ 6= B ⊂ A.

Let B denote the set of all nonempty containment-chains in P(A) − {∅} which
are well ordered and satisfy the condition:

Whenever IK is an initial segment of one of these chains and if J is the

union of all the sets in IK then J 6= A and K = J ∪ {f(A− J)}.

B is nonempty: for example, { {f(A)}, { f(A), f(A− {f(A)}) } } is in B.

The condition above implies that each of the chains in B must start with the set
{f(A)}, and the successor to any set K in such a chain (if, of course, K is not the
last set in the chain) has exactly one more member than does K. It also implies
directly that if two different chains X and W of this kind have a common initial
segment, so that IK ⊂ X and IG ⊂ W and IK = IG then K = G. In other words,
the least successor of an initial segment is determined by the sets in the initial
segment, and not by the specific chain within which the initial segment sits.

Suppose that X is one of these chains. We will call S a “starting chunk” of X
if ∅ 6= S ⊂ X and whenever B,C ∈ X the condition B ∈ S and C ⊂ B implies
C ∈ S. Now it might be that a starting chunk is as short as {f(A)} or it could,
possibly, be all of X . But if it is not all of X then because X is well ordered there
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is a least member K of X not in S and so S contains all members of X less than
K. That is, S = IK for some K ∈ X . So starting chunks are either initial segments
or the entire chain.

Now suppose X and W are unequal chains, members of B. Then one, say X ,
would contain a least set K not in the other. The initial segment IK of X is
contained in W . If there were a set in W not in IK but less than some member of
IK then there would be a least member of W of this kind. Call that least member
G. But then the initial segment IG of W would be a starting chunk of X and by
the above remark we would have G ∈ X , contrary to its definition.

So there are no missing members ofW between members of IK , which is therefore
a starting chunk of W . Since K /∈ W we must have IK = W , and conclude that W
is an initial segment of X .

To reiterate: for each pair of members of B, one is an initial segment of the other.

Now let S be the union of all the members of B. Each set in S comes from a
member of B and since one of any pair of members of B is an initial segment of the
other we conclude that S itself is a chain, and well ordered too.

Let J denote the union of all the sets in S. If J 6= A then we could extend S
to S ∪ {J ∪ {f(A− J)}} which satisfies the conditions for membership in B but is
strictly longer than its longest member, a contradiction. We conclude that J = A.

So we can use S to create an order on A. If a and b are members of A there is
a least member Sa of S containing a and a least member Sb containing b. Declare
a ≤ b precisely when Sa ⊂ Sb. If J is the union of the sets in the initial segment
determined by Sa then a /∈ J so it must be that a = f(A − J). So this relation
makes A into a total order. Further, if ∅ 6= T ⊂ A then the collection of all of the
St with t ∈ T has a least member, which produces a least member of T . So the
order on A is a well order.

We conclude that the existence of a choice function on P(A)− {∅} implies that
A can be well ordered. So AC implies Zermelo’s Theorem.

Upon accepting the Axiom of Choice, as we will do throughout this book, well
ordered sets are plentiful and can be used.

At this point we have shown the following implications among the conditions
which we claim to be equivalent to the Axiom of Choice.

Zorn ⇐⇒ Kuratowski

⇓
AC ⇐⇒ Zermelo

The Principles of Induction and Recursive Definition are incredibly pow-
erful and useful techniques, extending the idea of Induction on the Integers to many
more well ordered sets and situations more varied than merely checking if an in-
dexed set of propositions are all true. The methods are detailed in Section ??. It
is important to note, and the reader should check, that the proof of the version of
Recursive Definition we use here does not require AC.

We will now use Induction and Recursive Definition to show that Zermelo’s The-
orem implies Kurotowski’s Lemma, thereby proving that any of the four conditions
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listed above implies the others. The discussion below is a typical usage of this type
of argument. It uses first a recursive definition to deduce that a certain function
exists, and then induction to confirm various properties of that function.

We suppose we have a chain in a partially ordered set. We will line up the
members of the set not already in the chain and test them one at a time. When it
is an element’s turn, if it can be added to yield a bigger chain than we have up to
that point we select it. Otherwise we discard it. Then we go on to the next element
and repeat until we have exhausted the possibilities. The product is a maximal
chain. A rigorous justification can be produced after digesting the result in ??

Assume Zermelo’s Theorem to be true, and suppose H is a nonempty chain in
set K with partial order -. Suppose B = K − H is nonempty. There is a well
order ≤ for B. Since we have two orders in hand, we will use prefixes to describe
which order is in use. We will let Iβ stand for a ≤-initial segment for any β ∈ B.

Suppose y is a fixed element of H . For the ≤-first element α of B, let P (α) equal
α if H ∪ {α } is a --chain, and let P (α) be y otherwise.

Having found P (β) for all β ∈ B with α ≤ β < γ for some γ ∈ B define P (γ) to
be γ if H ∪ { γ } ∪ P (Iγ) is a --chain, and let P (γ) be y otherwise.

This serves to define P (γ) for each γ ∈ B.

H∪P (B) must be a --chain: if not it must contain two --incomparable members
s and t, which cannot both be in H . If one of the two, say s, is in H then there is a
β ∈ B with P (β) = t = β. But then H ∪ { β } ∪ P (Iβ) is not a chain, violating the
defining condition for P (β). A similar contradiction occurs if neither s nor t are in
H , by examining the point at which the second of the two points would have been
added. So in fact H ∪ P (B) must be a --chain.

No additional members of K can be added to H ∪ P (B) without causing the
resulting set to fail to be a --chain: once again, letting γ be the ≤-least member of
B which could be added, if any, yields a contradiction. That member would have
been added at stage γ.

So A ∪ P (B) is a maximal --chain in K, and Kuratowski’s Theorem holds.

8.1. Exercise. Fill in the details of a direct proof using Induction and Recursive
Definition that Zermelo’s Theorem implies Zorn’s Lemma. We assume that K is
a set with partial order - for which every chain has an upper bound. We assume
also that K has a well order ≤ with ≤-first member α.

We would like to conclude that K has a --maximal element.

Let α denote the ≤-first member of K and define G(α) = α. Having defined G
on ≤-initial segment Iβ for β > α let G(β) = β if β is a --upper bound for G(Iβ),
and otherwise let G(β) = α.

Show that G(K) is a chain and that G(K) has a --last member, which is --
maximal in K.

8.2. Exercise. (i) An axiom equivalent to our Axiom of Choice is produced if we
add to that axiom the condition that Aα ∩ Aβ = ∅ whenever α 6= β.
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(ii) Consider the statement: “Whenever B is a nonempty set of nonempty pair-
wise disjoint sets, there is a set S for which S ∩ x contains a single element for
each x ∈ B.” Show that this statement is equivalent to the Axiom of Choice.

(iii) Let B be a (nonempty) set of sets. B is said to have finite character
provided that A ∈ B if and only if every finite subset of A is in B. Tukey’s
Lemma states that every set of sets of finite character has a maximal member: a
set not contained in any other member. Show that Tukey’s Lemma is equivalent
to the Axiom of Choice. (hint: To prove that Tukey’s Lemma implies the Axiom
of Choice examine the set of partial choice functions and note that it satisfies the
conditions of Tukey’s Lemma.)

The use of AC in the formation of mathematical arguments has historically been
the subject of controversy centered around the nebulous nature of the objects whose
existence is being asserted in each case. In applications the axioms of set theory
are usually used to affirm the existence of one precisely defined set whose elements
share an explicit property. That is less obviously the case when AC is invoked.

Applications which require less than the full strength of AC are common. In an
effort to control, or at least record, how the axiom is being used, weaker variants
have been created. Some mathematicians award “style points” to proofs using one
of these, or which avoid AC altogether. We list two of these weaker versions of AC
below.

The Axiom of Dependent Choice: If X is a nonempty set and R ⊂
X ×X is a binary relation with domain all of X , then there is a sequence
r : N → X for which (rk, rk+1) ∈ R ∀k ∈ N.

The Axiom of Countable Choice: If X is a nonempty set and r : N →
P(X) is a sequence of nonempty subsets of X then there is a sequence
f : N → X such that f(n) ∈ An ∀n ∈ N.

These axioms are frequently abbreviated to DC and ACω , respectively.

8.3. Exercise. (i) Prove the implications AC ⇒ DC ⇒ ACω.

(ii) Suppose X is infinite. For each k ∈ N let Sk denote the set of all subsets of
X which have 2k elements. ZF alone implies that Sk is nonempty for each k, and
you may assume this. Let S denote the set of all the Sk. Use ACω twice to prove
that there is a one-to-one function f : Y → N for an infinite subset Y of X. Any
set Y (infinite or not) for which there is a function of this kind is called countable,
and the result here may be paraphrased as “Any infinite set has an infinite countable
subset in ZF+ACω.”

(iii) Sometimes the use of an axiom, particularly a variant of the Axiom of
Choice, is hard to spot in an argument. It seems so reasonable, it is hard to see
you are assuming anything. The theorem that “The union of a countable set of
countable sets is countable.” is an example.

Suppose A is a countable set of countable sets, and let B denote the union of
all the members of A. Because A is countable, there exists one-to-one T : A → N.
Because each member of A is countable, for each nonempty set S ∈ A there is a
nonempty set FS consisting of all one-to-one functions from S to N. Using T , this
collection of sets of functions is seen to be countable, so ACω guarantees that we
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can pick a function from each. It is easy to overlook this step, and merely assert
“Because each member of A is countable there exists one-to-one GS : S → N for
each S ∈ A.” and get on with the discussion using these selected functions. But it
is ACω which endorses this selection.

To finish the argument, for each x ∈ B we let Ax = {S ∈ A | x ∈ S } and define
ix to be the least integer in T (Ax). We define Wx to be that member of Ax with
T (Wx) = ix. The function H : B → N given by

H(x) = 2ix · 3GWx(x)

is one-to-one, so B is countable.

8.4. Exercise. (i) Any chain in a tree is contained in a branch.

(ii) Prove König’s Tree Lemma: If S is an infinite rooted tree but each t ∈ S
is the immediate predecessor of only finitely many members of S then S has an
infinite branch. (hint: Let K denote those members of S with an infinite number
of successors and for each t ∈ K let Mt = Tt ∩ K − {t}. Let f denote a choice
function for these sets: f(t) ∈ Mt ∀t ∈ K. Use induction on N to create an infinite
chain.)

The next section contains another important consequence of the Axiom of Choice.
Many more can be found scattered in appendices and chapters throughout this
book.

Those who want a slightly more detailed look at the ZF axioms can find them
listed in Sections ?? and ??. The discussions there are rudimentary but, I hope, a
practical guide providing a taste of modern set theory.

9. Nets and Filters

Suppose r : J → X is a net. Recall that this means that J is preordered and
there is an upper bound in J for each two-element subset of J .

If A ⊂ X, r is said to be in A if r(J) ⊂ A. r is said to be eventually in A if
there is a terminal segment Tα ⊂ J such that r(Tα) ⊂ A. r is said to be frequently
in A if r(Tα)∩A 6= ∅ ∀ terminal segments Tα in J . Obviously, if r is eventually in
A then r is frequently in A.

A subnet of r is a net s : K → X such that ∃f : K → J for which s = r ◦ f
and ∀m ∈ J ∃n ∈ K such that f(Tn) ⊂ Tm. Note that f is not presumed to be
nondecreasing. It is simply eventually in any terminal segment of J . A subnet of a
subnet is also a subnet of the original net.

A net in a set X is called universal if the net is eventually in A or eventually
in Ac for all A ∈ P(X).

9.1. Proposition . Each net r : D → X has a universal subnet.
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Proof. Let M ⊂ P2(X) be the set of all those G ⊂ P(X) such that r is frequently
in each member of G and also if A,B ∈ G then A ∩B ∈ G.

Obviously {X} ∈ M so M 6= ∅, and chains in M ordered by inclusion have upper
bounds in M (the union of the chain) so M contains a maximal member K.

If r is eventually in A or eventually in Ac then the maximality of K guarantees
that one or the other is in K. It remains to consider the case where r is frequently
in A but A /∈ K. By maximality of K there must be some S ∈ K so that r is not
frequently in A ∩ S: that is, r is eventually in (A ∩ S)c. Now, if T is any member
of K, r is frequently in T ∩ S = (T ∩ S ∩A)∪ (T ∩ S ∩Ac) so r must be frequently
in T ∩S ∩Ac ⊂ T ∩Ac. This is true for any T ∈ K so by maximality of K, Ac ∈ K.

We have just shown that either A or Ac ∈ K ∀A ∈ P(X).

Now let E = { (α,B) | α ∈ D, B ∈ K and r(α) ∈ B } directed by (α,B) ≤ (β,C)
precisely when α ≤ β and B ⊃ C. The net s : E → X defined by s((α,B)) = r(α)
is a subnet of r and universal by construction. �

We now move on to the next idea of this section.

A nonempty subset F of P(X) is called a filterbase on X if

(a) ∅ /∈ F and

(b) A,B ∈ F ⇒ A ∩B ∈ F.

If the additional condition

(c) A ∈ P(X), B ∈ F ⇒ A ∪B ∈ F

holds, F is called a filter on X .

Given any nonempty subset F of P(X) for which finite intersections of members
of F are nonempty there is a unique smallest filterbase containing F. Each filterbase
is contained in a unique smallest filter. This filterbase and this filter are said to be
generated by F.

The most common example of a filterbase is the collection of all open sets con-
taining a particular point of a topological space. A filter containing this filterbase
would be the set of all neighborhoods of that point.

Another filterbase would be { (0, a) ⊂ (0,∞) | a > 0 }.
Yet another example is given by the following: Let r : D → X be a net in X .

Let F = { r(Td) | d ∈ D }, where each Td is a terminal segment of D. F is a
filterbase. The collection of all sets containing any terminal segment, G = {A ∈
P(X) | r(Td) ⊂ A for some d ∈ D }, is the smallest filter containing F.

Let F denote the set of filters on X . F is partially ordered by containment. If
{Fα | α ∈ J } is any chain of filters then

⋃
α∈J Fα is also a filter and an upper

bound for the chain. So F possesses maximal members called ultrafilters. When
G is a filterbase, {F ∈ F | F ⊃ G } is nonempty and possesses maximal members,
which are maximal in F as well. So any filterbase is contained in an ultrafilter.

It is not hard to show that a filter F on X is an ultrafilter if and only if whenever
A ∈ P(X) then A ∈ F or Ac ∈ F.

This provides a link between universal nets and ultrafilters.
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If F is the filterbase on X formed from the net r as above, let s : E → X be a
universal subnet of r. Let K = {A ∈ P(X) | s(Td) ⊂ A for some d ∈ E }. Since s
is universal, either A or Ac is in K ∀A ∈ P(X). K is an ultrafilter containing F.

Alternatively, suppose F is any filter and G is the ultrafilter generated by F. Let
J = { (x,A) | x ∈ A ∈ F } and K = { (x,A) | x ∈ A ∈ G }. Direct J and K by
(x,A) ≤ (y,B) if and only if A ⊃ B. We define r : J → X by r((x,A)) = x and
s : K → X by s((x,A)) = x. The filters F and G are precisely the sets formed from
terminal segments of J and K by r and s, respectively. If we define f : K → J by
f((x,A) = (x,X), then s = r ◦ f and it follows that s is a subnet of r. Moreover,
s is a universal net.

Suppose X is a nonempty set and p ∈ X . Let Fp denote the collection of all
subsets of X containing p. Fp is an ultrafilter, and ultrafilters of this type are called
principal. Other kinds of ultrafilters are called free.

If X is nonempty let K denote the set of cofinite subsets of X : that is, all
subsets S of X for which X − S is a finite set. If X is finite, K = P(X). But if X
is infinite, K is a filter on X , the filter of cofinite subsets of X.

9.2. Exercise. (i) If V1, V2, . . . , Vn is a finite partition of X and F is an ultrafilter
on X then F contains exactly one of the Vi.

(ii) If an ultrafilter on X contains a finite set it contains a one point set, and is
principal.

(iii) Suppose U is an ultrafilter on infinite X. U is free exactly when U contains
all cofinite subsets of X.

(iv) There is a free ultrafilter U on N containing the set of even natural numbers.
There is another containing the set of odd natural numbers. In fact if A is any
infinite subset of N there is a free ultrafilter on N containing A.

10. Rings and Algebras of Sets

Consider P(X), the power set on the setX . When there is no danger of ambiguity
and A ⊂ X , the notation Ac is often seen in place of X − A. P(X) is partially
ordered by containment. P(X) is a lattice, with A∧B = A∩B and A∨B = A∪B.
There is also additional structure on subsets of P(X).

G ⊂ P(X) will be referred to as a ring in X if

(i) ∅ ∈ G

(ii) A,B ∈ G ⇒ A−B ∈ G and

(iii) A,B ∈ G ⇒ A ∪B ∈ G.

The last two items can be rephrased by saying that G is closed with respect to
the operations ∪ and −.

G ⊂ P(X) will be referred to as an algebra on X if, in addition

(iv) X ∈ G
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Items (ii) and (iv) imply that G is closed with respect to the operations ∪ and
c. In the presence of (iii), this last statement implies (ii).

It is apparent that item (i) is redundant in the presence of (ii) and (iv). Also, if
G is a ring in X and A and B are in G then so is A∩B. In fact, item (iii) could be
replaced by “if A and B are in G then so is A ∩B” to yield equivalent definitions
for a ring in a set.

10.1. Exercise. (i) Show that the smallest algebra on X containing a topology for
X consists of all sets A∩B or A∪B where A is an open set and B is a closed set.

(ii) If G is a ring in X then both {A ∈ P(X) | A ∈ G or Ac ∈ G } and {A ∈
P(X) | A ∩B ∈ G whenever B ∈ G } are algebras on X.

(iii) The set of “clopen sets” (that is, sets that are both open and closed) in a
topology for X constitutes an algebra on X.

10.2. Exercise. (i) Suppose G is a ring in X. Define multiplication in G by
A·B = A∩B and addition by symmetric difference: A△B = (A−B)∪(B−A).
Show that G is a commutative (algebraic) ring with these operations. This ring has
identity when the union of all sets in G is a member of G. An additive subgroup S

of this ring is an ideal exactly when A ⊂ B, A ∈ G and B ∈ S imply A ∈ S.

(ii) Suppose X is infinite and G is a ring in X. Let S denote the finite members
of G. Then S is an ideal.

When thinking of rings and algebras of sets, bear in mind two basic examples.
One possible ring in R would be all finite unions of bounded subintervals of R. An
algebra on R, obviously closely related to this ring, would be all finite unions of
subintervals (bounded or not) of R.

