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Index 83

The path through the following material has been guided by a number of sources,
including [1] Michael Spivak’s compendium “A Comprehensive Introduction to Dif-
ferential Geometry Volume 1”7 and [2] John Lee’s “Introduction to Smooth Mani-
folds 2nd Ed.” and [3] Boothby’s “An Introduction to Differentiable Manifolds and
Riemannian Geometry.” We assume a number of facts from Linear Algebra, Multi-
Variable Calculus and Topology. Part I discusses the general set-up and parts of
Differential Geometry that can be dealt with “point-by-point.” Using first deriva-
tives and linearization we attach a vector space to each point on a manifold and
build structures corresponding to Linear Algebra. Ideas involving curvature and
rates-of-change of these entities, second derivative concepts, will follow in Part II.
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1. TOPOLOGICAL MANIFOLDS

In this note a topological manifold M will be a topological space with four
“regularity” properties. In order to avoid pathologies not obviously relevant to our
immediate purpose we will assume that M is Hausdorff and second countable.

The third and most important property is that M should be locally Euclidean.
That means some neighborhood of each point of M should be homeomorphic to an
open subset of R with usual topology from the Euclidean metric.

Specifically, for each point in the manifold there is an open set containing that
point and an open subset of R and a homeomorphism—a continuous function with
continuous inverse—between these two open sets. Every point in M has a neigh-
borhood that “looks like” R"™, at least so far as can be determined by topological
considerations.

We will try to be consistent about notation throughout this work, and there is
(unfortunately) quite a bit of it to absorb and remember.

For instance we are going to be working with functions H: A — B and conceive
of H as a vehicle to represent members of A inside B. When it reduces visual
clutter in chains of compositions and to emphasize that H(p) is “really is just p
transported by H to a new environment” we will often denote H(p) by p,,.

As an example, we will use multiple homeomorphisms of the type : U, — Ry,
mentioned above, where x has open domain U, C M and open range R, C R™.
So if p € U,, we will often denote z(p) € R™ by p,.

Ry

M
5%
&/& ‘p
?{

The homeomorphism z: U, — R, is called a coordinate map around p
whenever p € U,. The set U, itself will be called a coordinate patch.

We will usually denote coordinate maps by a lower case letter such as

The individual real-valued functions z*: U, — R are called coordinates and the
ordered n-tuple z(p) is called, elliptically, the coordinates of p with respect
to the coordinate map x.

Members of R™ are columns, and we will be scrupulous about displaying them
in this way. For obvious typographical reasons some authors represent them on the



4 LARRY SUSANKA
page as rows but if they are consistent with this common matrix operations become
awkward.

Columns must be distinguished from row matrices, the members of R™*. We
will need both. Coordinates of row matrices may be separated by commas to avoid
inadvertent concatenation in the usual way.

We will refer to z7!: R, — U, as a chart at p whenever p € U,.
Charts are just as important as coordinate maps.!

A chart 7! inverse to coordinate map z can be used to “draw” curves through
p on M. First note that for each v € R™ there is some largest € > 0 so that p, +tv
is in the range of x for every ¢t € (—¢,¢). This allows us to define functions

v o, : v -1
G, (—e,e) > M givenby G (t) =2 (pz +tv).

Ko

v v
v [_\ Px-r't

QG
»0

Of particular importance are the coordinate gridcurves through p on M, the
curves G i, for i = 1,...,n. These curves trace out “bent” (by z) representations
of the coordinate axis grid in R™ near p,, which is taken to p by £~!. Gridcurves
are used as both tools for calculation and “visualization” aids. We will see them
often.

The first three assumptions in the definition of manifold imply many other useful
topological properties.

On a manifold, sequences suffice to define continuity: a function f de-
fined on a manifold is continuous provided f(¢,) is convergent to f(p) in the range
whenever ¢, is a sequence that is convergent to p in the manifold. One can also
show? that manifolds are paracompact, locally compact, o-compact, normal,
locally path-connected, of second category and locally simply connected.
In a manifold, a sequentially compact subset is compact. Path components
and connected components coincide in a manifold. Any two points in a path
component can be connected by an arc: a one-to-one path. In addition, manifolds

INote that not every source uses the words “chart” and “coordinate maps” as we do; these
words may represent either z or L.

2These various topological properties have consequences for us, and imply properties of mani-
folds which will be clearly stated at natural places in the text. We will focus on these important
consequent properties, leaving most proofs that manifolds possess them for a class in point-set

topology.
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are metrizable and have a partition of unity subordinate to any open cover.
Manifolds admit a universal covering space.

There are non-Hausdorff locally Euclidean spaces, so the Hausdorff condition is
a legitimate additional requirement if we want metrizability.®> An uncountable set
with discrete topology is locally Euclidean and even metrizable (single points in
such a space are mapped to the member of R = {0}) so second countability is also
independent of the “locally Euclidean” condition.

There is a (nontrivial) result called the “Invariance of Domain Theorem”
which we will use and assume.

Invariance of Domain: A continuous one-to-one function from an open
subset of R™ into R™ has open range. This implies that such a function has
continuous inverse on this range.

This has important implications for us.

First, because an open subset of R™ can be regarded as a non-open subset of
R™ if n > m there cannot be two coordinate maps at p onto open sets in R™ and
R™ respectively, unless m = n.

To reiterate, if two coordinate maps = and y at p have ranges open in R™ and
R™ respectively then n = m.

Suppose p and ¢ are in the same connected component of M. Suppose given
coordinate maps x at p with range an open set in R™ and coordinate map y at ¢
with range an open set in R™. There is a path in M connecting p to ¢ and the
image of this path is compact so there are a finite number of charts whose ranges
cover this path. The dimension of the domain spaces must agree on the overlap of
these domains all along the path, so again n = m.

This unique number n is called the dimension of the connected component of
M to which p and g belong.

We add a fourth and final regularity property to our list of defining properties for
topological manifolds: we insist that the dimension of each connected component
should be the same.

A topological manifold M is a Hausdorff, second countable and locally Eu-
clidean topological space whose dimension, already uniquely defined by these
three properties for each connected component, does not vary between com-
ponents.

The notation dim (M) = n will be used to indicate that manifold M has di-
mension n, and M is called an n-manifold when it has dimension n.

A compact topological manifold is called a closed manifold.

Every point in a topological manifold has coordinate maps around that point
onto the cube (—1,1)", onto an open ball B,(0) around the origin of radius r

3Let X be the set R U {*} where the point # is not a real number. The open sets in X are the
usual open sets in R together with any set that can be obtained by taking one of these open sets
which contains 0 and either adding * to it or replacing 0 by *. So every point in this set has a
neighborhood which is homeomorphic to R. Still, this topology is 17 but not T5.
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centered at 0 and a coordinate map onto all of R”. In each case a coordinate map
may be found which sends any particular point to the origin in R".

2. A FEw Facts FrRoM CALCULUS

We will need some results from Calculus and discuss them here.

First is the Inverse Function Theorem.

2.1. Theorem. Suppose S is an open subset of R™ and f: S — R" is continuously
differentiable and the derivative matriz f'(p) is nonsingular for some p € S.

Then there is an open subset A of S containing p so that:
(i) f(A) is an open subset of R™ and
(ii) f is one-to-one on A and
(ii2) f' is nonsingular on all of A and
(iv) f~1: f(A) — A is differentiable with nonsingular derivative on f(A) and
(W) (f~Y(y) = (f'(x))~* whenever x € A and y = f(z) € f(A).
You will note that this theorem implies that the range f(.5) is a neighborhood
in R™ of every point f(x) for which f’(x) is nonsingular.
The proof can be found in many Multi-Variable Calculus texts, including a very
nice one in [5] Michael Spivak’s “Calculus on Manifolds.”

The proof of the Implicit Function Theorem, stated next, can be found in
that source.

2.2. Theorem. Suppose f: R™ x R™ — R™ is continuously
differentiable in an open set containing the point (t,s) € R™ x R™.

Suppose also that the m x m matriz formed from the first m partial derivatives
of the m coordinate functions f',..., f™ of f

M(y,z) = (Dif'(y,2)) 4,j=1,...,m
is nonsingular at, and hence in a neighborhood of, (t,s) and that f(t,s) = 0.

Then there is an open neighborhood A in R™ of s and an open neighborhood B in
R™ of t so that for each x € A there is a unique g(x) € B for which f(g(z),z) = 0.

The function g: A — B is continuously differentiable.

Finally, we have facts about Taylor polynomials and their remainders.

Suppose h: (a,b) — R is n + 1 times continuously differentiable and s and ¢ are
in (a,b). When k < n the degree-k Taylor polynomial for h centered at ¢ is
R (t)
k!
This polynomial has derivatives that match h up to order k at ¢ and is interpreted
as a polynomial approximation to A which may be a good approximation for s near
t. The error or “remainder” term Ry (s) = h(s) — Py(s) is given by

s pk+1) (4,
Ry (s) :/t hi()(s—u)kdu

Pi(s)=h(t) + 1 (t)(s —t)+ -+ (s —t)k.

k!
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a fact that is obviously true when k& = 0. Assuming this formula is Rj(s) for some
k < n an integration by parts shows that the formula holds for k£ + 1 as well:

* W2 (u) k1
= — (s — du.
Ryt1(s) /t Gt 1) (s —u) n
We conclude that the formula is valid up to & = n, and for all k if A is infinitely
differentiable.

It is entirely possible that this remainder will remain large* no matter how big
k is. That would make the Taylor polynomial a poor choice if your goal is to find
a good approximation to h.

There is a higher-dimensional version of this theorem. Suppose g: S — R has
continuous partial derivatives of all orders up to n + 1 on open set S C R™, and
that p and ¢ are in S and so is the entire line segment connecting p and q.

This segment can be parametrized by I(s) = p + s(¢ — p) for 0 < s < 1. Define
h:[0,1] = R by h(s) = g(I(s)). Note h(1) = g(q) and h(0) = g(p).

Also by the chain rule the first derivative of h is

L h(u) = - g1w) = o' Zng )d' — ')

and the second derivative, which will interest us later, is
d? d - T - PN j
Soah() === Dig(l(u)(a' = p') = > Dsig(lu)(q’ = )¢’ = p').
i=1 ij=1
Getting back to Taylor polynomials, we have

h(k) (0)
k!

Pe(1) = g(p) + ' (0) +--- +
and the error term is given by

L pkt1(y,
Rk(l):g(q)_Pk(l)Z/O %(1—u)kdu.

In the case of kK = 1 we have

9(q) =g(p) + R'(0) /h )(1 — ) du
p) + Z Dig(p)(q' — p')

—i—Zq—p (¢ —p’ /Dﬂg )(1 — u) du.
1,j=1
And the last function, represented as a sum involving integrals, is continuously
differentiable at ¢ two fewer times than the differentiability assumption on g itself.