Apart from its raw defining qualities, an algebra on a set has useful properties
which will be used throughout this work. Turn to Section ?? on Boolean Algebras
and Rings to find out how some of these properties, when extracted and studied on
their own, necessarily return to their roots as an algebra on a set.

Because of the way we handle the material of later chapters, rings in a set will
be far less common than algebras on a set.
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Topology is a huge subject and the outline found below only touches on some
highlights of what is often called point-set topology. For more on point-set topol-
ogy see Kelley, General Topology [?], Dugundji, Topology [?], Steen and Seebach,
Counterexamples in Topology [?] and Engelking, General Topology [?].

11. Essential Definitions and Properties

A topology on a nonempty set Y is a family of sets T ⊂ P(Y ) that is closed
under arbitrary unions and finite intersections and contains both ∅ and Y . A
topological space is a pair (Y,T) where Y is a set and T is a topology on Y .
Often the phrase “Y is a topological space with topology T” is used to indicate this
pair. Sometimes we will write “Y is a topological space” and a topology is simply
presumed to exist. Members of T are called open sets and the complements of
open sets are called closed sets. If B contains an open set containing x ∈ Y, B is
called a neighborhood of x.

A subset A of a topological space is called an Fσ set if it is the union of a
countable family of closed sets. It is called a Gδ set if it is the intersection of a
countable family of open sets. A set is a Gδ set if and only if its complement is an
Fσ set.

If A is a nonempty subset of Y , the subspace topology on A consists of all
sets of the form A∩B for B ∈ T, and can be denoted T|A. Some texts call this the
relative topology on A. Members of T|A are called relatively open, while the
complements in A of relatively open sets are called relatively closed.

In R the usual topology consists of the empty set together with all sets that
can be formed as unions of open intervals.

For a nonempty set X , P(X) is called the discrete topology, while {∅, X} is
called the indiscrete topology. A subset A ⊂ Y is called discrete if it is discrete
with subspace topology.

The set of topologies on Y forms a lattice with containment order. In fact any
set of topologies on Y has a least upper bound and a greatest lower bound in the
set of topologies on Y . If T and B are two topologies on Y and T ⊂ B we say that
T is coarser than B and that B is finer than T.

If r : J → Y is a net we call x ∈ Y a limit of the net r and write r(α)
α−→ x

if and only if r is eventually in any neighborhood of x. When limits of a net exists
we say the net converges or, when we have a specific limit in mind, converges
to x. These definitions agree with our earlier definition from page 14 of limits for
nets in R, when R is given the usual topology.

When the directed set J is finite every net defined on J is convergent. We are
not particularly interested in nets of this kind, though they are not excluded.

x is called a cluster point of r if r is frequently in any neighborhood of x.
x is called an accumulation point of r if r is frequently in N − {x} for every
neighborhood N of x. We note that if J is infinite and if a net r has no cluster
points then r(J) must be infinite too.

If A ⊂ Y the point x ∈ Y is called an adherent point of A if it is a cluster
point of some net in A. An adherent point x for which every neighborhood of x
contains a member of A − {x} is called a limit point of A. This is the same as
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saying that x is an accumulation point of some net in A. The set of limit points is
called the derived set of A, and can be denoted A′. A member of A that is not a
limit point of A is called an isolated point of A. An isolated point is a member
of A that has a neighborhood containing no other point of A. The set of isolated
points of A, if nonempty, is discrete. A closed set with no isolated points is called
perfect.

11.1. Proposition . Suppose r : J → Y is a net in the topological space (Y,T).

(i) Every subnet of a convergent net converges, and to all the same limits.

(ii) x is a cluster point of r if and only if r has a subnet converging to x.

(iii) x is an accumulation point of r if and only if r has a subnet in Y − {x}
converging to x.

Proof. We will prove the second of these statements, and leave the other two to the
reader.

Let K = { (α,A) | α ∈ J, A ∈ T, x ∈ A and r(α) ∈ A }. Direct K by
(α,A) ≤ (β,B) precisely when α ≤ β and B ⊂ A. Let s : K → Y be the net
s((α,A)) = r(α) The function f : K → J defined by f((α,A)) = α establishes s as
a subnet of r. s converges to x. The converse is obvious. �

If A ⊂ Y , let A be the intersection of all closed sets containing A. A is called
the closure of A. A is itself closed, so A is closed if and only if A = A. A point p
is in A if and only if every open set containing p contains a point of A.

The interior of A is the union of all the open sets contained in A. Alternatively,
it is Acc. The interior of A can be denoted Ao. Ao is open so A is open exactly
when A = Ao.

The boundary of A is A ∩ Ac. The boundary of A is denoted ∂A. Boundary
points of A are characterized by the property that every neighborhood of the point
contains a member of A and a member of Ac. Note that ∂∂A − ∂A = ∅ and
∂A = A−Ao.

11.2. Proposition . Suppose A is a nonempty subset of topological space.

(i) x ∈ A if and only if there is a net in A converging to x.

(ii) x ∈ A′ if and only if there is a net in A− {x} converging to x.

(iii) x ∈ ∂A if and only if there are nets in both A and Ac converging to x.

(iv) A is open if and only if no net in Ac converges to a point of A.

(v) A is open exactly if any net converging to a point of A is eventually in A.

Proof. We will prove only (i), leaving the rest as an exercise. Suppose x ∈ A. Let J
consist of the open sets containing x ordered by reverse containment. IfB ∈ J, A∩B
cannot be empty, for if it were Y −B would be a closed set containing A, contrary
to the assumption that x is in the intersection of all such sets. So let r(B) be the
choice of an element of A ∩B for each B ∈ J . The net r converges to x.

On the other hand if x /∈ A then A
c
is a neighborhood of x which does not

intersect A so no net in A could converge to x. �
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11.3. Exercise. (i) If A is any set, A′ is closed.
(ii) If A is closed, A′ ⊂ A.
(iii) If Y is without isolated points and A is any set in Y , Ao ⊂ A′.
(iv) A = A′ if and only if A is perfect.
(v) (C ∪D)′ = C′ ∪D′.
(vi) (A′)′ ⊂ A ∪A′.
(vii) Suppose ℵ is a cardinal number exceeding the cardinality of A′. Define A(0) to

be A′. Having defined A(β) for all ordinals β with β < γ let A(γ) be either
(
A(β)

)′

if γ = β +1 or, if γ is a limit ordinal,
⋂

β<γ A
(β). This serves, through a recursive

definition, to define A(γ) for all γ ≤ ℵ. For each β ≤ γ we have A(β) ⊃ A(γ), so
these sets are nested and must, due to the size of ℵ, be constant on some terminal

segment Tγ of ℵ.
(
A(γ)

)′
= A(γ), so A(γ) is perfect. The ordinal γ is called the

Cantor-Bendixson rank of A.

The ideas behind the Cantor-Bendixson rank of a set, defined above, stem from
the very beginnings of modern set theory in the early 1870s. Cantor was considering
convergence of Fourier series, and the set of exceptional points of those series. He
showed that if two (potentially different) Fourier Series converge to the same value
except possibly at a set of points A for which A(n) = ∅ for some finite n then these
series must be, actually, the same series. Contemplating the potential complexities
of sets of this type (outside the context of Fourier Series now) led him to imagine
iterating the derivation process more than finitely many times, and on to thoughts
about well ordering and cardinality.

If X is also a topological space with topology S, a function g : Y → X is called
continuous when g−1(S) ⊂ T. Note that g is continuous if and only if g−1(K) is
closed in Y whenever K is closed in X .

The function g is called open if g(T) ⊂ S. The function g is called closed if
g(K) is closed for every closed subset K in Y . Whenever the function g has an
inverse function, the properties of being an open function or a closed function are
equivalent.

If g is continuous and open and if g has an inverse function it is called a home-
omorphism. The inverse is also a homeomorphism. Two topological spaces are
called homeomorphic by virtue of the existence of a homeomorphism between
them.

A property which can be possessed by a topological space is called topological
if pairs of homeomorphic spaces either both possess the property or both do not.
In other words, homeomorphic spaces have identical topological properties.

A subset A of Y is called dense in Y if it has nonvoid intersection with every
nonempty open set. This is the same as saying that A = Y . It also is equivalent to
saying that each point of Y is either a point or a limit point of A.

Y is called separable if there is a countable dense subset of Y .

A subset B of Y is called nowhere dense if B
o
= ∅. It is obvious that a

nowhere dense set has empty interior. This happens exactly when the open set B
c

is dense in Y .
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A subset A of Y is said to be of first category or meager if it is the union of
a countable collection of nowhere dense subsets. Y itself will be of first category if
Y =

⋃∞
i=1 Bi where each Bi

o
= ∅. Each Bi

c
is open and dense so

Y c = ∅ =

∞⋂

i=1

Bc
i ⊃

∞⋂

i=1

Bi
c

which means that the intersection of the open dense sets Bi
c
is empty. Conversely,

any countable collection of open dense subsets with empty intersection can be used
to represent Y as a countable union of nowhere dense (closed) sets. We conclude
that Y is first category if and only if there is a countable collection of open dense
subsets of Y with empty intersection.

A subset A of Y is said to be of second category if it is not first category.
So for a second category set, every countable collection of open dense sets has
nonempty intersection.

A neighborhood base at x ∈ Y is a collection of neighborhoods of x such that
every neighborhood of x contains one of these sets. A neighborhood subbase at
x ∈ Y is a collection of neighborhoods of x whose finite intersections comprise a
neighborhood base at x.

A neighborhood base for the topology is a collection of neighborhoods
which is a neighborhood base at each point in Y , and a neighborhood subbase
for the topology is a collection of neighborhoods whose finite intersections form
a neighborhood subbase at each point.

Sometimes adjectives are applied to these. For example a closed neighborhood
base would be a neighborhood base consisting entirely of closed sets.

A base for the topology on Y is an open neighborhood base for that topology.
A subbase for the topology on Y is a collection of open sets whose finite
intersections constitute a base. Some sources use the variant vocabulary “basis”
and “subbasis” for these concepts.

A function g : Y → X is called continuous at a ∈ Y if whenever r is a net
converging to a in Y the net g ◦ r converges to g(a).

11.4. Exercise. (i) g is continuous exactly when g is continuous at a ∀a ∈ Y .

(ii) g is continuous if and only if g−1(G) is a collection of open sets for any
subbase G of the range topology.

(iii) g is continuous exactly when g
(
K
)
⊂ g(K) for each subset K of the domain.

(iv) g is an open function if and only if g(F) is a collection of open sets for any
base F of the domain topology.

11.5. Exercise. A continuous function g : Y → X is determined by its values on
any dense subset of Y .

If A ⊂ Y let h|A denote the function defined only on A but whose values there
agree with h. h|A is called the restriction of h to A. Whenever h is continuous,
h|A is continuous when A has the subspace topology.

Rephrasing the first sentence using this notation we have: If A = Y and both
g : Y → X and h : Y → X are continuous and g|A = h|A then g = h.
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We further explore the concept of continuity with several useful results involving
functions with range R or [−∞,∞] with the usual topologies. Nontrivial continuous
functions with R as either domain or range are particularly important, and through
their very existence convey many convenient properties of R into the other space
involved.

11.6. Exercise. Suppose f and g are real valued continuous functions on Y and
c is a real constant. The constant function defined by h(x) = c for all x ∈ Y is
continuous. The sum and product functions f + g and fg are continuous. If f is
never 0 then 1

f is continuous.

11.7. Exercise. Suppose f : Y → [−∞,∞] and g : Y → [−∞,∞]. Define f ∨ g : Y →
[−∞,∞] to be the larger of f or g at each x ∈ Y : specifically, (f ∨ g)(x) = f(x) if
f(x) > g(x) and g(x) otherwise. Define f ∧ g to be the lesser of f or g. Wherever
both are finite, this is f(x) + g(x)− (f ∨ g)(x). If f and g are both continuous then
f ∨ g and f ∧ g are too.

Suppose X is any topological space and D is a directed set and n is a net, with
directed set D, of real valued functions with domain X . For each x ∈ X the net
n(x) will be the net formed by evaluating, for each α ∈ D, the function nα at x.
We say the net n converges pointwise to a real valued function f defined on
X if n(x) converges to f(x) for each x ∈ X . This means that for each x and any
ε > 0 the net n(x) is eventually in (f(x) − ε, f(x) + ε). More precisely, for each
ε > 0 and each x ∈ X there is a terminal segment Tε,x of D so that

nTε,x
(x) ⊂ (f(x)− ε, f(x) + ε).

We say the net converges uniformly to f if for each ε the terminal segment may
be chosen independently of x: the same terminal segment “works” for each domain
member. More precisely,

∀ε > 0 ∃ terminal segment Tε so that nTε
(x) ⊂ (f(x)− ε, f(x) + ε) ∀x ∈ X.

11.8. Lemma. If n is a net of real valued functions converging uniformly to f as
above and if each nα is continuous then f is continuous.

Proof. Suppose ε > 0. Select β ∈ D so that |f(x) − nβ(x)| < ε/3 for all x ∈ X .
Now pick x ∈ X and suppose r : E → X is any net in X converging to x. Since nβ

is continuous there is e ∈ E so that k ≥ e implies |nβ(r(k)) − nβ(x)| < ε/3. So

|f(x)− f(r(k))| ≤ |f(x)− nβ(x)| + |nβ(x) − nβ(r(k))| + |nβ(r(k)) − f(r(k))|

<
ε

3
+

ε

3
+

ε

3
= ε.

Since this can be done for each ε > 0 we conclude that the net f ◦ r converges
to f(x). Since this can be done for any net converging to x and any x ∈ X we
conclude that f is continuous. �

11.9. Corollary . The Weierstrass “M” Test Suppose X is a topological space
and fi : X → R for i ∈ N is a sequence of continuous functions.

Suppose further that for each i the value of |fi(x)| can never exceed Mi and that∑∞
i=0 Mi < ∞.

Then
∑∞

i=0 fi exists: that is, the partial sums form a sequence that converges
pointwise. The convergence is uniform, and the limit function is a continuous
function.
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Proof. The proof is an exercise. �

11.10. Exercise. Suppose ν : D → Y is a net in topological space Y . For each
terminal segment Td ⊂ D we see that ν (Tb) ⊂ ν (Ta) when a < b.

We now consider the case of Y = [−∞,∞]. So l(d) = inf ν (Td) and u(d) =
sup ν (Td) are extended real numbers for each d ∈ D. The net l is nondecreasing
while the net u is nonincreasing. So both converge in [−∞,∞]. We define lim inf ν
to be the limit of the net l and lim sup ν to be the limit of the net u.

Show that ν converges to c ∈ [−∞,∞] exactly when lim inf ν = lim sup ν = c.

A function f : X → [−∞,∞] is called lower semicontinuous provided f−1((b,∞])
is open in X for all real b. Equivalently, f is lower semicontinuous exactly when
f−1([−∞, b]) is closed in X for all real b.

f is called upper semicontinuous exactly when f−1([−∞, b)) is open in X
for all real b. Equivalently, f is upper semicontinuous exactly when f−1([b,∞]) is
closed in X for all real b.

11.11. Exercise. (i) An extended real valued function is continuous exactly when
it is both upper and lower semicontinuous.

(ii) The characteristic function of an open set is lower semicontinuous. The
characteristic function of a closed set is upper semicontinuous.

(iii) Now suppose f : X → [−∞,∞]. Show that f is lower semicontinuous exactly
when lim inf f ◦ µ ≥ f(p) whenever µ is a net in X converging to p. This can be
(very) loosely paraphrased as “The least values of f near p are not much less than
f(p).”

(iv) Suppose f and g are lower semicontinuous functions and c is a real number.
f ∧ g and f ∨ g are both lower semicontinuous. cf is lower semicontinuous if c > 0
and upper semicontinuous if c < 0. fg is lower semicontinuous when f and g are
nonnegative. f + g is lower semicontinuous if f and g are never oppositely infinite.

(v) Suppose S is a set of real valued functions with domain X and each member
of S is lower semicontinuous. Suppose also that for each x the there is a number
f(x) = sup{ g(x) | g ∈ S }. A typical situation has S = { fn | n ∈ N } where
for each x the numbers fn(x) form a nondecreasing sequence which converges to a
number f(x). However this problem pertains to any set of lower semicontinuous
functions bounded above at each point in X. Show that the function f is also lower
semicontinuous.

(vi) Formulate and prove statements similar to (iii), (iv) and (v) for upper semi-
continuous functions.

Y is called first countable, or simply CI, if for each point x in Y there is a
countable neighborhood base at x. If there is a countable neighborhood base at a
point, the neighborhoods comprising the base at this point can be chosen to be a
countable chain of open sets. A chain of sets is sometimes described, colloquially,
as nested.

A topological space is called second countable, or simply CII, if there is a
countable base (or subbase) for the topology. It is obvious that every CII space is
CI . If Y is CII it is clearly separable, but the converse is false.
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11.12. Exercise. Give R the topology with base { {0, r} | r ∈ R }. Every nonempty
open set contains 0 so the topology is separable but obviously not CII .

If r : N → Y is a sequence we define the sequence s : N → Y to be a subsequence
of r when there is an order preserving f : N → N for which s = r ◦ f and
∀m ∈ N ∃n ∈ N such that f(Tn) ⊂ Tm. It is worth noting that, although every
sequence is a net, a subnet of a sequence need not be a subsequence even if its
domain is N.

The characterization of the concepts of closed, open, continuity and boundary,
given above in terms of nets, can be restated in terms of sequences and subsequences
in CI spaces. This is handy because sequences and subsequences are often easier
to think about than generic nets.

11.13. Exercise. Suppose Y is a CI topological space. Prove the following:

(i) x is a cluster point of a sequence r if and only if r has a subsequence con-
verging to x.

(ii) x is an accumulation point of a sequence r if and only if r has a subsequence
in Y − {x} converging to x.

(iii) x ∈ A if and only if there is a sequence in A converging to x.

(iv) x ∈ ∂A exactly when there are sequences in A and in Ac converging to x.

(v) A is open if and only if no sequence in Ac converges to a point of A.

(vi) A is open if and only if every sequence converging to any point of A is
eventually in A.

(vii) If X is another topological space then g : Y → X is continuous if and only
if for each a in Y , g ◦ r converges to g(a) whenever r is a sequence in Y converging
to a.

Two nonempty sets A and B are called separated if A∩B = ∅ and B∩A = ∅.
This is the same as saying that no net in B converges to any point of A, and no net
in A converges to any point in B. When there exist sets A and B with C ⊂ A ∪B
and if C ∩A 6= ∅ and C ∩B 6= ∅ and if A and B are separated we say that C itself
is separated. C is said to be separated by A and B in this case. In a different
but similar usage, if R and S are separated and C ∩ R 6= ∅ 6= C ∩ S the subsets
C ∩R and C ∩ S are said to be separated by R and S.

AUrysohn function is a continuous function f : Y → [0, 1]. The set of Urysohn
functions for a topological space will appear several times in different contexts in
these notes.

A Urysohn function f is said to be a Urysohn function for sets A and B
provided {f(A), f(B)} = {{0}, {1}}. The sets A and B are said to be separated
by a Urysohn function in case such a function exists. We will say that the
Urysohn function precisely separates A and B if {A,B} = {f−1(0), f−1(1)}.

11.14. Exercise. If A and B are separated by a Urysohn function then A and B
are separated. In fact, more is true: there are nonintersecting open sets V and W
with A ⊂ V and B ⊂ W and V ∩W = ∅.
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12. Tools to Construct Examples

(i) Suppose X is a set and F = {fα : X → Yα | α ∈ A} is an indexed family of
functions where each Yα possesses a topology Gα. Each f−1

α (Gα) is a topology on
X . The coarsest topology on X containing all these topologies is called the initial
topology induced by F. It is the smallest topology with respect to which all of
the fα are continuous.

12.1. Exercise. If Z is any topological space and X has this initial topology, a
function G : Z → X is continuous when and only when fα◦G : Z → Yα is continuous
for every α ∈ A.

On the other hand, a function H : X → Z is continuous exactly when, for every
open U in Z and x ∈ H−1(U) there are a finite number of members fαi

∈ F and
Ui ∈ Gαi

(i = 1, . . . , n) so that x ∈ ⋂n
i=1 f

−1
αi

(Ui) ⊂ H−1(U).

The result remains true if U and the Ui are required to be drawn from subbases
for the relevant topologies.

(ii) Suppose Y is a set and G = {gα : Xα → Y | α ∈ A} is an indexed family of
functions where each Xα possesses a topology Gα. Each gα induces a topology Fα

on Y by declaring S ∈ Fα whenever g−1
α (S) ∈ Gα. This is the largest topology on

Y with respect to which gα is continuous. The intersection of all these topologies
is called the final topology induced by G. It is the finest topology on Y with
respect to which all of the gα are continuous.

12.2. Exercise. If Z is any topological space and Y has this final topology, a func-
tion G : Y → Z is continuous when and only when G ◦ gα : Xα → Z is continuous
for every α ∈ A.

On the other hand, a function H : Z → Y is continuous exactly when H−1(U)
is open whenever g−1

α (U) is open for every α.

(iii) Let A be any nonempty indexing set and for each a in A let Xa be a set with
topology Ta. Define Y =

∏
a∈A

Xa to be { f : A →
⋃

a∈A Xa | f(a) ∈ Xa ∀a ∈ A }.
For each a ∈ A we define πa : Y → Xa by πa(f) = f(a). This is called the

projection map onto the factor space Xa of the product space Y . It is also
called the evaluation map at the index a.

Suppose f ∈ Y is selected. For each a ∈ A we define ιfa : Xa → Y by ιfa(x)(b) =
f(b) whenever b 6= a and ιfa(x)(a) = x. It leaves f alone except at index a, and
inserts the value x there. This is called the injection map with base point f of
the factor space Xa into the product space Y.

An open cylinder in Y is a subset C of Y of the form C =
⋂n

i=1 π
−1
ai

(Bi) for a
finite selection of ai ∈ A and Bi ∈ Tai

for i = 1, . . . , n. This implies πa(C) = Xa

for all but a finite number of indices.

Although obvious, it bears mentioning that the condition πa(K) be open for all
a and πa(K) = Xa for all but a finite number of a does not imply K is open. For
instance, consider the product space R2 and let K be the graph of y = x on the
interval (0, 1). So πx(K) = πy(K) = (0, 1) but K is not open.



TOPOLOGY 39

The collection of open cylinders in Y forms a base for a topology on Y , called
the product topology. A subbase for this topology is the collection of all π−1

a (S)
for a ∈ A and S ∈ Ta. The product topology is the initial topology induced by the
set of projections {πa : Y → Xa | a ∈ A}. Y with this topology is called a product
space. It is the coarsest topology on Y with respect to which all of the projections
πa are continuous.

12.3. Exercise. Suppose f : Z → Y where Z is a topological space and Y =∏
a∈A Xa is a product space. Show that f is continuous exactly when πa ◦ f is

continuous for every a ∈ A. Show that a net ν in Y converges exactly when every
coordinate net πa ◦ ν converges in Xa.

When all Xa are equal to some set X with common topology T we use XA to
denote

∏
a∈AXa.

12.4. Exercise. If XA and XB are two product spaces and φ : A → B is any
function, the function Φ: XB → XA defined by Φ(g) = g ◦ φ is continuous. (hint:
Suppose n is any net in XB. n is convergent exactly when every πb ◦ n = n(b) is
convergent in X. The function Φ is continuous exactly when Φ ◦ n converges for
every convergent net n. This happens exactly when πa ◦ Φ ◦ n = n(φ(a)) converges
in X for every a.)

The box topology on the product set Y as above is that formed using as base
those subsets K of Y of the form K =

⋂
a∈A π−1

a (Ba) with Ba ∈ Ta∀a ∈ A. A set
of this kind is called an open box.

The box and product topologies differ unless all but finitely many of the factor
spaces are indiscrete and, generally, the product topology is more useful. There are
so many open sets in the box topology that convergence is too strong a condition for
most purposes. For instance, with the box topology on RN the function G : R → RN

given by

G(t) = (t, t, t, . . . )

is not continuous. However πn ◦G is continuous for each n so G is continuous when
its range has the product topology.

The projections πa and injections ιfa are all continuous when Y has either product
or box topologies.

Suppose Z is a topological space and H : Y → Z. If H is continuous with the
product topology on Y it is called jointly continuous, and this vocabulary is
usually used when the function H is being built in some way from functions defined
on the factor spaces.

If H ◦ ιfa is continuous for every f ∈ Y and a ∈ A then H is called continuous
in each factor or continuous along each slice.

12.5. Exercise. We suppose Y is a product space as above with injections ιfa : Xa →
Y for indices a ∈ A and f ∈ Y and that Z is a topological space and H : Y → Z.

Even in the case of two factors it may be that H ◦ ιfa : Xa → Z is continuous
for every f and a, yet H itself fails to possess the virtue of joint continuity. Find
an example where Z = R and Y = R2. (hint: Examine the function given by
f(0, 0) = 0 and otherwise f(x, y) = xy/(x2 + y2).)
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(iv) If X has topology F and Y has topology G and if X ∩ Y = ∅ we define the
free union topology on X ∪ Y to be the topology, denoted F+G, consisting of
the sets {S ⊂ X ∪ Y | S ∩X ∈ F and S ∩ Y ∈ G}.

More generally, if Yα is a nonempty set with topology Gα for each α in a
nonempty index set A and if Yα ∩ Yβ = ∅ when α 6= β we define the free union
topology on

⋃
α∈A Yα to be the topology, denoted ⊕α∈AGα, consisting of sets

{S ⊂ ⋃α∈A Yα | S ∩ Yα ∈ Gα for all α ∈ A}.
(v) Suppose f : X → Y is onto Y and X has topology F. The final topol-

ogy induced by f on Y is called the identification topology for f . Note: this
vocabulary is only used when f is onto Y .

If g : X → Y and g is onto Y and X has topology F and Y has topology G the
function g is called an identification map provided the identification topology for
g is G.

(vi) Suppose P is a partition of a set X with topology F. For each x ∈ X let [x]
denote the member of P containing x.

The function f : X → P defined by f(x) = [x] is called the quotient function
for P. The identification topology on P , denoted F/P, is called the quotient
topology and P with this topology is called a quotient space of the topological
space X with topology F.

The quotient function f is open exactly when
⋃

x∈A[x] is open in X for every
open A in X .

The quotient function f is closed exactly when
⋃

x∈A[x] is closed in X for every
closed A in X .

We will be interested in partitions P where the classes [x] have certain useful
properties. For example, we might require that each [x] be closed in X .

It is an obvious but useful fact that if f : X → P is the quotient function for
partition P with quotient topology, and g : P → Z then g is continuous exactly if
g ◦ f : X → Z is continuous.

(vii) Suppose X∩Y = ∅ and X has topology F and Y has topology G and X∪Y
has the free union topology F + G. Suppose further that A ⊂ X and B ⊂ Y and
A is nonempty and closed and g : A → B is continuous with respect to subspace
topologies and onto B.

Create a partition P on X ∪ Y by

P = {{x} | x ∈ (X −A) ∪ (Y −B)}
⋃

{{b} ∪ g−1(b) | b ∈ B}.
Points not in A or B are related only to themselves, while points in A or B are also
related to each other through the services of g.

The set X ∪ Y with topology (F + G)/P is called, awkwardly, X attached to
Y by g and the process is called attachment.

If g is one-to-one, the process stitches X and Y together along the “seam”
consisting of points paired by g.

If Y (and hence B) is a one point set, the process essentially collapses A to
a point. More generally, if Y = B is discrete then the process collapses each
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g−1(b) ⊂ A ⊂ X to a point for each b ∈ B. Any subset J in discrete B is both
closed and open. We have g−1(J) relatively closed in closed A, and hence closed in
X . Since g−1(J) is also open in A there is an open set SJ ⊂ X with g−1(J) = SJ∩A.

13. Separation

A topological space is called T0 if and only if given any two distinct points at
least one of the two has a neighborhood not containing the other. So for distinct
points x and y, x /∈ {y} or y /∈ {x}.

A topological space is called T1 if and only if given any two distinct points each
one has a neighborhood not containing the other. So for distinct points x and y we
have x /∈ {y} and y /∈ {x}: that is, single point sets are all closed. This property
can be rephrased by saying that distinct points are separated.

The topology {∅, {a}, {a, b}} is T0 but not T1.

A topological space is called Hausdorff or, synonymously, T2 if and only if any
two distinct points have nonintersecting neighborhoods. So Y is T2 if and only if
every convergent net in Y has one limit. This property can be rephrased by saying
that distinct points are separated by open sets.

Let X be the set R ∪ {∗} where the ∗ is not a real number. The open sets in X
are the usual open sets in R together with any set that can be obtained by taking
one of these open sets which contains 0 and either adding ∗ to it or replacing 0 by
∗. So every point in this set has a neighborhood which is homeomorphic to R. Still,
this topology is T1 but not T2.

13.1. Exercise. Suppose Y is an infinite set. Give Y the topology consisting of the
empty set and the complements of finite subsets in Y . This is called the cofinite
topology on Y . This topology is T1 but not T2.

13.2. Exercise. (i) A finite T2 topology is discrete. In fact, in a T2 space any set
that is not closed is infinite.

(ii) Y is T2 if and only if for each x and each y with x 6= y there is an open set
Vy containing y with x /∈ Vy.

(iii) Suppose f : X → Y is continuous and Y is T2. If a, b ∈ X and if a and b
cannot be separated by open sets then f(a) = f(b).

(iv) Suppose f : X → Y and g : X → Y are continuous and Y is T2. Then the
set of all x ∈ X for which f(x) = g(x) is closed in X.

Y is called T3 if {x} and A can be separated by open sets for each point x ∈ Y
and each closed set A not containing x. Y is called regular if it is T0 and T3.

13.3. Exercise. (i) Y is T3 exactly when for each p ∈ Y and open set W containing
p there is an open set V with p ∈ V ⊂ V ⊂ W . So Y is T3 exactly when there is a
closed neighborhood base for every point in Y .

(ii) Let B be a subbase for the topology on Y . Y is T3 if and only if whenever
p ∈ W ∈ B there is open V with p ∈ V ⊂ V ⊂ W .

(iii) If Y is regular and p, q are distinct points in Y then there are open sets Vp

and Vq containing p and q respectively with Vp ∩ Vq = ∅.

(iv) Any subset of a Ti space with subspace topology is Ti for i = 0, 1, 2 or 3.
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13.4. Exercise. Consider D = (R× R) ∪ {∗} Where ∗ is a point not in R× R.

For each (a, b) in R × R with (a, b) 6= (0, 0) define A(a,b) to be the set of all
(r, s) × (t, u) ⊂ R × R which contain (a, b) but do not contain (0, 0). Let A be the
union of all the A(a,b) for (a, b) 6= (0, 0).

Form A(0,0) as the set of all {(0, 0)} ∪ ((−r, r)× (0, r)) ⊂ R× R for r > 0.

Define A∗ to be the set of all {∗} ∪ ((−r, r)× (−r, 0)) ⊂ D for all r > 0.

A ∪ A(0,0) ∪ A∗ constitutes a base for a topology on D called by Steen and
Seebach [?] the double origin topology.

Show that the double origin topology is T2 but not T3. (hint: The closure of
disjoint neighborhoods of (0, 0) and ∗ must overlap.)

13.5. Exercise. If X is T3 and CII then every closed set is a Gδ. (hint: Let B be
a countable base for the topology and suppose K is closed. For each p ∈ Kc there
is an open set Vp with Vp ∩K = ∅. Let A denote those members of B which are
in at least one Vp. Let A0, A1, . . . denote an enumeration of the members of A.
Any open subset of Kc is a union of these Ai. Well order Kc. For each i there
is at least one but possibly many members p of Kc for which Vp contains Ai. Let

pi be the least of these. Let Mi =
⋃

0≤j≤i Vpi
and Oi = M c

i . The Oi are nested
and decrease in size as i grows. The closed set K is in every Oi and so is in the
intersection of all of them. On the other hand, each member p of Kc is in at least
one of the Ai so p is not in Oi. So K =

⋂
i∈N

Oi.)

Y is called T4 if each pair of nonintersecting closed sets can be separated by
open sets. Y is called normal if it is T1 and T4.

13.6. Exercise. We will define a topology called by Steen and Seebach [?] the
either-or topology. Declare a subset of the interval [−1, 1] to be open if it contains
either 0 or the entire interval (−1, 1). This is a topology on [−1, 1] and it is T0 and
T4. It is not T1.

13.7. Exercise. (i) X is T4 exactly when for each closed B ⊂ X and open set W
containing B there is an open set V with B ⊂ V ⊂ V ⊂ W .

(ii) Y is T4 exactly when for each pair of closed nonintersecting subsets A and B
there are open sets VA and VB containing A and B respectively and with VA∩VB =
∅.

(iii) A closed subset of a T4 space with the subspace topology is T4. See Exercise
17.14 for an example of an open subset of a normal space which is not T4.

13.8. Exercise. (i) Suppose that whenever x, y ∈ Y and x 6= y then {x} can be
separated from {y} by a Urysohn function. Then Y is T2.

(ii) Suppose that whenever x ∈ Y and A is closed and nonempty and x /∈ A then
{x} can be separated from A by a Urysohn function. This condition implies that Y
is T3. When this condition holds the space is called completely regular. We will
usually refer to completely regular spaces as CR. If the space is T0 and CR it is
also T2, and called a Tychonoff space.

(iii) A subset of a CR space with subspace topology is CR.

(iv) If all pairs of disjoint nonempty closed sets can be separated by a Urysohn
function then Y is T4. If, in addition, Y is T1 then it is normal.



TOPOLOGY 43

(v) If X is a CR space then there is a set of real valued functions on X so that
the topology on X is the initial topology for this set of functions.

We note that some books switch the meaning of normal and T4. Those books
also switch the meaning of regular and T3. Further, some books do not identify
the T3 or T4 properties except in the context of Hausdorff spaces: they either do
not identify spaces as T3 or T4 at all, using the vocabulary “regular” or “normal”
alone, or insist that T3 or T4 spaces must be T2 and do not distinguish them from
regular or normal spaces. In General Topology [?], Bourbaki says that our T3 spaces
“satisfy Axiom OIII ,” while our T4 spaces “satisfy Axiom OV .” Some sources call
completely regular spaces T3 1

2
while Bourbaki says they “satisfy Axiom OIV .” The

reader is advised to watch for (that is, expect) variant vocabulary.

13.9. Exercise. We collect here some of the relationships among the separation
properties. ⇒ means “implies” while ; means “does not imply.” Justify each line.

(i) T2 ⇒ T1 ⇒ T0.

(ii) T0 + T3 ⇒ T1 + T2.

(iii) CR ⇒ T3.

(iv) T1 + T4 ⇒ T0 + T2 + T3 + CR. See Exercise 16.6.

(v) T0 + T4 ; T1 or T2 or T3. See Exercise 13.6 and (ii) above.

(vi) T1 ; T2. See Exercise 13.1.

(vii) T2 ; T3 or T4. See Exercise 13.4.

(viii) T2 + CR ; T4. See Exercise 17.14.

(ix) T3 + T4 ; T0 or T1 or T2. Example: the indiscrete topology {∅, {a, b}}.
13.10. Exercise. (i) Suppose Y =

∏
a∈AXa has product topology. Y is T2, T3 or

CR if and only if every factor space has the corresponding property. (hint: To show
the T3 property or complete regularity holds in the product space, consider the case
of a point p ∈ V where V is a cylinder in the product space.)

(ii) See Exercise 16.5 for a counterexample to show a product of two normal
spaces need not be T4.

(iii) There exist T3 spaces which are not CR. Go to the general topology section
of your library and find two examples of this phenomenon. You might wish to delay
this “literature familiarization” exercise until after Section 18. By then you will
have constructed a small library of spaces made to expose other qualities but which
are likely to be used to form the examples in your library sources.

14. A Cornucopia of Covers

A collection G of subsets of Y is called a cover of Y if every point of Y is in at
least one member of G.

The collection is called an open cover of Y if it is comprised of open sets. The
cover is called closed if it is comprised of closed sets.

G ⊂ P(Y ) is called point finite if each point of Y is in only finitely many
members of G. We do not presume that G covers Y .
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G ⊂ P(Y ) is called locally finite if each point of Y has a neighborhood inter-
secting only finitely many—possibly none—of the members of G.

G ⊂ P(Y ) is called σ-locally finite if it is the union of countably many locally
finite subsets of P(Y ). We do not presume that any of these, or G itself, are covers.

G ⊂ P(Y ) is called discrete if each point of Y has a neighborhood intersecting
no more than one of the members of G.

G ⊂ P(Y ) is called σ-discrete if it is the union of countably many discrete
subsets of P(Y ). We do not presume that any of these, or G itself, are covers.