Note also that when ¢ is near p the values of D;;g(l(u)) are all very nearly

D; ig(p) and so each integral is approximately D"%g(p).

4Consider the function defined to be 0 at t = 0 and e~ /%" elsewhere. Every Taylor polynomial
centered at ¢t = 0 is the zero polynomial, so the remainder is always the function itself.
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3. DIFFERENTIAL EQUATIONS

Physicists set up theories about the world on manifolds, frequently embodied in
differential equations that must be satisfied by parametrized paths in a manifold if
they are to represent physical quantities that fall under the purview of the theory.

So for this user group, and for other reasons that will unfold later, we need to
discuss differential equations; in particular we will consider here first order systems
of linear differential equations.

We suppose U is an open subset of R”™ and (a,b) is an open interval which we
may think of as a time parameter. If f is any function defined on (a, b) with values
in R* for some positive k we use f to denote the derivative of f, when it exists,
with respect to the time parameter.

We suppose g: (a,b) x U — R™ is any function.
A differential equation (DE for short) is an equation of the form
F(t) =g(t, () fort € (a,b)

and a solution to the differential equation is a function f: (r,s) — U that
satisfies the differential equation for all ¢ in some nonempty interval (r,s) C (a,b).

An initial value problem (abbreviated IVP) is a differential equation as above
with the additional requirement that the solution f must satisfy f(tg) = p for some
chosen ty € (r, s) and specified p € U.

If the function g does not depend on its first domain variable (i.e. g is inde-
pendent of time) the DE or IVP is called autonomous and if that is not being
assumed the DE or IVP is called nonautonomous.

A nonautonomous equation can be converted to a related autonomous equation
by the following subterfuge.

For nonautonomous IVP as above involving ¢ define h: (a,b) x U — R"*! by
h(s,u) = (1,9(s,u)).

Consider a solution w(t) = (¢, f(¢)) to the autonomous IVP w(t) = h(w(t)) with
initial condition w(ty) = (tg, p). Then f is a solution to the original IVP.

In all the cases we care about the function g will be continuous, which implies that
any solution f will be continuously differentiable. In fact, if g is k times continuously
differentiable then f will be at least k + 1 times continuously differentiable.
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If g is merely continuous, the IVP can be reposed in operator form. Specifically,
there is an interval (7, s) containing to for which

t
fO=p+ [ oo f©)ds forte ().
to
The right hand side can be conceived of as an operator whose domain is a certain
family of continuous functions

t

H6 =p+ [ gl f(s))ds fort€ (r,5)
to

and a solution to the IVP is a fixed point of this operator. The fixed point (and in

fact any function produced by application of H to a continuous function f on an

appropriate time interval) can be seen to be continuously differentiable.

In order to successfully deal with the domain issues for H and recast the problem
in this form, and incidentally guarantee uniqueness of solutions, we need more
conditions on g.

The function g is said to satisfy a Lipschitz condition with Lipschitz con-
stant L on U provided || g(t,u) — g(t,q) || < L|ju— q|| for every u,q € U and each
t. It is important to note that the number L does not depend on t.

In case the closure of (a,b) x U is compact and ¢ is defined and continuously
differentiable on an open set containing this closure, the function g confined to
(a,b) x U will satisfy a Lipschitz condition for some constant L.

3.1. Theorem. The Picard-Lindeléf Theorem Suppose U contains the closed
ball B around p of radius K and (a,b) contains [to — T,to + T| for positive T
and K. Suppose further that g is continuous and the mazimum value of ||g|| on
[to—T,to+T]x B is M and g satisfies a Lipschitz condition with Lipschitz constant
L. Let R be the lesser of T or K/M.

Then there is a unique solution to the IVP
f(t) =g(t, f(t)) fort€ [to— R,to+ R] and f(to) = p.

The proof of this theorem can be found in any differential equation text, such as
the one by [6] Birkhoff and Rota, “Ordinary Differential Equations 4th Edition,”
and we outline a proof below.

The uniqueness condition implies that any other solution must agree with this
one at all points in its domain that are also in [tg — R, %o + R].

The statement of the theorem allows us to specify a domain for the operator
form of the IVP. The solution whose existence is proposed in Theorem 3.1 will be
the unique fixed point of this operator.

3.2. Corollary. Under the same conditions as the preceding theorem, let C' denote
the set of all continuous functions of the form

Then H(u) € C for allu € C.
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Proof. H(u) is continuous (in fact differentiable) for all ¢ in [tg — R, to + R] since
g is continuous and (¢, u(t)) is always in the domain of g. We intend to show that
H(u) € C whenever u € C. Specifically, we need to show that w(t) = H(u)(t)
cannot escape B for ¢ € [ty — R, to + R].

/ oo us)) s / lo(s, u(s)]| ds

Since |t — tg] < R and R cannot exceed K/M we have w(t) € B for all t. O

(o)~ 9l |

You will note that the actual value of the Lipschitz constant is not mentioned in
the theorem: only its existence is needed to guarantee a unique continuously dif-
ferentiable solution in the specified regions. One of the proofs of Theorem 3.1, uses
the Picard iteration scheme to produce successive approximations which converge
uniformly to this unique solution; the Lipschitz constant is involved in estimating
the rate of convergence of these approximations. We discuss this approach now.

Suppose g has Lipschitz constant L.

Define the supremum norm || - ||« on the Banach space of continuous R"-valued
functions with domain [ty — R, to + R] by

[ulloe = sup{ [u(®)]| | ¢ € [to — R,to + R] }.