A cover B of Y is called a refinement of the cover G provided each member
of B is a subset of a member of G. Note: we only define refinements for covers, and
refinements are themselves covers. If B is a refinement of G we say that B refines
G and can write either B ≪ G or G ≫ B to denote the situation.

The cover B of Y is called a subcover of the cover G of Y if B ⊂ G. A subcover
of G is, of course, a refinement of G.

Covers of various types, particularly open covers, provide a means of localizing
the topological properties of sets to smaller and (presumably) more manageable
bits.

14.1. Exercise. Suppose G ⊂ P(Y ) is locally finite. Then
{
G | G ∈ G

}
is also

locally finite. (hint: Let A be an open set which intersects only the members H =
{G1, . . . , Gn} ⊂ G. If A contained any point of any G for G ∈ G−H there would be
a net in G converging to a point in A and since A is open this net must eventually
be in A, contrary to our assumption that A ∩G = ∅.)

14.2. Exercise. (i) Suppose G ⊂ P(Y ) is locally finite and H ⊂ G. Then K =⋃
G∈H

G is closed. (hint: Let p ∈ K and let n be a net in K converging to p. There

is a neighborhood V of p which intersects only finitely many G for G in H. Since
the net is eventually in V it must frequently be in G for one member G of H. So
there is a subnet in closed G converging to p: that is, p ∈ G.)

(ii) Suppose G is any open cover of Y . V is open in Y exactly when V ∩ G is
open for all G ∈ G.

(iii) Suppose G is any open cover of Y . K is closed in Y exactly when K ∩G is
closed for all G ∈ G.

(iv) In general if G is any open cover and K ⊂ Y

K =
⋃

G∈G

K ∩G.

(hint: Consider a net n in K converging to a point p. This net is eventually in
some open G ∈ G, so it will be in K ∩G.)

(v) Suppose G is any locally finite closed cover of Y . K is closed in Y exactly
when K ∩G is closed for all G ∈ G.

(vi) Suppose G is any locally finite closed cover of Y and K ⊂ Y .

Ko =
⋃

G∈G

(K ∩G)o.



TOPOLOGY 45

14.3. Exercise. Suppose G is a cover of Y . G is called a minimal cover if the
removal of any single set from G is no longer a cover of Y .

(i) Let S denote the set of all subcovers of a point finite cover G. Chains in S

have lower bounds in S (the intersection of the chain) so S has minimal elements
called minimal subcovers. (hint: The intersection of any chain of subcovers of
G is a collection of sets from G. If this collection is not a cover there will be some
point p not in any of these sets. Only finitely many members of G contain p and
there must be a member of the chain that does not contain any of them.)

(ii) It is not true that the intersection of any chain of subcovers of a generic
open cover is a cover. For example let G be the usual topology on the real line and
define for integer n > 0 the open cover

Gn =

{(
q − 1

j
, q +

1

j

) ∣∣∣∣ j is an integer greater than n and q ∈ Q

}
.

So the intersection of the Gn is empty.

The following Lemma, though not hard, is very important for us. A variety of
later proofs have been organized to take advantage of the construction found here.

14.4. Lemma. The Refinement Lemma Suppose G is a cover of Y and H is a

refinement of G. Then there is a subcover G̃ of G and a refinement H̃ of G̃, where

the members of H̃ are formed as unions of the sets in members of a partition of H,

and a one-to-one and onto function f : G̃ → H̃ for which f(K) ⊂ K for all K ∈ G̃.

Proof. Assign to each K ∈ H a set Φ(K) ∈ G for which K ⊂ Φ(K). So Φ: H → G,
but Φ need not be either one-to-one or onto.

Let G̃ = Φ(H). Since H is a cover so too is G̃, and a subcover of G as well.

For each L ∈ G̃ define f(L) to be the union of the members of Φ−1(L) and define

H̃ = f(G̃). Every member of H is involved in exactly one of these unions. So H̃ is

a cover of Y , and is obviously a refinement of G̃. �

14.5. Exercise. (i) In Lemma 14.4 if H is either point finite or locally finite then,

since members of H̃ are formed by agglomerating members of a partition of H, H̃
has the corresponding property too.

(ii) If H is an open cover or a closed locally finite cover then so is H̃.

(iii) If G is a minimal cover of Y then G = G̃ and each f(L) ∈ H̃ contains

a point which is in L but in no other member of G. The refinement H̃ is itself,
therefore, a minimal cover.

(iv) If G is σ-discrete or σ-locally finite then so is the subcover G̃. Since f(L) ⊂ L

for each L ∈ G̃ it follows that H̃ also shares these properties with G.

(v) Suppose H̃ is point finite. This will happen, for example, if H is point finite.

So H̃ has a minimal subcover K̃. It is not true that f−1(K̃) must be a minimal
subcover of G.

14.6. Exercise. Suppose U is either an open cover or a closed locally finite cover
of Y and X is a topological space. Suppose that for each U ∈ U there is a function
fU : U → X which is continuous with respect to subspace topology on U . Suppose
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also that for each pair U, V ∈ U and each x ∈ U ∩V we have fU (x) = fV (x). Then
the function f : Y → X defined by f(x) = fU (x) whenever x ∈ U is continuous.

15. Barycentric and Star Refinements

We assemble here a number of related results and definitions which otherwise
would find themselves embedded, rather awkwardly, in the proofs of major theorems
scattered throughout the remainder of this appendix. Our treatment of covers is
(largely) adapted from the approach in Dugundji [?]. A few of these results have
independent interest. It would make sense to skim this section and come back for
the details as needed.

Suppose A is a cover of X . For B ⊂ X define

A(B) = {V ∈ A | B ∩ V 6= ∅} and StarA(B) =
⋃

V ∈A(B)

V

Bary(A) = {StarA({x}) | x ∈ X} and Star(A) = {StarA(B) | B ∈ A}.

A(B) assembles the members of A which touch B. StarA(B) agglomerates all
these into a single set. Bary(A) is a new cover formed from all “one point centers,”
while Star(A) is a new cover formed using as “centers” the various members of A
itself.

If A is an open cover, both Bary(A) and Star(A) are open covers of X .

Suppose B ≪ A. Then for each B ⊂ X , each member of B(B) is contained
in a member of A(B), so StarB(B) ⊂ StarA(B). It now follows immediately that
Bary(B) ≪ Bary(A). Similarly, Star(B) ≪ Star(A).

It is obvious but worth noting that A ≪ Bary(A) ≪ Star(A).

The cover A is called a barycentric refinement of the cover B if Bary(A) ≪
B. Any refinement of a barycentric refinement of B is a barycentric refinement of B.
If A is a barycentric refinement of B and B ≪ C then A is a barycentric refinement
of C.

The cover A is called a star refinement of the open cover B if Star(A) ≪ B.
Any refinement of a star refinement of B is a star refinement of B. If A is a star
refinement of B and B ≪ C then A is a star refinement of C.

In this appendix, we only use the vocabulary of barycentric or star refinements
when all covers involved are open. However we find occasion in Appendix ?? to
consider other covers.

15.1. Exercise. If A is a barycentric refinement of B and B is a barycentric re-
finement of C then A is a star refinement of C. (hint: Consider first a slightly
different problem. The sets in Star(A) are unions of all sets in A that touch in-
dividual members of A. These sets are actually (potentially) smaller than the sets
in Bary(Bary(A)). That is because members of Bary(A) are unions of all sets in
A touching some x so members of Bary(Bary(A)) are unions of all members of
A which touch any member of A containing some x, not just one of them. We
conclude that Star(A) ≪ Bary(Bary(A)).)
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We refer to a topological space Y as a T∗ space if every open cover has an open
star refinement. From the last exercise we see that this is equivalent to saying every
open cover has an open barycentric refinement.

Some sources refer to spaces which are both T∗ and T1 as fully normal.

15.2. Lemma. If X is T1 and T∗ then X is regular.

Proof. Suppose p ∈ X and B is a closed set not containing p. Then A = {X −
{p}, Bc} is an open cover of X . There is an open star refinement B of A.
StarB({p}) and StarB(B) are both open and contain p and B respectively. If they
had nonempty intersection then there would be a member of B(B) which touches a
member C ∈ B({p}). But then StarB(C) contains both p and points of B, contrary
to our choice of B as a star refinement A. �

Later we will show that spaces which are both T1 and T∗ are actually normal.
This lemma is used in the proof of that fact.

Finally, the sequence An, for n ∈ N, of open covers of X is called locally
starring for the open cover B provided for each x ∈ X there is an integer n and
an open neighborhood Vx of x and a member Bx of B for which StarAn

(Vx) ⊂ Bx.

In words: each point has a neighborhood so that all the sets touching that
neighborhood from at least one of the An are in one member of B.

15.3. Exercise. Suppose An, for n ∈ N, is locally starring for the open cover O.
Then there is a sequence Bn, for n ∈ N, which is also locally starring for the open
cover O and with Bn+1 ≪ Bn for each n. (hint: Let B0 = A0. Having found Bn let
Bn+1 = {A∩B | A ∈ An+1 and B ∈ Bn}. So each Bn+1 is a refinement of both Bn

and An+1.)

15.4. Lemma. X is T∗ if and only if there is a locally starring sequence for every
open cover.

Proof. If B is an open star refinement of the open cover O the sequence of covers
Bn = B for each n is locally starring for O. So if X is T∗ every open cover has a
locally starring sequence.

We now prove the converse. Suppose Bn, for n ∈ N, is a locally starring sequence
for the open cover O. We may presume that Bn+1 ≪ Bn for each n. (See Exercise
15.3.)

Let S denote the collection of all open sets V for which there exists an integer n
and sets H and G with V ⊂ H ∈ Bn and also StarBn

(V ) ⊂ G ∈ O.

S is an open cover because the Bn form a locally starring sequence for O.

For each V ∈ S define n(V ) to be least among all integers k for which there are
sets H in Bk and G in O satisfying the membership condition for V . For each point
p define n(p) to be the least integer among the n(V ) where V is a neighborhood of
p and in S. For each p select a neighborhood Vp of p in S with n(p) = n(Vp) and
select Gp ∈ O with StarBn(p)

(Vp) ⊂ Gp.

We know that StarBk
(C) ⊃ StarBn

(C) for any set C when n > k. In particular,
if p ∈ V ∈ S then V is a subset of some H ∈ Bn for some n ≥ n(p). This H is a
subset of some W ∈ Bn(p).
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We conclude that

StarS({p}) ⊂ StarBn(p)
({p}) ⊂ StarBn(p)

(Vp) ⊂ Gp.

So S is a barycentric refinement of O. If every open cover has a locally starring
sequence then we can create such a sequence for S which would generate, by a
duplication of the argument found above, an open star refinement ofO. We conclude
that if every open cover has a locally starring sequence then X is T∗. �

Combining several of these results into a single package, we have the following
list of equivalent conditions, any one of which can be used to define T∗ spaces.

15.5. Corollary . The following conditions are equivalent:

Every open cover of X is has an open barycentric refinement.

Every open cover of X is has an open star refinement.

Every open cover of X is has a locally starring sequence.

Proof. See above. �

16. Properties and Characterizations of T4 Spaces

16.1. Proposition . Urysohn’s Lemma If X is T4 then each pair of disjoint
nonempty closed sets can be separated by a Urysohn function.

Proof. Suppose A and B are an arbitrary pair of nonempty disjoint closed sets in
the T4 space X .

Let D denote the dyadic rationals {p 2−q | p, q are nonnegative integers}.
Define F : D → P(X) as follows. First define F (0) = NA where NA is an open

set containing A with NA ∩B = ∅. Then for all dyadic t > 1 define F (t) = X and
F (1) = X −B.

Having chosen F (t) for t = k/2n and k = 0, . . . , 2n and for which F (t) ⊂ F (s)
whenever t < s (as we just did for n = 0) select for each M = 0, . . . , 2n − 1 a set
F
(
2M+1
2n+1

)
to be an open and satisfy

F

(
M

2n

)
⊂ F

(
2M + 1

2n+1

)
⊂ F

(
2M + 1

2n+1

)
⊂ F

(
M + 1

2n

)
.

This can be accomplished for each M because F
(
M
2n

)
is closed and contained in

open F

(
M + 1

2n

)
.

We conclude that the process defines the function F on all of D by induction.
We now define φ on X by

φ(x) = inf{t ∈ D | x ∈ F (t)}.
φ(A) = {0} because A ⊂ F (0). Also φ(B) = {1}. If φ is continuous it is a Urysohn
function of the type we were looking for.

Pick s ∈ [0, 1]. So

φ−1([0, s]) = {x | x ∈ F (t) for all dyadic t with t > s}
= {x | x ∈ F (t) for all dyadic t with t > s} =

⋂

t∈D and t>s

F (t).
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So φ−1((s, 1]) is open for each s. Similarly,

φ−1([0, s)) = {x | x ∈ F (t) for some dyadic t with 0 ≤ t < s} =
⋃

t∈D and 0≤t<s

F (t).

As the union of open sets, it too is open. So φ−1 takes all open sets in a subbase
of the topology on [0, 1] to open sets in X and therefore φ is continuous. �

Obviously, the endpoints 0 and 1 in the range interval can be modified to match
any preferred constants.

16.2. Exercise. From this last lemma we conclude that in any normal space disjoint
closed sets can be separated by a Urysohn function, and since points are closed in
a normal space we have the Tychonoff property and then regularity. Since any
subspace of a CR space is CR we conclude that any subspace of a normal space is
Tychonoff.

Urysohn’s Lemma implies another result called the Tietze Extension Theorem.

16.3. Proposition . Tietze’s Extension Theorem If X is T4 and A ⊂ X is
closed and τ : A → [a, b] is continuous, where A is endowed with the subspace topol-
ogy, then there is a continuous function f : X → [a, b] with f(x) = τ(x) for all
x ∈ A.

Proof. The result is trivial if τ is constant or X = A, so suppose otherwise. We
will also suppose for convenience that a = −1 = inf{τ(x) | x ∈ A} and that
b = 1 = sup{τ(x) | x ∈ A}. Once the result is proved in this case, the more general
situation follows instantly.

Define A0 = τ−1
([
−1, −1

3

])
and B0 = τ−1

([
1
3 , 1
])
.

Since X is T4 there is a continuous function φ0 : X →
[
−1
3 ,

1
3

]
with φ−1

0

(
−1
3

)
⊃

A0 and φ−1
0

(
1
3

)
⊃ B0. Note that for all x ∈ A we have |τ(x) − φ0(x)| ≤ 2

3 .

Suppose we have in hand for 0 ≤ i < k continuous functions φi : X →
[

−1
3i+1 ,

1
3i+1

]

for which for each x ∈ A the value of |τ(x) − µi(x)| does not exceed
(
2
3

)i+1
where

we define µi =
∑i

j=0 φj : X →
[
−1 +

(
2
3

)i+1
, 1−

(
2
3

)i+1
]
. We will also be inter-

ested in the restriction of µi to A and we will denote this function µi|A. We created
just this scenario with k = 1 above.

Define

Ak = (τ−µk−1|A)−1

([−2k

3k
,
−2k

3k+1

])
and BK = (τ−µk−1|A)−1

([
2k

3k+1
,
2k

3k

])
.

There is a continuous function φk : X →
[

−1
3k+1 ,

1
3k+1

]
defined on all of X with

φk (Ak) =
{

−2k

3k+1

}
and φk (Bk) =

{
2k

3k+1

}
.

Verify that for each x ∈ A the value of |τ(x) − µk(x)| cannot exceed
(
2
3

)k+1

where we define µk =
∑k

j=0 φj : X →
[
−1 +

(
2
3

)k+1
, 1−

(
2
3

)k+1
]
.

The sequence µ converges uniformly by the Weierstrass “M” test to a continuous
function f : → [−1, 1]. f evidently equals τ on A. �
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The situation of the proposition is described by saying that any function τ : A →
[a, b] defined and continuous on a closed subset A of X can be extended to a
continuous function defined on all of X or, phrased another way, that τ is the
restriction of a continuous function defined on all ofX . Further, such an extension
exists whose function values lie in the interval [a, b].

16.4. Exercise. Define

g : R → (−1, 1) by g(x) =

{
x

1+x , if x ≥ 0;
x

1−x , if x < 0.

Show that g is a homeomorphism. Use g to create a continuous extension for
unbounded continuous τ defined on a closed subset of normal X. In particular,
create f so that if τ(A) ⊂ (a, b) then f(X) ⊂ (a, b), where a can be −∞ and b can
be ∞.

If any bounded function defined on a closed subset can be extended to all of X
and if A and B are disjoint nonempty closed sets then the function τ defined by
τ(x) = 0 if x ∈ A and τ(x) = 1 if x ∈ B is continuous on A ∪ B with subspace
topology, and therefore extends to a Urysohn function separating A and B on X ,
which implies that X is T4. If X is T1 we have normality. So the “Tietze function
extension property” characterizes T4 spaces.

The Tietze extension theorem has many uses. Here is an application to a question
of normality.

16.5. Exercise. (i) Let X denote the topological space with R as the underlying set
but with topology created using base consisting of all [a, b) where −∞ < a < b < ∞.
It is called the right half open interval topology. This topology is finer than the
usual topology, so it is T2. It is also separable, since there is a rational number in
every basic open set.

X is CI : the set of [x, x + q) where q is a positive rational is a neighborhood
base at x. However X is not CII , for if B = {[x, yx) | x ∈ S} is any collection
of base members and S is countable there is a member of X not in S, because X
is uncountable. But then [x, x + ε) is not the union of members of B, since any
member of B containing x must contain points to the left of x too.

It is also interesting to note that all sets of the form (−∞, x) or [x, y) for −∞ <
x < y ≤ ∞ are both open and closed in X.

Suppose A and B are closed nonempty and disjoint sets in X. Since both Ac

and Bc are open, for each a ∈ A there is a basic open set [a, xa) ⊂ Bc and for each
b ∈ B there is a basic open set [b, yb) ⊂ Ac.

Let Ã =
⋃

a∈A[a, xa) and B̃ =
⋃

b∈B[b, yb). These sets are open and contain

A and B respectively. If there were any point p ∈ Ã ∩ B̃ then there would be
open intervals [a, xa) and [b, yb) with p ∈ [a, xa) ∩ [b, yb). So either a ∈ [b, yb) or
b ∈ [a, xa), which contradicts their definition. We conclude that X is normal.

(ii) Let Y be the topological product space X×X called by Steen and Seebach [?]
Sorgenfrey’s half open square topology. Y is separable, T2 and CR.

Recall that any continuous function on X is determined by its values on any
dense subset. The separability of Y puts a limit on the cardinality of the set of



TOPOLOGY 51

continuous functions from Y into any fixed range space. In particular, the set of all
continuous real valued functions on Y cannot have cardinality exceeding RN which
has the same cardinality as R.