The domain C of operator H given above is a complete metric space with the
metric induced by this norm. We have, for each t,

[H (u)(t) = H(w)(®)[| = ‘/t 9(s,u(s)) — g(s,w(s)) ds
lg(s, u(s)) = g(s, w(s))|| ds

to
<Lt —to[[lu —w[oo < LR|u— wle.

<

<

[ L uts) = () ds

to

So H is not necessarily a contraction on C, but it is Lipschitz with Lipschitz
constant LR. The Banach Fixed Point Theorem would directly imply the
existence of a unique fixed point for H, a solution to the IVP, only when H is a
contraction: that is, when LR < 1.

There are two ways to proceed. The first is slightly less satisfactory than the
second.

We could require that, in addition to our restriction that R be the lesser of T
or K/M, that R be a positive number less than L. When C' is defined using this
(possibly) smaller time interval H will be a contraction using the metric from the
supremum norm. The disadvantage is that our unique solution will be defined on a
smaller symmetric interval centered at ¢y, but for many purposes that will suffice.

A more satisfactory approach is to leave R alone but modify the metric to an
equivalent metric for which H is actually a contraction on C. We define a new

weighted norm || - ||, that suppresses magnitudes for times away from ¢ with
lull. = sup{e >l |lu(@)] | ¢ € [to — R, to + R] }.
—2LR

The weighting factor cannot exceed 1 and is always at least e so we have

e loo < I Ile < M- lloo < 27+ 1
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so the same sets of functions are closed, and the same sequences of functions are
Cauchy, when defined using the metric for either norm.

The values used to calculate |H (u) — H(w)||« are the numbers

672L\t7t0\ ||H(7.L)(t) . H(w)(t)|| _ 672L|t7t0| / g(s’ u(s)) — g(s,w(s)) ds

to
t
<e 2Htoll [ lg(s,u(s)) — g(s,w(s))|| ds
to
t
<e2lt—tolp, llu(s) — w(s)| ds
to
t
:672L|t7t0|L HU(S) . w(s)||€72L|87t0‘62L|57t0| ds
to
t
§€_2L|t_t0|L H“ _ ,w”* 62L\s—t0| ds
to
t
= e_2L|t_t°|LHu — w|« / e2Lls=tol gg
to
2L‘t*t0‘ 1 1 672L|t7t0|
— o 2Llt—tol [ |4, — e A ., e
‘ I g
_ el
[— 2 .

So the supremum of all the original numbers, which is ||H(u) — H(w)]«, can-

—wl|.

not exceed ”“# So with the metric from this norm H is a contraction with
contraction constant € = 1/2.

Let uo(t) = p for all t € [ty — R,to + R] and, having found function w; for
0 < j < k define, again for t € [ty — R, to + R], the function uy by

uk(t) = H(uk71) = p+/ g(s,uk,l(s)) ds.

to

Applying the inequality from above we have, for m > n > 1,
[um — unll« < ellum—1 — tn—1s < "[[Um—n —uoll+ < e"2K

and we conclude from this that the sequence of iterates is Cauchy and therefore
converges uniformly to a function f in uniformly closed C.

Continuity of H implies H(f) = limg_y00 H(ug) = limg_y00 ug+1 = f so f is the
fixed point we were after.

We have two useful inequalities governing the rate of convergence.

En
lun = fllsc < X% lup — fll < €2LR17_EHU1 — uoll+

en
< 62LR

T lu1 — wollo
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and

:E
|
=
8
IN

€
e luy, — fll. < BQLREH% — Un—1]l«

o2LR e

1-¢

The first is an a priori estimate and can be calculated after the first Picard iterate

is formed. If you have an idea of how close you must be to the desired solution

this will tell you a “worst case” of how big n must be to accomplish that. This is
usually a gross overestimate.

IA

1t — tn—1]co-

The second inequality® is more useful for purposes of estimation, and is called
an a posteriori estimate by those in the approximation business. It is calculated as
you proceed and tells you when you can stop creating new wuy.

We consider now the situation of an autonomous differential equation.

Initial value problems may be rephrased as the search for solution curves ¢ for
which ¢ = g o ¢ and ¢(tp) = p.

In this autonomous case the solution to the related IVP b = g o b and b(t1) =p
is given by b(t) = c(to+t —t1) for t € [t — & ¢; + £].

So because of the uniqueness condition in the Picard-Lindel6f Theorem, changing
the initial time at which the solution curve passes through a point does not change
the solution curve beyond a time-shift. The corresponding feature does not hold
when the IVP is nonautonomous. The restriction on the time interval® from that
theorem, ¢ € [to — K/M, to+ K/M], is to prevent the solution curve from leaving
the ball B of radius K, and thereby (possibly) leaving the domain U of Lipschitz g.

We assume that g is Lipschitz with Lipschitz constant L and maximum magni-
tude M on the domain of g as in Theorem 3.1 and Corollary 3.2 in this autonomous
case.

Let Bq(r) denote the closed ball in R™ of radius r centered at ¢ and Bg(r) the
interior of that ball.

So the ball B specified in those results is B,(K) C U and the time interval upon
which the solution is defined and for which the curve, starting at p when ¢ = 0, will
not leave B,(K) is [—4, &]. That same curve will never leave ball B,(K/2) on

K K
T 2M> W]

And from each ¢ € B,(K/2) we have By(K/2) C B,(K). So the theorem and

corollary apply for every ¢ € B,(K/2) and yield solution curves
o |- KK
? 2M° 2M

time interval [

]—>BP(K) and ¢;=goc¢, and ¢4(0) =gq.