Let D = {(x,−x) ∈ Y | x ∈ X}. Since D ∩ ([x, x + ε)× [−x,−x+ ε)) =
{(x,−x)} for any positive ε, the set D is discrete and therefore closed. This means
that any real valued function on D is continuous with subspace topology, and the
cardinality of this set of functions is the same as that of RR which exceeds the
cardinality of R. So there are continuous functions on D which cannot be extended
to all of Y : there simply are not enough continuous functions on Y to accommodate
all the continuous functions on D. So Y cannot be normal. This is an example
that the product of two normal spaces need not be T4.

16.6. Exercise. If Y is T3 and T4 then Y is CR.

16.7. Exercise. Suppose X is T4. Show that closed nonempty disjoint A and
B can be precisely separated by a Urysohn function φ if and only if A and B
are Gδ set. (hint: First, if a Urysohn function of the specified kind exists, then
A =

⋂∞
i=1 φ

−1([0, 1
n )) demonstrates that A is a Gδ set. B is handled similarly.

Conversely, suppose Si for i ∈ N is a chain of open sets and A =
⋂

i∈N
Si. We

may suppose that B ∩ Si = ∅ for all i. Let Ti = X − Si for each i. The Ti are
closed and contain B and are nested, eventually containing any particular point not
in A. Create Urysohn functions φi with A ⊂ φ−1

i (0) and Ti ⊂ φ−1
i (1). Examine

φ = 1
3

∑∞
i=0

(
2
3

)i
φi. Then extend the argument to deal with B.)

16.8. Lemma. Shrinking Lemma Suppose X is T4 and O is any locally finite
open cover. Then there is a locally finite open refinement H = {HG | G ∈ O} of O
with HG ⊂ G ∀G ∈ O.

Proof. Well orderO. IfG1 is the first member ofO thenXG1 = X−
⋃

F∈O and F>G1
F

is closed and inside open G1 in normal X . So there is open HG1 containing XG1

with HG1 ⊂ G1.

Note that OG1 , defined by replacing G1 by HG1 in O, is also a locally finite open
cover. If O has a single member we are done. Otherwise we proceed as below.

Suppose we have found for all G < K open HG with HG ⊂ G and so that for
each such G the collection of sets OG, defined by replacing B by HB in O for all
B ≤ G, is also a locally finite open cover. This is exactly the situation we created
in the last paragraph, where K is the second member of O.

Define

XK = X −






⋃

F∈O and F<K

HF


 ∪




⋃

F∈O and F>K

F




 .

XK is closed and inside open K in normal X . So there is open HK containing XK

with HK ⊂ K.

Let OK be defined by replacing B by HB in O for all B ≤ K. OK is also a
locally finite open cover.

This process allows us to infer the existence of the desired open cover H through
a transfinite construction, as in Section ??. �
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16.9. Exercise. We note that in Lemma 16.8 if O is a minimal open cover then so
is H. In that case each HG must be a nonempty subset of G and HG is contained
in no member of the partition O other than G.

16.10. Exercise. If the conclusion of the Shrinking Lemma is true then X is T4.
(hint: If A and B are closed, nonempty and disjoint then {X − A, X − B} is an
open cover.) So the “Shrinking Lemma property” characterizes T4 spaces.

A partition of unity for a topological space X is a nonempty set F of Urysohn
functions on X with only finitely many of the members of F nonzero at each x ∈ X
and 1 =

∑
f∈F

f(x).

The support of a real valued function f defined on X is

Support(f) = X − f−1(0).

It is, obviously, a closed set and f−1(0) ∩ Support(f) = ∂(Support(f)).

If O is an open cover of X and for each f ∈ F there is a member of the open
cover containing Support(f) we say that the partition of unity is subordinate to
O. Partitions of unity are very important. They serve as a tool to localize our
thinking and calculations which can then be reassembled for global consequences.

16.11. Proposition . Suppose X is T4 and O is a locally finite open cover of X.
Then there is a partition of unity subordinate to O.

Proof. By applying the Shrinking Lemma we can create a locally finite open refine-
ment V = {VG | G ∈ O} with VG ⊂ VG ⊂ G for every G ∈ O.

Since X is T4, for each G there is a Urysohn function fG with fG(VG) = {1} and
fG(X −G) = {0}.

Since G is locally finite only finitely many fG(x) are nonzero for each x ∈ X . So
F =

∑
G∈O

fG is defined on X .

Since V is a cover, F (x) ≥ 1 for every x ∈ X .

The set of all gG =
fG
F

is the partition of unity we want. �

16.12. Exercise. Say that any space in which the conclusion of Proposition 16.11
holds has “the partition of unity property for locally finite open covers.” Show that
this property characterizes T4 spaces.

The following proof of a characterization of T4 spaces in terms of semicontinuous
functions is outlined in a problem in Engelking [?]. The result is due to Tong and
Katětov, who adapt earlier results of Dieudonné and Hahn. Similar characteriza-
tions of the perfectly T4 (see definition below) and CR properties can be found in
Engelking as well.

16.13. Proposition . X is T4 exactly when for each pair of real valued functions
f and g on X with f(x) ≤ g(x) for all x and where f is upper semicontinuous
and g is lower semicontinuous there is a continuous real function h on X with
f(x) ≤ h(x) ≤ g(x) for all x.
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Proof. Suppose continuous h exists for each f and g as described. Suppose A and
B are two nonempty disjoint closed sets in X . Define f and g by

f(x) =

{
1, if x ∈ A;

0, otherwise
and g(x) =

{
0, if x ∈ B;

1, otherwise.

So f is upper semicontinuous, g is lower semicontinuous and f(x) ≤ g(x) for all x.
Any continuous h between f and g will be a Urysohn function separating A and B.

We now go to work on the converse, supposing X to be T4. Note first that
R is homeomorphic via an increasing homeomorphism to (0, 1) so if we can find
continuous h between upper semicontinuous f and lower semicontinuous g when
0 < f(x) ≤ g(x) < 1 we will have proved the proposition.

For each i, j ∈ N with 0 < i < j define

Ai,j = g−1

( [
0,

i

j

] )
and Bi,j = f−1

( [
i

j
+

1

2j
, 1

] )
.

For each i, j these are disjoint closed sets in a T4 space. For fixed j the Ai,j are
nested increasing while the Bi,j are nested decreasing.

When Ai,j = ∅ define the function Fi,j to be identically 1 on X .

When Ai,j 6= ∅ but Bi,j = ∅ let the function Fi,j be identically i
j +

1
2j on X .

When both sets are nonvoid there is a continuous function Fi,j : X →
[
i
j +

1
2j , 1

]

with Fi,j(Ai,j) =
{

i
j + 1

2j

}
and Fi,j(Bi,j) = {1}.

For j ≥ 2 let Fj denote the continuous function F1,j ∧ · · · ∧Fj−1,j . For each i, j
and x, f(x) ≤ Fi,j(x) so f(x) ≤ Fj(x) for all x and j.

It is also true that Fj(x) < g(x) + 3
2j . To see this examine the two cases: first,

x ∈ Ai,j for some least i and second, x is in none of the Ai,j .

So if we define for n > 1 and x the number Sn(x) = F2(x) ∧ · · · ∧ Fn(x) the
sequence of numbers Sn(x) is nonincreasing and f(x) ≤ Sn(x) < g(x)+ 3

2n for each
n. So the sequence Sn of continuous functions converges to some limit F , which is
therefore upper semicontinuous, and f(x) ≤ F (x) ≤ g(x) for each x.

Note that the functions 1 − g and 1 − F have range in (0, 1), 1 − g is upper
semicontinuous and 1−F is lower semicontinuous and 1−g ≤ 1−F . We can apply
the procedure above to these functions to produce a nondecreasing sequence of
continuous functions Tn for n > 1 with F (x) − 3

2n < Tn(x) ≤ g(x) for each n and
x. The limit function G is lower semicontinuous and f(x) ≤ F (x) ≤ G(x) ≤ g(x)
for each x.

We now take advantage of the fact that F and G have been formed as specific
limits of continuous functions to create a continuous function between F and G.

For each i > 1 let Ki = (S2 ∧ T2) ∨ · · · ∨ (Si ∧ Ti).

So Ki ≤ Ki+1 ≤ G for each i and so the sequence of numbers Ki(x) converges
to some number H(x) ≤ G(x) for each x. The function H is lower semicontinuous.
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Define, for each n, Ln = Kn ∨ Sn. Because the Si are decreasing, when n ≥ m

Kn ≤ (S2 ∧ T2) ∨ · · · ∨ (Sm ∧ Tm) ∨ (Sm+1 ∧ Tm+1) ∨ · · · ∨ (Sn ∧ Tn) ∨ Sm

= (S2 ∧ T2) ∨ · · · ∨ (Sm ∧ Tm) ∨ Sm = Km ∨ Sm = Lm.

So H ≤ Km ∨ Sm = Lm for each m.

Suppose for some x, Si(x) ≥ Ti(x) for all i. It is easy to see that F (x) = H(x) =
G(x) at these points, and Kn(x) = Tn(x) and Ln(x) = Sn(x) for each n and the
sequence Ln(x) converges to H(x).

On the other hand, suppose for some x we find Si(x) < Ti(x) for some i. Choose
j to be the first subscript for which the inequality holds. For n ≥ j we find

Kn(x) = T2(x) ∨ · · · ∨ Tj−1(x) ∨ Sj(x) ∨ · · · ∨ Sn(x) = Tj−1(x) ∨ Sj(x).

So Ln(x) = Kn(x)∨Sn(x) = Kj(x): the sequence Kn(x) = Ln(x) is constant after
j for this x. Once again we have Ln(x) converging to H(x).

So H(x) = inf{Ln(x) | n ≥ 2} for each x and since each Ln is continuous we
have H upper semicontinuous and the proof is complete. �

16.14. Proposition . In a T4 space, any locally finite open cover has an open
barycentric refinement.

Proof. Suppose O is a locally finite open cover of the T4 space X .

For each x ∈ X let Vx be the intersection of all members of O containing x. Each
Vx is open because O is point finite.

Apply the Shrinking Lemma 16.8 to create a locally finite refinement H of O
consisting, as in that lemma, of open sets HG with HG ⊂ G for each G ∈ O.

Let Hx denote the set of all members H of H for which x is not in H. Let Hx

denote the union of all H where H ∈ Hx. By Exercise 14.2 we find that Hx is
closed, so Hc

x is an open set containing x.

Now let B = {Vx ∩Hc
x | x ∈ X}. B is an open cover and a refinement of O.

Pick x ∈ X . So x ∈ Vx ∩Hc
x and so x ∈ G where G is one of the members of O

whose intersection forms Vx. Now suppose x ∈ Vp ∩Hc
p. This implies two things.

First, x is in every member of O containing p so Vx ⊂ Vp.

Second, x cannot be in any HW unless p ∈ HW . But x is in HG so p ∈ HG ⊂ G.
Since this can be done for each G involved in forming Vx we find that p is in every
member of G containing x: that is, Vp ⊂ Vx. Coupled with the earlier remark we
find that Vx = Vp whenever x ∈ Vp ∩Hc

p.

In particular, Vp ∩Hc
p ⊂ G where G is any particular member of O containing

x. So H is an open barycentric refinement of O. �

A space is called perfectly T4 if it is T4 and every closed set is a Gδ. A space
is called completely T4 if any pair of separated subsets can be separated by open
sets. It is obvious that a completely T4 space is T4.
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16.15. Exercise. A perfectly T4 space is completely T4. (hint: Suppose S and T
are separated in the perfectly T4 space X. Since S and T are Gδ and neither are all
of X there must be a nonempty closed set A in X − S and a nonempty closed set
B in X − T . Create two Urysohn functions: α precisely separating the pair S and
A and β precisely separating the pair T and B, with α(S) = {0} and β(T ) = {0}.
So α is less than β on S and β is less than α on T . Let U = (α − β)−1([−1, 0))
and V = (α − β)−1((0, 1]).)

17. Compactness

If (Y,T) is a topological space, a subset A of Y (including, potentially, Y it-
self) is called compact if and only if every open cover of A has a finite sub-
cover. Specifically, if F ⊂ T and A ⊂

⋃
B∈F

B then there is an integer n and

{Bi ∈ F | i = 1, . . . , n } so that A ⊂ ⋃n
i=1 Bi. Some sources require compact spaces

to be T2 but we do not.

Taking complements of these open sets, we have the following reformulation,
called the finite intersection property for closed sets: A is compact if and
only if, whenever A∩

(⋂
K∈G

K
)
= ∅, where all members of G are closed sets, there

is a finite collection K1, . . . ,Kn of members of G with A ∩ (
⋂n

i=1 Ki) = ∅.

17.1. Exercise. A third condition equivalent to compactness is the following.
X is compact if and only if every open cover has a minimal subcover.
(hint: Suppose every open cover of X has a minimal subcover. Let O be a minimal
subcover that is not finite. Each member of O contains a point in no other member
of O. Let A : N → O be a one-to-one selection and let C be the union of all
the members of O not in A(N). Define for each j ∈ N, B(j) =

⋃
i≤j A(j). So

{C} ∪ B(N) is a cover of X without minimal subcover. The conclusion is that if
every cover has a minimal subcover then all those subcovers are finite and X is
compact.)

17.2. Exercise. (i) If f : Y → X is continuous and C is compact in Y then f(C)
is compact in X.

(ii) Every closed subset of a compact set is compact.

(iii) In a T2 space, compact sets are closed. (hint: If C is not closed in Y there
is a member p of ∂C − C. Presuming Y to be T2, for each x ∈ C there is an open
set Vx containing x and open set Wx containing p with Vx ∩Wx = ∅ = Wx ∩ Vx.
Show that the cover consisting of all Y −Wx for x ∈ C has no finite subcover.)

(iv) Give N the topology with base {{0, n} | n ∈ N}. So {0} is compact and

{0} = N which is not compact. Note that N with this topology is neither T2 nor T3.

(v) If f : Y → X is continuous and C is compact in Y and X is T2 then f(C)
is closed.

(vi) A continuous function with a T2 range and a compact domain is a closed
function.

(vii) A continuous one-to-one function from a compact domain onto a T2 range
is a homeomorphism.
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17.3. Exercise. If A is compact in the T3 space X then A is compact. (hint: Let O
be an open cover of A. Then O also covers A. Extract finite subcover A1, . . . , An.
So B = A −⋃n

i=1 Ai is closed and consists entirely, if nonempty, of limits of nets
in A. Suppose that B is nonempty. Then for each a ∈ A there is an open set Na

containing a and an open set Va containing B with Va ∩ Na = ∅. The sets Na

cover A so there is a finite subcover Na1 , . . . , Nak
. The set

⋂k
i=1 Vai

is open and
contains B but does not contain any elements of A. We conclude that B is empty
so the sets A1, . . . , An cover A.)

17.4. Exercise. Suppose Y =
∏

a∈AXa is the product of factors infinitely many
of which fail to be compact. Suppose also that C is a compact subset of Y . Then
C has empty interior. In case Y is T2 or T3 this can be rephrased by saying that
compact sets in Y are nowhere dense. (hint: The projections of Y onto the factor
spaces are all continuous so the image of C under each projection must be compact.
If C contains an open cylinder this requires all but a finite number of the factor
spaces to be compact.)

17.5. Exercise. Compact subsets take the place of points with respect to the sepa-
ration conditions T2 and T3 and the existence of Urysohn functions of certain types.
Specifically, let H and J be nonintersecting compact subsets of Y and let A be a
closed set not intersecting H.

(i) If Y is T2 ∃ open U and V with U ∩ V = ∅ and H ⊂ U and J ⊂ V .

(ii) If Y is T3 ∃ open U and V with U ∩ V = ∅ and H ⊂ U and A ⊂ V .

(iii) If any two points can be separated by a Urysohn function in Y then there is
a Urysohn function separating H from J .

(iv) If Y is CR then there is a Urysohn function separating H from A.

17.6. Proposition . A is compact if and only if and every net in A has a cluster
point in A.

Proof. We first suppose r is a net in A with no cluster point in A. Then for every
point x in A there is an open neighborhood Nx of x such that r is eventually in
A −Nx. Then {Nx | x ∈ A } is an open cover with no finite subcover. So nets in
compact sets all have cluster points in A.

On the other hand, suppose F is an open cover of A with no finite subcover. Let
G = {A ∩B | B is a finite union of members of F }. G is directed by containment.
A /∈ G so for each C ∈ G we can choose r(C) ∈ A−C. r is a net in A. Now suppose
x ∈ A. Then there is some F ∈ F with x ∈ F . But then F ∩ r(TA∩F ) = ∅. So x
cannot be a cluster point for the net. So if A is not compact there is a net in A
with no cluster point in A. �

If f : X → Y is a function between two topological spaces the graph of f ,
sometimes denoted γ(f), is the topological space with set {(x, f(x)) ∈ X × Y | x ∈
X} (that is, the function itself) with subspace topology from the product space
X × Y .

When thought of as a set, there is no difference between f and γ(f). Depending
on the phrasing of results involving the graph, there may be no need to distinguish
between them.
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17.7. Exercise. (i) If f : X → Y is continuous and Y is T2 the graph is always
closed as a subset of X × Y . (hint: Suppose (xn, yn) is any net in the graph
converging to a point (a, b). Then xn converges to a and yn = f(xn) converges to b.
Continuity implies that f(xn) converges to f(a) and since Y is T2 we have b = f(a)
so (a, b) is in the graph.)

(ii) Suppose f : X → Y where X is T2 and Y is compact and T2. If the graph of
f is closed in X × Y then f is continuous. (hint: Suppose the graph is closed and
xn is a net converging to a in X. Since X is T2 this is the only point to which the
net converges. Since Y is compact the net f(xn) has a convergent subnet f(yn) and
since Y is T2 this net converges to a unique limit b. The net (yn, f(yn)) converges
to (a, b) and since the graph is closed in the T2 space X × Y we have b = f(a).
Conclude that f is continuous.)

17.8. Exercise. A net with a cluster point has a subnet converging to that point.
Every net has a universal subnet. A universal net converges to each of its cluster
points. Therefore, a set A is compact if and only if each universal net in A converges
to a point in A. It might, of course, also converge to points not in A.

If the set A is known to be closed, specification of a limit point as a member of
A is redundant. A is closed and compact if and only if each universal net in A
converges.

In a T2 space, a net can converge to at most one point. So in a T2 space, A
is compact if and only if each universal net in A converges to a limit in A. This
statement is a form of the Bolzano-Weierstrass Theorem.