Sometimes it is the curves themselves that are of interest, but sometimes a slight
change in notation is useful to emphasize a family of functions on the ball with a

5Prove this one first, using ||un — fll+ < €llun_1 — fllx = lln_1 — un + un — f||+« and the
triangle inequality.

6We do want the time interval to be bounded in order to save us from technical difficulties in
the convergence result. Conclusions for an unbounded time interval can be drawn by taking limits
of intervals of increasing but finite size if the domain of g is unbounded.
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time parameter. In that case we use

K K

S |——, —

2M° 2M

S is called a local flow for the DE. For each fixed time ¢ the function S; sends
points in B,(K/2) to points in B, (K).

} x Bp(K/2) = B,(K) given by Si(q) = c4(t).

Starting from any ¢, € B,(K/4) and traveling on a solution curve (in a positive
or negative direction) for time less than -5 you can’t leave B,(K/2). If you end
up at point g2 € B,(K/2) after this journey from g¢; you still can’t leave By(K)
during an additional time %—in fact you will have time % to spare before you
could get near the boundary of B,(K) .

With this in mind (so the following line is defined) and invoking the uniqueness of
solutions to these IVPs we see that for any g € B,(K/4) and any ¢, s € [— A, £ ]

we have

Ss+(q) = Se(cq(s)) = Si(Ss(9))-

Rephrasing the differentiation properties in this new notation, for ¢ in By (K/2)

. Ss 7
So(¢) =¢q and lim Sela) —q =g(q).
e—0 e
Also, for all ¢ € Bp(K/4) and s € [-R/4, R/4]
. Ss S B Ss
tny Seel0) = 5600) g, ),

e—0 £

So for each fixed t € (—R/4, R/4) we have a function S;: Bp(K/4) — By(K/2)
and this function has inverse function which can be calculated using S_;. Therefore
it must be one-to-one on By (K/4).

Suppose ¢; and ¢o are in the interior of B,(K/4) and ¢t € (0,R/4). Using the
integral operator form of the IVP we have

Suar) — Selan) = @1 — g2 + / 9(Sa(@)) — 9(Ss(a2)) ds.
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The continuous function f(s) = || Ss(q1) — Ss(gz2) || for s € [0,¢] satisfies the
condition

£0) < $0)+ [ LiGs)ds
0
where L is the Lipschitz constant for g so by the integral form of Grénwall’s

Inequality we have
f(t) < f0)elo B4 = f(0) e,
That means the magnitude of Si(q;) — S;(g2) can never exceed || q1 — g2 || €*F
which puts an upper bound on how fast neighboring solution curves can separate
from each other.

And in particular we see that each S; is continuous.

Invariance of domain tells us the image set S;(B,(K/4)) must be open, and S;
itself is a homeomorphism between By (K/4) and this image with inverse S_;.

Proving differentiability of the local flow” is quite a bit more involved than con-
tinuity and we leave that discussion for elsewhere, for instance [4] Lang’s “Intro-
duction to Differentiable Manifolds 2nd Ed.” page 75.

There we see that if g is C* so is any local flow determined by g.

4. DIFFERENTIABLE MANIFOLDS

A CK atlas on a topological manifold M is a set of coordinate maps A of M
whose domains cover M and with the property that whenever x: U, — R, and
y: U, — R, are coordinate maps from A

yort:x(U,NU,) CR" =R
has continuous mixed partial derivatives up to order k for each coordinate 3.
We assume below that = and y are members of a C* atlas where k > 1.

If f is any real valued function defined on a neighborhood of p € M (such as the
y* above) we define

of - _
@(P) tobe  Dj(foz ") (ps) = [D;(foz™")]oz(p)
where D; denotes partial differentiation with respect to the jth coordinate in R™.

Numerically, this is the rate of change of f as you move on M through p along
the jth coordinate gridcurve for z at unit pace: that is, with respect to the natural
parameterization G;%(t) = 27 (p, + te;).

Higher partial derivatives will be needed later, and are defined as you would
expect, according to the pattern

2 o5
3fkéfmj (p) = 0527 (p) = Dy ( [Dj(f Om_l)] oxox_l) (Pz)

T Ok
=(DxD;f o) (ps).

"We have, of course, differentiability of the solution curves that, collectively, form the flow.
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The Jacobian matrices %(p) and %(p) corresponding to the two charts at
p € U, NU, are given by

dy . vy (O
2, P = oz ) (pe) = (W(p)
and
dx 1\ oz’
dfy(p) = (woy ) (py) = (ayj(p)> :
The Jacobian matrix (y o 271)’(p,), acting by left matrix multiplication on R",

is the linear map that best approximates y o ™! near p, in the sense that this is
the unique matrix J for which

hm ||y ° xil(ql) —Yyo xil(px) - J(q:v *pz)H

q—p | gz — pa |l

=0.

The Jacobian matrix (z o y~')'(p,) has full rank at every p, € y(U, NU, ) and
((woy ) (py)) ' = (yoa ') (ps) for every p € U, NU, C M.

On a manifold itself and neighboring points p and ¢ it makes no sense to talk
about, in general, a displacement “vector” ¢ — p from p to ¢ since no vector op-
erations are defined. What does make sense are the coordinate displacements
hy = ¢z — p and hy = g, — py. The equation above then reads

Ly = TRl
a=p | Bl

and this tells us that on the overlap of two coordinate patches we can use coordinate

displacements to discuss actual (small) displacements on the manifold itself, trans-

lating this information between coordinate maps using the Jacobian. The error you

make by doing this for a given coordinate displacement is small even in comparison

to the coordinate displacement when ¢ is near p.