17.9. Proposition . Alexander’s Subbase Lemma Suppose F is a subbase for
the topology on Y . S ⊂ Y is compact if and only if every open cover of S by
members of F has a finite subcover.

Proof. We will prove that if every open cover O ⊂ F of S has a finite sub-
cover then S is compact. Suppose r is a universal net in Y . Let D = {A ∈
O | r is eventually in Ac }. If D covers S then we can extract a finite subcover

D1, . . . , Dk and then r is eventually in
⋂k

i=1 D
c
i = ∅, a contradiction. Therefore

there is some x ∈ S−⋃D∈D
D. By definition of D, if x ∈ A ∈ O then r is eventually

in A. So r converges to x. �

17.10. Exercise. Suppose Γ is any ordinal number. Recall (see Section ??) that Γ
is the set of all ordinal numbers less than Γ, and Γ + 1 = Γ ∪ {Γ}.

Define intervals

(α,Γ] = {γ ∈ Γ + 1 | α < γ ≤ Γ} and [0, α) = {γ ∈ Γ + 1 | α > γ}.
These are the initial segments Iα and those terminal segments of the form Tα+1 for
α ∈ Γ. Let S be the set of all these intervals for α ∈ Γ. Open intervals (α, β) and
closed or half-open intervals are defined in the obvious ways.

S is a subbase for a topology on Γ + 1 = Γ ∪ {Γ} = [0,Γ] called the order
topology. With this topology Γ + 1 is compact and T2. (hint: Any open cover of
Γ + 1 by members of S has a subcover consisting of two or one set.)

More generally, a subinterval [0, β) of Γ+1 with subspace topology is compact if
and only if β is not a limit ordinal.
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If α < β < Γ the sets (α, β + 1) and (α, β] are equal. So any set of the form
(α, β] is open, and sets of this kind (with β = Γ allowed) together with {0} comprise
a base for the order topology on [0,Γ].

Even though [0, β) with subspace topology need not be compact, it will always
be normal. To see this, suppose A and B are two closed, nonempty and disjoint
subsets of [0, β). For each x ∈ A let Sx = B ∩ [0, x) and define sx = supSx. Since
B is closed, sx ∈ B. The set

⋃
x∈A(sx, x] is open and contains A. Define for each

y ∈ B the set Ty = A ∩ [0, y) and define ty = supTy. Once again, A is closed
so ty ∈ A. The set

⋃
y∈B(ty, y] is open and contains B. If these two open sets

overlapped there would be x ∈ A and y ∈ B for which (ty, y] ∩ (sx, x] 6= ∅ which
would imply either y ∈ (sx, x] or x ∈ (ty, y] and both of these are impossible. We
conclude that A and B can be separated by open sets. Note the similarity with the
argument from Exercise 16.5.

17.11. Exercise. Let Ω denote the first uncountable ordinal and give [0,Ω) the
subspace topology from [0,Ω] with order topology. Let f be a continuous function on
[0,Ω). We will show that there is a nonempty interval of the form [ζ,Ω) upon which
f is constant: that is, any real valued continuous function is eventually constant.

We will assume that f is not eventually constant. Then for each ordinal β there
is a least positive integer nβ for which there exists an ordinal z with z > β and

| f(β)− f (z) | > 1

nβ
.

Let β1 = 0 and define n1 = nβ1 and select β2 to be an ordinal exceeding β1 with
| f (β1) − f (β2) | > 1

n1
. Following this pattern, we use induction to define the

sequence of ordinals βi and integers ni with ni = nβi
and βi+1 > βi and | f (βi) −

f (βi+1) | > 1
ni

for each i.

Let µ be the least ordinal not smaller than any of the βi. µ is less than Ω because
[0, µ) =

⋃
i≥1[0, βi], a countable union of countable sets and hence countable itself.

The sequence ni assumes various positive integer values and it must assume
at least one value k infinitely often. Otherwise, for all j there is an integer Nj

for which |f(βn) − f(z)| < 1
j whenever n > Nj and z > βn. Using the triangle

inequality, we would have |f(y)− f(z)| < 2
j for all j and any pair y, z not less than

µ, which would imply that f is constant on [µ,Ω), contrary to assumption.

But if ni = k infinitely often, then infinitely many of the associated βi are in
any basic open (θ, µ] which implies (the triangle inequality again) that f fails to be
continuous at µ.

We conclude both that any continuous function on [0,Ω) is eventually constant
and that the set of real valued continuous functions on [0,Ω) can be identified with
the set of real valued continuous functions on [0,Ω] by restriction.

17.12. Proposition . Tychonoff’s Theorem Suppose Y is a product space with
the product topology. Y is compact if and only if Xa is compact for every a ∈ A.

Proof. Suppose each Xa is compact, and r is a universal net in Y . Then each πa ◦ r
is universal in Xa and so converges, for each a, to some xa ∈ Xa. But then r
converges to y ∈ Y where y(a) = xa ∀a ∈ A. The converse is trivial. �
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The proof of Tychonoff’s Theorem given above relies on the Axiom of Choice,
through the use of universal nets. It has been shown that the Axioms of Set Theory
plus Tychonoff’s Theorem implies the Axiom of Choice.

17.13. Exercise. Show that the product of compact topological spaces need not be
compact with respect to the box topology.

17.14. Exercise. If X and Y are normal then X × Y is Tychonoff, and so is any
subset of X × Y . So if we can produce a subset of X × Y which is not T4 we would
have an example to show that T3 + T2 ; T4. Actually, since subspaces of normal
spaces are CR we would have more than that: an example to show CR+ T2 ; T4.

Let ω be the first ordinal with an infinite set of predecessors (the first infinite
ordinal) and Ω the first ordinal with an uncountable number of predecessors (the
first uncountable ordinal.) With order topology, [0, ω] and [0,Ω] are both compact
and T2 so the product [0, ω]× [0,Ω] is compact and T2 too. That means the product
is normal and hence CR, so all subspaces are T2 and CR. This construction is called
the Tychonoff plank which we denote T .

In the following few paragraphs we are going to use notation (α, β) to denote
both open intervals of ordinal numbers and ordered pairs of ordinals. This is one of
the few times when this traditional dual meaning can be confusing, so pay attention
to context.

Consider T̃ = T − {(ω,Ω)} with subspace topology. This space is called the
deleted Tychonoff plank.

The sets A = {(ω, γ) ∈ T̃ | γ < Ω} and B = {(γ,Ω) ∈ T̃ | γ < ω} are relatively

closed in T̃ and disjoint. Suppose D is a relatively open set containing B.

For each γ with (γ,Ω) ∈ B there is a least aγ ∈ [0, ω) with {γ} × (aγ ,Ω) ⊂ D.

Let a be the least ordinal with a ≥ aγ for all γ. There are a countable number of
these aγ and each one has only a countable number of predecessors so a < Ω. This
means that [0, ω]× (a,Ω]− {(ω,Ω)} is a nonempty subset of D.

But (ω, a+ 1) is in A. So no open set containing A can be disjoint from D and
we have shown that the deleted Tychonoff plank is not T4.

Compactness and the various separation properties are, at least superficially, in
conflict in the sense that compactness puts limits on the number of open sets in a
topology, while separation requires their existence. That conflict has an interesting
expression in the following exercise, and serves to distinguish compact T2 spaces as
rather special.

17.15. Exercise. Suppose T1 ⊂ T2 ⊂ T3 are three different topologies on a set Y
and that (Y,T2) is compact and T2. Show that (Y,T1) is not T2 and (Y,T3) is not
compact.

(hint: The identity map α : (Y,T2) → (Y,T1) is continuous. Let A be a member
of T2 not in T1. So Y −A is closed in compact (Y,T2) and hence compact itself. So
α(Y −A) = Y −A is compact in (Y,T1). If (Y,T1) were T2 Y −A would be closed
in (Y,T1), contrary to choice of A. To show that (Y,T3) is not compact use a very
similar argument applied to the continuous identity map β : (Y,T3) → (Y,T2).)
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18. Other Conditions Related to Compactness

There are various weaker conditions similar to compactness that are frequently
of use. A topological space is called countably compact if each countable open
cover has a finite subcover. It is called Lindelöf if each open cover has a countable
subcover, and σ-compact if it is the union of countably many compact sets. It is
called locally compact if each point has a compact neighborhood. (This does not
imply that there is a base for the topology consisting of open sets with compact
closure, because the closure of a compact set need not be compact, in general.)

18.1. Exercise. Compactness implies these other four conditions. The σ-compact-
ness condition implies the Lindelöf condition. Also, a CII space is Lindelöf. A
Lindelöf and countably compact space is compact. A Lindelöf and locally compact
space is σ-compact.

18.2. Exercise. In this exercise we explore some of the relationships among the
four properties: Lindelöf, CI , CII and separable. Except for the fact that second
countability implies the other three, there is no combination of properties that im-
plies another.

Let Ω denote the first uncountable ordinal and let X = Ω+1 = Ω∪{Ω} = [0,Ω].

Let ∗ be any point not in X and define X∗ = {∗} ∪X.

Form topology S from subbasic sets {x ∈ X | y < x} for y ∈ X and let D be
the discrete topology on X. Define S∗ = {∅} ∪ {A ∪ {∗} | A ∈ S} and D∗ =
{∅} ∪ {A ∪ {∗} | A ∈ D}.

(i) The subspace X∗ − {Ω} of S∗ is Lindelöf, CI and separable but not CII .

(ii) X∗ with topology S∗ is Lindelöf and separable but not CI .

(iii) Ω with subspace topology from S is Lindelöf and CI but not separable.

(iv) X∗ with topology D∗ is separable and CI but not Lindelöf.

18.3. Exercise. R is CII and T2. If a subset of R is unbounded it cannot be
compact. A closed interval [a, b] is compact. So a subset of R is compact if and
only if it is closed and bounded. This last is the most common form of the Heine-
Borel Theorem. R is locally compact and σ-compact.

(hint: We will indicate how to prove that [a, b] is compact. Suppose n is a
universal net in [a, b]. Then n is eventually in

[
a, a+b

2

]
or
[
a+b
2 , b

]
. Let [a1, b1]

be the leftmost subinterval
[
a, a+b

2

]
if the net is eventually in that set and

[
a+b
2 , b

]

otherwise. Define Q1 to be the set of rationals less than a1. Iterate this process, in
each case producing an interval [ai, bi] half as big as before, contained in [ai−1, bi−1],
and with n eventually in the interval and a set of rationals Qi defined to be those
rationals less than ai. Note Qi ⊂ Qi+1 for each i. The set

⋃
i≥1 Qi is a real number

L and n is eventually in any open interval containing L, so n converges to L.)

18.4. Exercise. Suppose f : X → R and C is countably compact in X. Let a =
inf f(C) and b = sup f(C). Then a and b are real (that is, f is bounded on C)
and there are points x and y in C for which f(x) = a and f(y) = b. The function
f actually attains both a maximum and a minimum value on C. This is
called the Extreme Value Theorem for countably compact sets.
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18.5. Exercise. Examine the product topology on R× {a, b} where {a, b} is a two
point set with indiscrete topology. Let A = {(t, a) | t ∈ [0, 1]} and B = {(t, a) |
t ∈ (0, 1)} ∪ {(1, b), (0, b)}. This is an example to show that the intersection of two
compact sets can fail to be compact. Note that these sets are not closed.

Y is called paracompact if every open cover has a locally finite open refinement.
Some sources require paracompact spaces to be T2, but we do not. Trivially, every
compact space is paracompact.

18.6. Exercise. The existence of a locally finite open refinement for each open
cover, guaranteed in paracompact spaces, implies that every open cover has a locally
finite open refinement which is a minimal cover. See Exercise 14.5.

18.7. Exercise. A closed subset of a paracompact space is itself paracompact with
subspace topology. More generally, an Fσ subset is paracompact.

18.8. Exercise. A separable paracompact space is Lindelöf.

18.9. Exercise. We will provide here an example to show that a normal space need
not be paracompact.

(i) Specifically, we saw in Exercise 17.10 that Ω with order topology is normal but
not compact, where Ω is the first uncountable ordinal. We will show below that it
actually fails to be paracompact. Consider the open cover A = {[0, β) | 0 < β < Ω}
and suppose B is any open refinement of A. We will show that B is not point finite,
and hence cannot be locally finite, and conclude that Ω is not paracompact. For
each x ∈ Ω define ax to be a member of Ω for which (ax, x] is a subset of some
member of B.

(ii) We claim that there is a y ∈ Ω so that for each x ∈ Ω there is an h(x) ∈ Ω
for which ah(x) ≤ y.

If this were false then for every y ∈ Ω there would be a least x ∈ Ω so that z ≥ x
implies az > y. We will indicate this least x by f(y).

Let ω be the first infinite ordinal and define g : ω → Ω inductively by g(1) = f(1)
and, having defined g(n), let g(n+ 1) = f(g(n)).

The set S = g(ω) is a countable subset of Ω and so has a least upper bound
µ < Ω in Ω. Note that if τ ≥ g(n) then aτ > g(n) and since µ ≥ g(n+1) for every
n we have aµ ≥ µ. But by definition we must have aµ < µ. So the assumption that
led to this contradiction is false and the claim is proved.

(iii) So let y be a member of Ω so that for each x ∈ Ω there is an h(x) ∈ Ω with
h(x) ≥ x and ah(x) < y. Using induction, infer the existence of an infinite sequence
x1, x2, . . . of members of Ω for which ah(xi) ≤ y < h(xi). Choose xi+1 to be large
enough in each case so that there is a member of B containing (ah(xi), h(xi)] but
not (ah(xi+1), h(xi+1)].

y + 1 is in infinitely many of intervals (ah(xi), h(xi)] and therefore in infinitely
many of the members of B.

A space X is called sequentially compact if every sequence has a convergent
subsequence. Although this property is similar to compactness, it is only related
in the presence of additional conditions.
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18.10. Exercise. (i) The set Ω with order topology is sequentially compact but not
compact.

(ii) Give [0, 1] the usual topology and let X = [0, 1][0,1] with product topology. X
is compact. Consider the sequence x in X defined for each n ∈ N by letting xn(t) be
the n-th digit in the binary expansion of the number t ∈ [0, 1]. Suppose f : N → N

is any increasing function. So y = x ◦ f is a generic subsequence of x. Now define

t =
∞∑

j=0

c(j)

2f(j)+1

where c(j) = 0 if j is even, and c(j) = 1 if j is odd. So the real valued sequence
y(t) does not converge. This implies that X is not sequentially compact.

18.11. Exercise. (i) A sequentially compact space is countably compact (hint: Sup-
pose given any countable open cover Vi for i ∈ N with no finite subcover. Use the Vi

to create a chain Wi for i ∈ N with Wi 6= Wi+1 for each i and X =
⋃∞

i=0 Wi. Select
for each i a member ri of Wi+1 −Wi. Show that r has no convergent subsequence.)

(ii) A paracompact and countably compact space is compact. (hint: Suppose U

is an open cover in paracompact sequentially compact X. Let O be a locally finite
open refinement of U which is a minimal open cover: each member of O has a point
that is not in any other member of O. If O is infinite there would be a sequence pi
formed by selecting one of these member-specific points from a different member Oi

of O for each integer. Let A be the union of all the members of O, if any, not used
to create the Oi. So A together with the Oi form a countable cover with no finite
subcover.)

(iii) If r is a sequence in countably compact X then r has a cluster point. (hint:
Let Sn = { ri | i ≥ n }. If S0 is finite then r equals some point p in X infinitely
often, and p will be a cluster point. If S0 is infinite, we may assume without loss
(by going to a subsequence, if necessary) that r is one-to-one. Suppose r has no
cluster point. Each p ∈ X has an open neighborhood Op that does not intersect Skp

for some kp. For each p let Ap denote the union of all open neighborhoods of p
that do not intersect Skp

. Though X may be uncountable, the set of distinct Ap is
countable. These sets constitutes a countable cover with no finite subcover.)

18.12. Exercise. (i) A countably compact and first countable space is sequentially
compact. (hint: Suppose y : N → X in countably compact and first countable X. If
y(N) is finite it is easy to produce a convergent subsequence. We may presume, by
going to a subsequence if necessary, that y is one-to-one. Let Sn = {yk | k ≥ n}. If⋂

n∈N
Sn = ∅ we could use the Sn to produce an countable open cover of X without

a finite subcover. Conclude that there is some p ∈ ⋂n∈N
Sn. Let {On | n ∈ N} be

a nested open countable neighborhood base at p. Deduce that Sk ∩ On 6= ∅ for all
k, n and use that fact to create a subsequence of y converging to p.)

(ii) A countably compact and first countable and T1 space is regular. (hint:
Suppose p ∈ X and A is nonempty and closed in the countably compact and first
countable and T1 space X and p /∈ A. Let {On | n ∈ N} be a nested open countable
neighborhood base at p. We may presume that O1 ∩ A = ∅. Since X is T1,
{p} =

⋂
n∈N

On So {Ac} ∪ {On
c | n ∈ N} is a countable open cover of X. So for

some k, {Ac, Ok
c} is a subcover. The result follows easily.)
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18.13. Exercise. The usual statement of the Bolzano-Weierstrass Theorem
is: Any bounded sequence in Rn has a convergent subsequence. Prove it.

19. Some Implications of the Weaker Compactness Conditions

19.1. Proposition . A Lindelöf and T3 space is T4.

Proof. Suppose A and B are closed, disjoint and nonempty in the Lindelöf and T3

space X . Each a ∈ A has an open neighborhood Na with Na ∩B = ∅. Each b ∈ B
has an open neighborhood Nb with Nb ∩ A = ∅. The Lindelöf property implies
there are sequences ai in A and bi in B with A ⊂ ⋃i∈N

Nai
and B ⊂ ⋃i∈N

Nbi .

Define O1 =
⋃

i∈N


Nai

−
i⋃

j=0

Nbj


 and O2 =

⋃

i∈N


Nbi −

i⋃

j=0

Naj


 .

These are open sets and A ⊂ O1 and B ⊂ O2. Moreover

O1 ∩ O2 =
⋃

i∈N

⋃

j∈N

[(
Nai

−
i⋃

k=0

Nbk

)
⋂
(
Nbj −

j⋃

l=0

Nal

)]
= ∅.

�

19.2. Exercise. (i) Conclude from Proposition 19.1 that a Lindelöf regular space
is normal.

(ii) A CII and T3 space is perfectly T4. (hint: Use Exercises 13.5 and 16.7.)

19.3. Exercise. (i) Suppose X is either T2 or T3 and is locally compact. The
set of closed compact neighborhoods of x is a neighborhood base for each x ∈ X.
(hint: Suppose A is any open neighborhood of x. We need to find a closed compact
neighborhood of x inside A. Let B = A ∩No

x where Nx is a compact neighborhood
of x. So B is open and contained in both A and Nx. There are two cases. First,
suppose X is regular. By Exercise 17.3 Nx is compact. Since X−B is closed there
is an open set G ⊂ A with x ∈ G and G ⊂ B ⊂ A. G is a closed subset of a compact
set and so itself compact. Second, suppose X is T2. This means Nx is closed and
so B is a compact subset of Nx with x in its interior. B with subspace topology is
compact T2 hence normal. So there is relatively open G ⊂ B with x ∈ G and for
which the relative closure of G is a subset of B. Since G is a relatively open subset
of open B it is open in X. Since the relative closure of G is relatively closed in
closed B it is closed in X: that is, the relative closure is actually G. Since B is
compact so is G.)

(ii) Let B denote the collection of interiors of compact sets in X and B̃ = {A |
A ∈ B}. If X is locally compact B is a base for the topology. If X is also T2 or T3

then B̃ is a compact neighborhood base for the topology.

19.4. Exercise. (i) A T2 locally compact space is Tychonoff. (hint: Suppose x ∈ X
and K is a closed set not containing x. From Exercise 19.3 we have an open
neighborhood G of x with G compact and G ∩ K = ∅. Since G is compact it is
normal with subspace topology so there is a relatively open neighborhood H of x and
for which the relative closure of H is a subset of G. As in Exercise 19.3, since H is
relatively open in open G it is actually open in X, and since the relative closure of H
is relatively closed in closed G it is actually closed in X. Because G is normal there
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is a Urysohn function g : G → [0, 1] separating H from G−G. Suppose g(H) = {1}
and g(G−G) = {0}. Define f : X → [0, 1] by f(p) = 0 when p /∈ G and f(p) = g(p)
if p ∈ G. Show that f is continuous.)

(ii) A T3 locally compact space is CR.

19.5. Proposition . A T2 paracompact space is normal.

Proof. Suppose Y is T2 and paracompact and x ∈ Y − A and A is closed and
nonempty in Y .

Because Y is T2, for each a ∈ A there is an open set Va containing a but with
x /∈ Va. The collection of open sets consisting of Y −A and all these Va is an open
cover G of Y . Because Y is paracompact there is an open locally finite refinement
H of G.

By Lemma 14.4 there is a subcover G̃ of G with open locally finite refinement H̃

and a function f : G̃ → H̃ so that f(K) ⊂ K ∀K ∈ G̃.

Note that Y −A ∈ G̃ and x ∈ f(Y −A) ⊂ Y −A but every other member of H̃
is of the form f(Va) ⊂ Va for some a ∈ A.

Define the sets

SA =
⋃

Va∈G̃

f(Va) and TA =
⋃

Va∈G̃

f(Va)

Wx = Y − SA and Zx = Y − TA.

SA consists of the union of all f(Va) ∈ H̃, which are the only members of the open
cover which could intersect A so SA is an open set containing A.

By Exercise 14.1 we find TA = SA. It is the locally finite nature of H̃ that
permits this conclusion.

x is not in any Va ⊃ f(Va) so Zx is an open neighborhood of x. The closure of
Zx is Wx which is disjoint from SA.

So the open sets SA and Zx separate the point x from the closed set A: we have
just shown that Y is regular.

If A and B are two disjoint nonempty closed sets we can now duplicate this
argument with B in place of x, finding for each a ∈ A an open set Va containing A
for which Va ∩B = ∅. Using the paracompactness of Y just as before we produce
open sets SA and ZB separating the closed sets A and B. �

19.6. Proposition . A regular and Lindelöf space is paracompact.

Proof. Suppose G is an open cover of regular and Lindelöf X .

For each p in each G in G, regularity implies the existence of open AG,p with

p ∈ AG,p ⊂ AG,p ⊂ G. We can then find open BG,p with

p ∈ BG,p ⊂ BG,p ⊂ AG,p ⊂ AG,p ⊂ G.

The collection of all these BG,p form an open refinement of G.

Extract the countable open subcover B = {Bi | fori ∈ N} of this refinement,
invoking the Lindelöf property. Let A = {Ai | i ∈ N} be the open refinement of G
consisting of the sets AG,p associated with each BG,p picked for membership in B.
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Create the countable collection of sets with Hi = Ai −
⋃i−1

j=0 Bj for i > 1 and
H0 = A0. H, the set of these Hi, also forms a cover of X , because each point p in
X occurs in Ai for some smallest i and then p ∈ Hi. Note also that p occurs in Bk

for some smallest k ≥ i and then p /∈ Hj for j ≥ k + 1. Even more, Bk ∩Hj = ∅

for j > k. So H is a locally finite open refinement of G. �

19.7. Proposition . If X is either T2 or T3 and is both locally compact and para-
compact then X is the free union of σ-compact spaces.

Proof. In light of Exercise 19.3 (i) there is an open cover S of locally compact and
paracompact X consisting of sets with compact closure. Let G be a locally finite
open refinement of S.

Each member A of G has compact closure. For each point of A there is a
neighborhood touching only finitely many members of G. Because A is compact
a finite number of these neighborhoods cover A so A itself touches only a finite
number of members of G.

Create an equivalence relation on G as follows: A is related to B if and only if
there is an integer n and a list Ai for i = 1, . . . , n of members of G with A = A1

and B = An and Ai ∩ Ai+1 6= ∅ for i = 1, . . . , n− 1.

It is an exercise to show that the union of the members of each class is σ-finite.
The result follows. �

19.8. Exercise. A T2 and σ-compact and locally compact space is both normal and
paracompact.

19.9. Exercise. One reason paracompact spaces are important is because in T2

paracompact spaces there is a partition of unity subordinate to every open cover. If,
further, the space is locally compact the functions involved can be chosen to have
compact support. Examine Proposition 16.11 and prove these statements.

19.10. Exercise. (i) R is paracompact. (hint: Given any open cover G create the
refinement consisting of all (n, n + 3) ∩ A for A ∈ G and all integers n. Then
use compactness of each [n + 1, n + 2] to create a locally finite subcover of this
refinement.)

(ii) Each open set in R is an Fσ set so each closed set is a Gδ. (hint: Any open
set is the union of closed sets [ri, si] for rational ri and si.)

(iii) These facts, coupled with Proposition 19.5 and Exercise 16.7, imply that
any two disjoint nonempty subsets A and B in R can be precisely separated by a
Urysohn function.

19.11. Proposition . Suppose Y is locally compact and either T2 or T3, and Ai, i ∈
N is a countable set of open dense subsets. Then

⋂∞
i=0 Ai is dense.

Proof. Given the conditions, we know that Y is T3 (since T2 and local compactness
imply regularity) and by Exercise 19.3 that Y has a neighborhood base of closed
and compact sets for each point. We will have the result if we can conclude that
K ∩ (

⋂∞
i=0 Ai) is nonempty for every closed compact K with nonempty interior.

We know that P0 = K0 ∩ A0 is open and nonempty in closed compact K. So
there is a nonempty open set B0 with B0 ⊂ B0 ⊂ P0 ⊂ K. Having found nonempty
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open Bi with Bi ⊂ K note that Pi+1 = Bi ∩ (
⋂i+1

j=0 Aj) is open and nonempty. So

there is a nonempty open set Bi+1 with Bi+1 ⊂ Bi+1 ⊂ Pi+1 ⊂ K.

This process forms a nested sequence Bi, i ∈ N of nonempty subsets of compact
K, so the intersection is nonempty and contains at least one member of

⋂∞
i=0 Ai. �

19.12. Exercise. Baire Category Theorem (Part One) A locally compact
space Y which is either T2 or T3 is of second category. More generally, subsets of
Y of first category have empty interior.

19.13. Exercise. Suppose X is T2 and Y is a dense subset of X. If Y with subspace
topology is locally compact then Y is an open subset of X.

20. Paracompactness: Equivalent Conditions

20.1. Proposition . A space X is T3 and paracompact if and only if any of the
following three equivalent conditions holds.

(i) X is T3 and each open cover has a σ-locally finite open refinement.

(ii) X is T3 and each open cover has a locally finite refinement.

(iii) X is T3 and each open cover has a locally finite closed refinement.

Proof. It is obvious that (i) is true if X is T3 and paracompact.

So assume condition (i) to be true and suppose O is an open cover of X . Then
by condition (i), O has an refinement A =

⋃
n∈N

An where each An is locally finite.

Let Xn be the union of the members of An. Each Xn is open and X =
⋃∞

n=0 Xn.

Define for each n the set Yn = Xn −⋃n−1
i=0 Xi. Finally, define B to be the set of all

Yn ∩ A for A ∈ An and n ∈ N.

Suppose p ∈ X . Let i be the first integer with p ∈ Xi. So p ∈ Yi but p /∈ Yn

for i 6= n. By assumption, there is a neighborhood V which intersects only sets

A1, . . . , Ak in
⋃i

j=0 Aj . So V ∩
(⋃i

j=0 Xj

)
is an open neighborhood of p intersecting

only the members of B created from the A1, . . . , Ak. We conclude that B is a locally
finite refinement of O and condition (ii) follows.

Now assume condition (ii) to be true, and let O be an open cover of X . For each
p ∈ X select neighborhood Vp of p in O. SinceX is T3 there is an open neighborhood

Kp of p with Kp ⊂ Vp for each p. The open cover formed from all these Kp therefore
has a locally finite refinement by property (ii). This implies by Exercise 14.5 that
the cover formed all these Kp has a minimal subcover B = {Kp | p ∈ S} for a
subset S of X . By the Refinement Lemma and (ii), B has a locally finite refinement
C where each member of C is in exactly one member of B. By Exercise 14.1 the
cover D formed from the closure of the members of C is also locally finite, and a
refinement of O. This implies that (iii) is true.

It remains only to show that (iii) implies paracompactness.

Suppose (iii) to be true and O is an open cover of X . Let A be a closed neighbor-
hood finite refinement of O. By substituting a subcover of O for O, if necessary, by
Exercise 14.1 and the Refinement Lemma, we may without loss assume that there
is a one-to-one and onto association between members A of A and OA of O with
A ⊂ OA.
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For each p ∈ X select open neighborhood Wp of p that intersects only finitely
many members of A.

V = {Wp | p ∈ X} is an open cover which has, itself, a closed neighborhood finite
refinement B. We may presume B is in one-to-one correspondence with a subcover
W = {Wp | p ∈ S} of V. In particular, the Refinement Lemma lets us assume that
for each p ∈ S there is exactly one Bp ∈ B with Bp ⊂ Wp.

For each p ∈ S the member Bp of B is in Wp, so can intersect only finitely many
of the members of A.

For each A ∈ A let SA = {p ∈ S | Bp ∩ A = ∅} and TA = S − SA. Each TA is
finite.

Define ZA =
⋃

p∈SA
Bp. ZA is closed, so YA = X −ZA is open for each A. Note

A ⊂ YA ⊂ ⋃
p∈TA

Bp for every A ∈ A. A point is in YA exactly when it is not in
any of the members of B that fail to touch A.

Let Y = {YA ∩ OA | A ∈ A}. This is an open cover of X and obviously a
refinement of O.

Now suppose x ∈ X . Then there is an open neighborhood G of x intersecting
only finitely many Bp1 , . . . , BpL

of the members of B. Each of these can touch only
finitely many of the members of A so the entire list of members of A touched by
any of them is itself finite. If a member YA of Y touches G then it intersects one
of the Bpj

. So there is a point in Bpj
that is not in any of the members of B that

fail to touch A. So Bpj
touches A, and A is “on the list.” So the cover Y is locally

finite and we conclude that X is paracompact. �

20.2. Theorem. A space is T2 and paracompact if and only if it is T1 and T∗.

Proof. Since T2 paracompact spaces are normal, and in T4 spaces all open covers
have open barycentric refinements, we know such refinements always exist for a T2

paracompact space so these space are T∗ and, obviously, T1.

Suppose, conversely, that X is T1 and every open cover O has an open star
refinement. Recall from Lemma 15.2 that X is regular, so we will create a (non-
open) locally finite refinement for O and invoke Proposition 20.1.

Start by using a standard induction argument to assert the existence of a se-
quence An, for n ∈ N, of open covers for which An+1 is an open star refinement of
An for each n ∈ N and A0 is an open star refinement of O.

Now create the sequence Bn, for n ∈ N, by

B0 = A0, B1 = A1 and for n > 1 Bn = {StarAn
(V ) | V ∈ Bn−1}.

It is obvious that Bn ≪ A0 for n = 0, 1 or 2. We will show that each Bn ≪ A0 for
all n. In fact, we will show that {StarAn−1(V ) | V ∈ Bn−1} ≪ A0 for each n ≥ 2,
which will imply that {StarAn

(V ) | V ∈ Bn−1} ≪ A0 because An ≪ An−1.

Suppose we have {StarAk−1
(V ) | V ∈ Bk−1} ≪ A0 for some particular k ≥ 2.

We know, for example, that this is true for k = 2. Any member StarAk
(W ) of

{StarAk
(V ) | V ∈ Bk} is of the form StarAk

(StarAk
(L)) for some L ∈ Bk−1. But

StarAk
(StarAk

(L)) =
⋃

H∈Ak(L)

StarAk
(H).
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Each StarAk
(H) in the union on the right is a subset of a member of Ak−1, and

each H ∈ Ak(L) is a subset of a member of Ak−1(L). We conclude that the union
is a subset of StarAk−1

(L) which, by hypothesis, is a subset of a member of A0.
The conclusion that each Bn refines A0 follows.

Consider X as a well ordered set and for each n ≥ 1 and p ∈ X define

Sn(p) = StarBn
({p})−

⋃

x<p

StarBn+1({x}) and M = {Sn(p) | p ∈ X, n ≥ 1}.

For each p ∈ X , define

Qp = {x | p ∈ StarBn
({x}) for some n ≥ 1}.

The set Qp is not empty, because (at least) p ∈ Qp. Let qp denote the first member
of Qp, and let np be the least integer with np ≥ 1 and p ∈ StarBnp

({qp}). So

if x ∈ X and x < p then p cannot be in any StarBn+1({x}) and, in particular,
p /∈ StarBnp+1({x}). We conclude that p ∈ Snp

(qp) and, finally, that M is a cover
of X . By construction M ≪ A0.

Suppose B ∈ An+1 for some n ≥ 1 and that B ∩ Sn(p) 6= ∅ for p ∈ X . By
definition, there must be a set C ∈ Bn with p ∈ C and C ∩ B 6= ∅. So there is a
member D ∈ Bn+1 containing C ∪B and hence p. This means B ⊂ StarBn+1({p}).
Examining the definition of Sn(p), we conclude that B∩Sn(x) = ∅ whenever x > p:
in other words, B intersects only one set Sn(p) for each p.

We now define

Hn(p) = StarAn+2(Sn(p)) and H = {Hn(p) | n ≥ 1, p ∈ X}.

H is clearly an open cover of X . Also, because M and An+2 both refine A0 which
star refines O we know that H ≪ O.

Finally, for each n the subcollection {Hn(p) | p ∈ X} is locally finite: B ∈ An+2

and B ∩ Hn(p) 6= ∅ if and only if Sn(p) ∩ StarAn+2(B) 6= ∅. But StarAn+2(B) is
contained in a set C ∈ An+1, and we know members of An+1 touch at most one set
of the form Sn(p) for each n. So H is a σ-locally finite open refinement of O. �

21. A Synopsis of Dependencies

T2 ⇒ T1 ⇒ T0 T0 + T3 ⇒ T2 CR ⇒ T3

T0 + CR ⇒ T2 T3 + CII

13.5

⇒ All Closed Sets are Gδ

T∗ =
Every Open Cover
Has An Open
Star Refinement

15.1

⇔
Every Open Cover
Has An Open Bary-
centric Refinement

15.4

⇔
Every Open Cover
Has A Locally
Starring Sequence
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T4

16.3

⇔ Tietze Function
Extension Property

16.1

⇔
Urysohn Functions
Separate Disjoint
Closed Sets

16.8

⇔ Shrinking
Lemma Property

16.11

⇔ A Partition of Unity Exists
Subordinate To Each
Locally Finite Cover

16.13

⇔ If f ≤ g for U.S.C f and L.S.C. g
there is a continuous function
between f and g

Normal
16.2

⇒ Tychonoff T3 + T4

16.6

⇒ CR T4

16.14

⇒
Locally Finite Open
Covers Have Open
Barycentric Refine-
ments

Perfectly T4

16.15

⇒ Completely T4 ⇒ T4 T2 or T3

17.2,17.3

⇒ Compact Sets Have
Compact Closure

Compact ⇒ σ-Compact + Lindelöf +
Countably
Compact

+
Locally
Compact

+ Paracompact

CII

18.2

⇒ Lindelöf + CI + Separable Separable +Paracompact
18.8

⇒ Lindelöf

Sequentially
Compact

18.11

⇒ Countably
Compact

Paracompact +
Countably
Compact

18.11

⇒ Compact

Countably
Compact

+ CI

18.12

⇒ Sequentially
Compact

Countably
Compact

+ CI + T1

18.12

⇒ Regular

σ-Compact ⇒ Lindelöf Lindelöf +
Locally
Compact

⇒ σ-Compact

T3 + Lindelöf
16.6,19.1

⇒ T4 + CR T3 + CII

13.5,19.2

⇒ perfectly T4

(T2 or T3) +
Locally
Compact

19.4,19.3,19.12

⇒ CR +
There Is A

Closed and Compact
Neighborhood Base

+
First Category Subsets
Are Nowhere Dense

T2 + Paracompact
19.5

⇒ Normal +
There Is A Partition Of Unity
Subordinate To Each Cover

Regular + Lindelöf
19.6

⇒ Paracompact
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(T2 or T3 ) +
Paracompact +
Locally Compact

19.7

⇒ Free Union of
σ-Compact

T2 + σ-Compact + Locally Compact
19.8

⇒ Normal + Paracompact

T3 +
Para-
compact

20.1

⇔
T3 + Every Open
Cover Has A
σ-Locally Finite
Open Refinement

⇔
T3 + Every Open
Cover Has A
Locally Finite
Refinement

⇔
T3 + Every Open
Cover Has A
Locally Finite
Closed Refinement

T1 + T∗

20.2

⇔ T2 +
Paracompact

22. Compactification

Compactness is such a useful condition that, in its absence, mathematicians
sometimes try to embed a space as a subspace of a compact space and try to make
inferences about the embedded image from properties of the larger space. Here is
an example, called the one point compactification.