A Ck differentiable structure is a maximal C¥ atlas: that is, an atlas to
which no additional charts can be added while retaining the differentiability condi-
tion. A differentiable structure containing an atlas is said to be compatible with
the atlas, and there is one and only one C¥ differentiable structure compatible with
any particular CK atlas.

We note that if z: U, — R, C R" is a coordinate map in a differentiable
structure so is the restriction x|y of & to any open subset V of U,, and this is an
observation we will use from time to time.

A C® manifold is called, simply, a differentiable or smooth manifold or, if
compact, a closed differentiable manifold.

From now on all our manifolds will be differentiable and endowed with
some specific C*° differentiable structure.

That is equivalent to requiring that the real valued function 3 o 2! has contin-
uous mixed partials of all orders for every ¢ = 1,...,n at every point in (U, NU, )
and every pair of coordinate maps x and y in the differentiable structure or, equiv-
alently, in a generating atlas.

R™ will be presumed to have the differentiable structure consisting of
all coordinate maps compatible in this way with the identity map: that
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1

is, all coordinate maps = for which z and =" are differentiable in the usual sense

to all orders on their domains.

Suppose given a function f: O — N where O is an open subset of differentiable
n-manifold M and that N is a differentiable k-manifold.

f is called differentiable if yo fox ! is differentiable for every chart x=!: R, —
U, C M and any coordinate map y: U, — R, C R¥ for N wherever this composition
is defined, specifically for every p, € x (UI N f_l(Uy)).

Differentiability of y o f o 2! implies continuity so (Um N f_l(Uy)) is an open
subset of R,.

To check differentiability of f it is not necessary to work with every chart in
each differentiable structure. Looking at those charts in any pair of atlases that
generate the relevant differentiable structures is sufficient.

In a generalization of the previous definition, the derivative or Jacobian ma-
trix of f with respect to coordinate maps x and y is

dyiiwo f(P) =(yofox 1) (py) = (Wof)(p)> . peU,nfiU,).

oxJ

This is the unique matrix M, when these partial derivatives exist and are con-
tinuous, for which

lim ||y0f0$71(qx) _yofoxil(px) - M(qgn _pm)H

q—p HQT 7prc||

=0.

The rank of f at p € U, N f~!(U,) is the rank of its Jacobian matrix. Rank
does not depend on the particular charts used to define it.

A Jacobian matrix for two coordinate maps is, of course, the derivative matrix
with respect to these coordinate maps of the identity function on the manifold.

A function f: U — N defined on an open subset U of M is called C¥ (also,
continuously differentiable if ¥ = 1, or smooth if k = o00) if y* o foz™ ! is
differentiable with continuous partials up to order & for all members y and = of the
relevant atlases on N and M respectively and all coordinates %* at each point for
which the composite function is defined. These points are all in (U, N f~1(U,),
which may of course be empty for any specific pair of x and y. However every point
in U is in such a set for some x and y.

This definition coincides with the usual one when N is an open subset of R* and
M is an open subset of R™.

The set of real valued functions which are C* and defined on all of M is denoted
FE(M). It is a real commutative algebra with unit, infinite dimensional except in
trivial cases.

The set of real valued functions that are defined and C* on some neighborhood
of ¢ € M will be denoted I}"; (M).

The cases k = 1 and k = oo will be the only ones that concern us. When the
manifold M is fixed and understood we will forgo *(M) and F%(M) in favor of F*
and F*.

q
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3"(’; also is a real commutative algebra with unit when we define fg and f + rg
in the obvious way on the intersection of the domains of f and g, for real » and
f,ge Tt

A function f: M — N is called a diffeomorphism, and the two C'*° manifolds
M and N are called diffeomorphic, if f is one-to-one and onto and y is in the
differentiable structure for N if and only if y o f is in the differentiable structure for

M.

Thus, a diffeomorphism f is C°°, the dimensions of diffeomorphic manifolds are
the same, and if f: M — N is a diffeomorphism, so is f~': N — M.

For example, consider R with standard differentiable structure and the interval
(—1,1) with its standard structure inherited from R and the map

f:(-=1,1) >R given by x — tan (%C) .

If a function g: U C R — R is differentiable a certain number of times (this
includes coordinate maps for R) then so is g o f by the chain rule. And if h: U C
(—1,1) — R is differentiable a certain number of times, so is h o f~1 for the same
reason.

It follows that R and (—1,1) with these standard differentiable structures are
diffeomorphic and f: (—1,1) — R is a diffeomorphism demonstrating this.

Now give M = R the standard differentiable structure but give N = R the
differentiable structure compatible with the atlas containing the single function g
given by g(z) = 23. Note that the identity map x — x is not in the differentiable
structure for N because ¢! is not differentiable at 0.

Coordinate maps whose domains do not contain 0 in N coincide with those in
the standard differentiable structure, but if y is a coordinate map around 0 in N
we must have h = y o g~ ! differentiable. That means y is of the form h o g for
differentiable h. And of course if h is any differentiable function so is h o g.

So g: M — N is a diffeomorphism.

Finally, if M and N are smooth manifolds of dimensions n and k respectively,
we define the smooth manifold M X N, called a product manifold, to be the
obvious set of ordered pairs with product topology together with the differentiable
structure compatible with the atlas of functions (z,y): U, x U, — R* x RF = R"**
given by (z,y)(c,d) = (x(c),y(d)) where z is in the differentiable structure for M
and y is in the differentiable structure for N.

With this definition, the projection maps
T MXN—-M and o MxN-—-N

given by m1(c,d) = ¢ and my(c, d) = d are automatically smooth.
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5. PARTITIONS OF UNITY

If X is a topological space, the support of any function f: X — R, denoted
supp(f), is the closure of the set f~*(R — {0}).

In a topological space X a cover of a set S C X is a set A of sets whose union
contains S. The cover A is called open if every set in A is open. The cover B
is said to be a refinement of the cover A if every member of B is contained in a
member of A. A cover is called locally finite if only finitely many of the sets in
the cover contain any particular point of S.

A partition of unity on a manifold M is a set H of continuous functions with
range contained in [0, 1] and for which { supp(f) | f € H} is a locally finite cover
of M, and for which Zfeﬂ-f f(p) =1 for every p € M.

The partition of unity is said to be subordinate to a cover A of M if the
supports of the members of the partition of unity form a refinement of A.

The Existence of Subordinate Partitions of Unity Theorem states that
there is a partition of unity subordinate to any given open cover of topological
manifold M. There is an open cover consisting of open sets with compact
closure which refines any given open cover. So the partition of unity can be
chosen to consist of functions with compact support subordinate to any given
open cover.

If the manifold is differentiable, the member functions of this partition of unity
can be chosen to be smooth.

Let B2(s) = {m € R™ | ||m — s|| < r} denote the open ball in R™ centered at s
of radius r.

Suppose K is any open cover of differentiable manifold M. There is a countable
set of charts @;: B$(0) — U;, i = 1,2,..., for which U, consisting of the sets
U; = Q;(B5(0)) forms a locally finite open cover of M which refines XK.

Further, a differentiable atlas of this kind can be found so that ¥V and W, consist-
ing of the sets V; = Q;(B5(0)) and W; = Q;(B$(0)) respectively, also form locally
finite open covers of M so they too are refinements of K.

In the proof of this theorem, a countable set of smooth functions g;: M — [0, 1]
are constructed for which W; C g, 1(1) and supp(g;) is contained in the closure of
V; for each 1.

Now the functions

gi .
fi=——— i=12...
220:1%@

form the partition of unity subordinate to X, which we sought in the statement of
the theorem.

There is a useful corollary, or special case of the theorem that deserves mention.
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If M is a topological manifold and @ # C C V C M and V is open and C is
compact then there is a function f defined on M with f identically 1 on C so
that f has compact support contained in V' and for which the set { f,1 — f }
is a partition of unity subordinate to the open cover {V, M — C } of M.

Further, if M is differentiable, f can be chosen to be smooth.

Suppose F' is any real valued function defined on an open set V' C M and C
is a compact subset of V. Then there is a function G defined on all of M with
supp(G) C V that agrees with F' on C and with G < F on V. G can be chosen to
match the differentiability of F.

Function G is defined to be F'f on V and 0 off V', where f is given in the boxed
comment above. Thus, any function defined on a neighborhood of a point p in M
is equal on a (possibly smaller) neighborhood of p to a function defined on all of
M, with matching differentiability properties.

So every member of S’Z agrees with a member of F* on a neighborhood of p.

6. RANK AND SOME SPECIAL CHARTS

In this section we mostly state results without proof typically found (following
from the implicit function theorem) in Advanced Calculus. A good source for
proofs is [5] Spivak’s “Calculus on Manifolds” or [7] Loomis and Sternberg’s very
good “Advanced Calculus 2nd Edition”, although any book at this level is likely to
deal with these topics.

A set S C R" is said to be measure zero if for each € > 0 there is a countable
set C,,, n=1,2,..., of cubes in R™ for which

S C D C; and iVol(Cz) <e
=1 =1

where Vol(C;) denotes the ordinary volume of the cube C;.

A subset S of a differentiable manifold M is said to be of measure zero if there
is a countable sequence of coordinate maps x;: U; — R; C R™ for which z;(S N U;)
is of measure zero for each ¢ and S is contained in the union of these Uj;.

6.1. Theorem. If f: R® = R" is C' and S C R™ has measure 0
then f(S) has measure 0.
This immediately implies the following:
If f: M — N is a C* map between two n-dimensional manifolds
and S C M has measure 0 then f(S) has measure 0.
Suppose f: M — N where dim(M) = n and dim(N) = k.

A point p € M is called a critical point of f if f has rank less than k, the
dimension of its range N. Since the rank cannot exceed n, if n < k every point of
M is automatically critical.
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The critical values of f are defined to be the set of those f(p) € N for some
critical point p of f. Regular values of f are members of N which are not critical
values, and that includes all points in N — f(M).

We have Sard’s Theorem:

6.2. Theorem. If f: M — N is a C' map between two n-dimensional manifolds
the set of critical values of f has measure 0.

6.3. Theorem. Suppose that f: M — N is a C' map between n-manifold M and
k-manifold N. So the rank of f can exceed neither n nor k.

(i) If f has rank j < k at w then there are coordinate maps x around w and y
around f(w) and differentiable functions 171 ... ¥ such that
1

a
ol 3 al
j
yofoz | i | = Wfl (a) forall a=| : near x(w).
a” ) a”
¥ (a)

(i) If f has rank j < k in a neighborhood of w then there are coordinate maps
x around w and y around f(w) such that
1

a
at at
-1 aj
yofoux =15 forall a=| : near x(w).
a” a”
0

(#ii) If f has rank k at w then there are coordinate maps x around w and y
around f(w) such that

at at at

forall a=| : near zx(w).

n ak a®

yofo:r_1
a

In case (ii) above, 2 and y exist so that f takes the first j coordinate gridcurves
through w for x onto the first j coordinate gridcurves through f(w) for y, and the
parameters for these gridcurves coincide, and f is constant on the last n— j of these
gridcurves for x.