22.1. Exercise. Suppose (Y,T) is a topological space which is not compact. Let Y ∗

be the set Y together with a distinguished point ∗ /∈ Y . Declare A ∈ T∗ ⊂ P(Y ∗)
when A ∈ T or Y −A is a closed compact set in (Y,T).

(i) (Y ∗,T∗) is a compact space, the one point compactification of (Y,T).

(ii) (Y ∗,T∗) is T2 if and only if (Y,T) is T2 and locally compact.

(iii) Suppose f∗ : (Y ∗,T∗) → (X,W) is continuous for some topological space
(X,W). The restriction of f∗ to (Y,T) is continuous.

(iv) There is no reason to think that in general a continuous function f : (Y,T) →
(X,W) is the restriction of any continuous f∗ as in (iii). For example, a continuous
real valued function f on the real line will have a continuous extension to the one
point compactification precisely when both limx→∞ f(x) and limx→−∞ f(x) exist
and are equal.

We define a compactification of Y to be a homeomorphism β : Y → X where
X has the subspace topology from a compact space Z andX = Z. We will primarily
be interested in the case where Z, and consequently Y , is T2. We will construct a
compactification that allows the richest possible class of continuous functions to be
extended from Y , or more exactly its homeomorphic image X embedded in Z, to
continuous functions on all of Z. But first we must do some spadework.

Suppose for the following discussion that F is a set of continuous functions
from topological space Y to topological space W . F is said to distinguish points
if for distinct points x, y ∈ Y there is an f ∈ F with f(x) 6= f(y). F is said to
distinguish points from closed sets if for points x ∈ Y and closed nonempty A
with x /∈ A there is an f ∈ F with f(x) /∈ f(A). We call F a separating set of
functions if F distinguishes points and distinguishes points from closed sets.

Consider WF with product topology. Define e : Y → WF to be the evaluation
map e(y)(f) = f(y) for all f ∈ F . If n is any net in Y converging to a point p
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then it is easy to show that e ◦ n converges to e(p) in the product topology so e is
continuous.

Recall that for each f ∈ F the projection onto the factor space of WF corre-
sponding to f is πf : W

F → W defined by πf (Ψ) = Ψ(f). The members of WF

of the form e(y), defined as they are as the evaluation functions e(y)(f) = f(y),
constitute a minute fragment of all potential W valued functions on F . One in-
terpretation of the overarching purpose of these notes (integration theory) is to
carefully examine a broader class of these functions, when W = R and F is a vector
lattice.

22.2. Proposition . Suppose given Y, F and evaluation map e as above. If F is a
separating set of functions then e provides a homeomorphism of Y onto e(Y ).

Proof. From the remark above, e is continuous. Since F distinguishes points, e is
one-to-one. We will show that e(A) is closed in e(Y ) (with subspace topology from
W ) when A is closed in Y , and this will imply e is a homeomorphism onto e(Y ).

If ν is any net in e(Y ), the fact that e is one-to-one implies that there is a unique
net n in Y with ν = e ◦ n. In fact, for any S ⊂ Y if ν is a net in e(S) then n will
be a net in S.

Suppose ν is any net in e(A) for closed A converging to a limit e(p). This happens
exactly when πf (ν) = πf (e ◦ n) = f ◦ n converges to πf (e(p)) = e(p)(f) = f(p) for
all f ∈ F . In other words, for every f ∈ F we have a net n in A for which f ◦ n
converges to f(p) in W .

Since F distinguishes points and closed sets, if p /∈ A there would be an f ∈ F

with f(p) /∈ f(A). This contradicts the convergence of f ◦ n to f(p) for every
f ∈ F , and we conclude that no net in e(A) can converge to a point in e(Y −A) =
e(Y )− e(A). So e(A) is relatively closed in e(Y ). �

If W is compact and F is a separating family of continuous functions, the eval-

uation e : Y → e(Y ) ⊂ WF is a compactification of Y . e(Y ) is a closed subset of
a compact space WF and so is itself compact. Note that the topology on WF has
nothing to do with the topology on Y , since F is used only as an indexing set in the
creation of the product topology. The existence of this compactification depends
entirely on the existence of the separating set of continuous functions. We have
seen that Tychonoff spaces possess such a family, where W is taken to be the closed
unit interval [0, 1].

The Stone-Čech compactification is obtained when the family F consists of
all continuous functions from Y into [0, 1] for Tychonoff Y .

22.3. Exercise. Suppose C is compact T2. So it is Tychonoff by Proposition 19.5.
So the family FC of all continuous functions f : C → [0, 1] is separating. Let
eC : C → [0, 1]FC be the Stone-Čech compactification of C.

C is compact so eC(C) is compact in T2 [0, 1]FC and so closed. We come to the
unsurprising conclusion that a compact T2 space is isomorphic to the image of its
Stone-Čech compactification. This observation is (closely) related to the Gelfand-
Kolmogoroff Theorem, an algebraic reformulation found in Proposition ??.
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22.4. Proposition . Suppose eY : Y → [0, 1]FY is the Stone-Čech compactification
of Y where Y is Tychonoff and the family FY consists of the continuous functions
from Y into [0, 1].

Suppose g : Y → C is continuous where C is a compact T2 space. g induces a
continuous function G : eY (Y ) → C where G = g ◦ e−1

Y , and since Y and eY (Y ) are
homeomorphic via the homeomorphism eY we may regard g and G as, essentially,
identical.

G has a unique continuous extension G : e(Y ) → C.

Proof. First, since eY (Y ) is dense in eY (Y ) if there is a continuous extension at all
it must be unique. So we will concentrate on existence.

Let eC : C → [0, 1]FC denote the Stone-Čech compactification of C.

Define g̃ : FC → FY given by g̃(f) = f ◦ g.
Now define g∗ : [0, 1]FY → [0, 1]FC by g∗(Ψ) = Ψ ◦ g̃. We saw in Exercise 12.4

that g∗ is continuous.

So g∗ restricted to eY (Y ) is continuous, and in fact the values of g∗ on eY (Y )

determine its values on eY (Y ).

If we could conclude that g∗(eY (p)) = eC(g(p)) for each p ∈ Y then we would

know that g∗(eY (Y )) ⊂ eC(C), which is closed. So we would know that g∗
(
eY (Y )

)
⊂

eC(C) and so e−1
C ◦ g∗ : eY (Y ) → C would be defined, and would obviously agree

with G on eY (Y ). We would have G = e−1
C ◦ g∗.

We proceed with the calculation:

g∗(eY (p)) =g∗(“evaluate members of FY at p”)

=“evaluate members of FC at g(p)” = eC(g(p)).

�

This proposition implies that the Stone-Čech compactification is the “richest
possible” compactification in the sense that it is least restrictive about how a func-
tion defined only on Y approaches the “edge” of Y if it is to be extended to a
compact superset. Functions on Y embedded in any other dense subset of a com-
pact set which can be extended to the compact set can always be extended using
the Stone-Čech compactification.

22.5. Exercise. The one point compactification of R (or rather the closure of the
homomorphic image of R under the compactification) is homeomorphic to the unit
circle, or if you prefer to [0, 1] with the identification topology collapsing {0, 1} to a
point. So a function on R can be extended to the closure of this compactification if its
values approach a limit as |x| gets large. One can create a two point compactification
of R where functions can be extended if they approach different limits as x gets
large positive versus negative. This compactification essentially identifies R with
(0, 1) inside compact [0, 1]. Neither compactification has a rich enough “edge” to
allow the extension of the function f(x) = sin(x) to the closure. The Stone-Čech
compactification does, as well as every other continuous function g for which g(R)
is a subset of a compact set in the range space. It is difficult to imagine what the
boundary of R looks like in the Stone-Čech compactification. Try.
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23. Connectedness

Any subset C of a topological space Y is called connected if it cannot be
separated by a pair of subsets of C. This means it cannot be written as C = A∪B
where A ∩B = ∅ = A ∩B and A 6= ∅ 6= B.

So the space Y itself is connected exactly when the only sets both closed and
open are ∅ and Y . A subset C is connected if it cannot be written as a union of
nonintersecting nonempty relatively open sets. Equivalently, C is connected if it
cannot be written as a union of nonintersecting nonempty relatively closed sets.

23.1. Exercise. Suppose Y is an infinite set with cofinite topology from Exercise
13.1. Y is connected with this topology.

A component of Y is a maximal connected subset of Y .

23.2. Exercise. (i) Suppose G is any collection of connected subsets of Y and
suppose there is at least one point common to all members of G. Then the union
of all members of G is connected.

(ii) Any nonempty connected set is contained in a component. In particular, each
single point set is contained in a component. So the components form a partition
of the space. (hint: Let M be the union of all connected sets containing connected
and nonempty B. If M = E ∪ F where E ∩ F = ∅ = E ∩ F then because B is
connected B must be a subset of either E or F . Say B ⊂ E. If F is nonempty
there must be a connected set A containing B with A ∩ F 6= ∅.)

(iii) The closure of a connected set is connected so components are closed. (hint:
Suppose B is connected and nonempty and B = E ∪ F where E ∩ F = ∅ = E ∩ F .
Because B is connected B must be a subset of either E or F . Say B ⊂ E. So
B ⊂ E. Conclude that F = ∅.)

(iii) So if C1 and C2 are distinct components they are separated.

(iv) Suppose S and T are subsets of a topological space X. If T intersects both
S and X − S and if T ∩ ∂S = ∅ then T is not connected.

(v) If S ⊂ T ⊂ S and S is connected then T is connected.

(vi) Suppose X is connected and ∅ 6= A ⊂ X and A 6= X. Then ∂A 6= ∅.

(vii) Suppose X is compact and T2 and C is a component in X. Then C =⋂
S∈K

S where K is the collection of sets in X which are both closed and open
and contain C. (hint: Let B be the indicated intersection. So A ⊂ B. If B is
connected then A = B, so we will show that B must be connected. Since B is the
intersection of closed sets it is itself closed. Suppose B is not connected. Then there
are closed nonempty sets D and E inside B with B = D∪E and D∩E = ∅. Since
A ⊂ B ⊂ D ∪ E and A is connected we have A ⊂ D or A ⊂ E. Suppose A ⊂ D.
Since ∅ =

⋂
S∈K

(S − (D ∪ E)) is the intersection of closed subsets in compact X
there is a finite intersection among them which is void. Since a finite intersection
of closed and open sets is closed and open, there is a single closed and open set S
containing C with S ⊂ D ∪ E. Since X is compact and T2 it is normal so there
are disjoint open sets D∗ and E∗ with D ⊂ D∗ and E ⊂ E∗ and D∗ ∩ E∗ = ∅.
Let D∗∗ = S ∩ D∗ and E∗∗ = S ∩ E∗. Both D∗∗ and E∗∗ are open and contain
points of B, and A ⊂ D∗∗. If we can show that D∗∗ is also closed, then D∗∗ ∈ K,
which would imply B ⊂ D∗∗, contradicting the statement that part of B is in E.
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So suppose p ∈ D∗∗ = S ∩D∗. Since S is closed, p ∈ S. Since S ⊂ D ∪ E, p is
in D or E. If p ∈ E then p would be a point in D∗ ∩ E, which is supposed to be
empty. So p ∈ D and hence in D∗∗. So D∗∗ is closed. We conclude that B must
be connected.)

If the component containing {x} is {x} for each x ∈ Y we call Y totally discon-
nected. Obviously, the discrete topology on any set gives a totally disconnected
topological space.

Consider the set given by

{1}
⋃

{
∞∑

i=0

xi

3i

∣∣∣∣ xi = 0 or 2, and 0 occurs infinitely often

}

with subspace topology from [0, 1]. This subset of [0, 1] is called the Cantor set.

23.3. Exercise. The Cantor set is a closed subset of [0, 1]. It is totally disconnected
but not discrete. In fact, it has no isolated points. The same is true of Q as a
subspace of R and the set R itself with the right half open interval topology from
Exercise 16.5.

A common source of confusion concerns the distinction between “open and dis-
joint” in a subspace topology and in the original space. A subset is connected if it
is connected in the subspace topology. Two sets C ∩ A and C ∩ B relatively open
in C with subspace topology might have empty intersection but “come from” two
open sets A and B in Y which do intersect outside of C. The point is that it is
easier for C to be separated in C by a pair of relatively open subsets than for these
two parts of C to lie in different “halves” of a separation of Y . The example below
illustrates the difference between connected component and separation in the larger
space.

Let X be the subset of R2 formed from

{ (0, 1), (0, 0) } ∪
{(

1

n+ 1
, t

) ∣∣∣∣ n ∈ N and t ∈ [0, 1]

}
.

So (0, 1) and (0, 0) are each components of X , but both points lie in the same “half”
of any separation of X .

23.4. Exercise. Intervals (bounded or otherwise) in R are connected. They are
the only connected subsets of R. (first hint: If a set C ⊂ R containing at least two
points a and b with a < b is missing even a single point c with a < c < b then
S ∩ (−∞, c) and S ∩ (c,∞) separate S. second hint: Suppose S is an interval with
endpoints a and b with a < b and A∩S and B∩S are nonempty and relatively open
in S and have empty intersection. Suppose t ∈ B ∩ S and s ∈ A ∩ S and s < t.
Look at w = sup{p ∈ A ∩ S | p < t}. )

23.5. Exercise. If A ⊂ Y ∪Z = X in topological space X and the two sets Y − Z
and Z − Y are separated then

A =
(
Y ∩ A ∩ Y

)
∪
(
Z ∩ A ∩ Z

)
.

Conclusion: A is closed exactly when both A∩Y is closed in Y and A∩Z is closed
in Z. (hint: The limit of a net in A must be in Y − Z, Z − Y or Z ∩ Y .)
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23.6. Exercise. (i) The definition of “connected” is given by denying the existence
of certain subsets. A positive reformulation in terms of covers is the following. Y
is connected if and only if for every open cover G of Y and each pair A and B of
nonempty members of G there is a finite list Gi ∈ G, i = 1, . . . , n for some integer
n with A ∩ G1 6= ∅ 6= B ∩ Gn and Gi ∩ Gi+1 6= ∅ for i = 1, . . . , n − 1. (hint: if
there is a cover and a pair A,B violating this condition look at the set of all finite
lists of overlapping members of G that touch A. Form the union of those members.
That union is both open and closed.)

(ii) Suppose Gi ∩Gi+1 6= ∅ for i = 1, . . . , n− 1 and each Gi is connected. Then
the union of the Gi is connected.

(iii) If X is connected and f : X → Y is continuous then f(X) is connected.

(iv) If f : X → R is continuous and C is connected in X then f(C) is an interval.
This is called the Intermediate Value Theorem.

(v) If f : X → Y is a homeomorphism then f(C) is a component of Y for every
component C of X, and f restricted to each C establishes a homeomorphism onto
f(C): that is, f associates each component of X to a unique component of Y and
f generates a homeomorphism between each associated pair of components.

23.7. Exercise. Let C denote the Cantor set described in Exercise 23.3. Consider
the function h : C → [0, 1] defined by h(1) = 1 and

h

(
∞∑

i=0

xi

3i

)
=

∞∑

i=0

xi

2i+1

where the binary representative of a point in the domain C is chosen so that xi = 0
or 2, and 0 occurs infinitely often. So h is one-to-one and monotone and onto [0, 1].
h is continuous. The inverse of h is not continuous.

Dugundji [?] provides a counterexample of the “continuous analog” of the Schröder-
Bernstein Theorem. It is not true that the existence of continuous and one-to-one
functions f : X → Y and g : Y → X implies that X and Y are homeomorphic.
Even more, in the example below both f and g are onto!

Define sets X and Y by

X ={ 3n+ 2 | n ∈ N } ∪
(
⋃

n∈N

(3n+ 3, 3n+ 4)

)
∪ [0, 1) and

Y ={ 3n+ 5 | n ∈ N } ∪
(
⋃

n∈N

(3n+ 3, 3n+ 4)

)
∪ [0, 1]

with subspace topologies from R. These sets cannot be homeomorphic because the
compact component [0, 1] in Y is not homeomorphic to any of the components of
X . Now define

f : X → Y by f(x) =

{
x, if x 6= 2;

1, if x = 2

and g : Y → X by g(x) =





x
2 , if 0 ≤ x ≤ 1;
x−2
2 , if 3 < x < 4;

x− 3, otherwise .
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Both f and g are continuous, one-to-one and onto.

23.8. Exercise. (i) Give N the topology generated by basic open sets {an+b | n ∈ N}
for a, b ∈ N. With this topology N is T2 and connected and CII . Since N is countable
and connected it cannot be CR. Even more, it is not T3 because a T3 Lindelöf space
is T4, and a normal space is CR.

(ii) If X is CR and connected then X is indiscrete or X is uncountable.

(iii) If X is T4 and connected and if there exist two nonempty disjoint closed
sets in X then X is uncountable.

X is called locally connected when the set of connected open sets form a base
for the topology. So if X is locally connected the components of X , which must
be closed in any case, are also open. This implies, for example, that if x and y
are in different components then x and y lie in different “halves” of at least one
separation of X . A subset of X is called locally connected if it is locally connected
with subspace topology.

23.9. Exercise. (i) Suppose X is locally connected and A ⊂ X. If ∂A is locally
connected then so is A.

(ii) Suppose X is locally connected and A and B are closed subsets with X =
A ∪ B and suppose A ∩ B is locally connected. Then both A and B are locally
connected.

A subset A of X is called path connected if for each pair of distinct points x
and y there is a continuous function f : [0, 1] → A with f(0) = x and f(1) = y,
where A has subspace topology. In this context we refer to these functions as paths
in A or specifically a path connecting x to y in A. A path component of X
is a maximal path connected subset of X .

Each path component of X is contained in a component, and the path compo-
nents form a partition of X .

Let X be the subset of R2 formed from

{ (0, t)

∣∣∣∣ t ∈ [0, 1]} ∪
{(

t, sin

(
1

t

) )
| t ∈ (0, 1]

}
.

This example has two path components but is connected. It shows that path
components need not be closed.

23.10. Exercise. (i) A product space is connected if and only if each factor space
is connected.

(ii) A product space is path connected if and only if each factor space is path
connected.

(iii) A product space is locally connected if and only if each factor space is locally
connected and all but a finite number are connected.

23.11. Exercise. (i) X is path connected exactly when it is connected and each
point has a path connected neighborhood.

(ii) Each point in X has a path connected neighborhood exactly when the path
components and the components coincide.

(iii) Each point in X has a path connected neighborhood exactly when the path
components are all open.
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