A function f: M — N between n-manifold M and k-manifold N is called a
topological immersion if it is continuous and locally one-to-one: that is, if there
is a neighborhood of every point in the domain upon which f is one-to-one. If a
topological immersion is differentiable and of rank n (the dimension of the domain)
everywhere (so we must have k > n) it is called, simply, an immersion.

A subset K, with its own differentiable structure, of manifold N is called an
immersed submanifold if the inclusion map ¢: I — N is an immersion. This
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does not imply that coordinate maps on X can, necessarily, be extended to coordi-
nate maps on N, and the topology on X might be finer than the relative topology
it inherits as a subset of N.

6.4. Theorem. If f: M — N is smooth and K is an immersed submanifold of N
and f(M) C X then if f is continuous considered as a map into X it is also smooth
considered as a map into K.

If f: M — N is an immersion and a homeomorphism onto its image (so, in
particular, it is globally one-to-one) it is called an embedding.

An immersed submanifold X of N is called a submanifold if the inclusion map
i: X — N is an embedding. In this case the topology on X is the relative topology.

It is obvious that an open subset of a smooth n-manifold M can be regarded
as a submanifold of the same dimension, using differentiable structure obtained
by restricting domains of coordinate maps on M to V. These are called open
submanifolds.

Submanifolds of lower dimension are more interesting in some ways, but no
submanifold is more useful than an open subset O of our paradigmatic manifold R™
with differentiable structure from the identity map. In that case the identity map
on O is a diffeomorphism of O onto its image in R™.

If f: M — N is smooth and if, for each p € M, there are open submanifolds A, C
M and By(,) C N which contain p and f(p), respectively, for which the restriction
of f to A, is a diffeomorphism onto By, we call f a local diffeomorphism.
These are an important type of immersion.

If submanifold K is closed in M it is called a closed submanifold of M.3 If
M has multiple components, each component is a closed submanifold of M.
6.5. Theorem. Suppose n-manifold M is a submanifold of k-manifold N and x: U, —

R, C R"™ is a coordinate map for M around p.

Then there is a coordinate map y: Uy — R, C R* for N around p for which

z'(q)
y'(q) :
I N R )
y(q) = : = 0 whenever g € M NU,.
v*(q) :
0

y can be chosen so that if ¢ € U, and y*(q) =0 fori=k+1,...,n then ¢ € M.
Note we are not saying that the set MNU, is all of Uy, but it is a relatively open
neighborhood of p in M and a subset of U,.

8Recall that a closed manifold is by definition compact so, oddly, a closed submanifold of M
need not itself be a closed manifold. This is unfortunate but standard terminology.
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Thus an atlas for M can be formed which produces the differentiable

structure for M and which is composed entirely of the restrictions of
coordinate maps such as ¢ to M N U,, selecting one such restriction
for every p and x pair, where xz: U, — R, is in the differentiable
structure for M and p € U,.

6.6. Theorem. Suppose f: M — N, for n-manifold M and k-manifold N, is smooth
and p is in the range of f.

If f has rank m on an open set containing f~1(p) then f~1(p) is a closed sub-
manifold of M of dimension n —m.

So if p is not a critical value of f then f~1(p) is a closed submanifold of dimen-
sionn — k.

6.7. Theorem. Suppose f: M — R is smooth, M is a closed submanifold of N and
U is an open subset of N containing M.

Then f can be extended to a function defined on all of N whose support is con-
tained in U.

7. THE TANGENT SPACE

For the next two sections we focus on a single chart around p in differentiable
n-manifold M with coordinates x: U, — R, C R".

An important case arises when M is an open subset of R? or R3. Polar co-
ordinates in R? and spherical and cylindrical coordinates in R? provide examples
here.

Another important case arises when M lies in R**! and is the graph of a dif-
ferentiable function h: O — R where O is open in R™. In that event we could use
coordinates z: M — O given by

1
w" n
h(w) v

Keep these examples in mind.

Now suppose h: (a,b) — M is continuously differentiable, where (a,b) is a
nonempty interval.

h is called a differentiable parameterization of a curve through p provided
h(a) = p for some a € (a,b). We know there are differentiable parameterizations
through p. The gridcurves G, are infinitely differentiable examples.

Grp(0) =27 (ps) =p and (z0G;,)(0) = (pz +tv)'(0) =v.

So any vector in R™ can be obtained as (xoh)’(0) for some infinitely differentiable
parameterization through p, and G}, is the simplest one.



MANIFOLD NOTES PART I (DRAFT) 23

For each v € R™ we say that the tangent vector at p corresponding to x
and v is the set of all differentiable parameterizations i through p for which 0 is

in the domain of h and h(0) = p and (z o h)’(0) = %(O) =.

Tangent vectors are also called contravariant vectors or, sometimes, simply
vectors at p.

Parameterizations of curves through p are tested against each other by composing
each with  and determining the derivative at 0. All parameterizations in M going
in the same direction with the same speed as they pass through p according to this
test are bundled together to form one tangent vector at p, so there is one tangent
vector for each v € R™. We do not claim two parameterizations in this tangent
vector have velocity v. But they both have that velocity when composed with x as
they pass through p at time 0.

We will denote by [h]p the set of differentiable parameterizations containing h;
that is, [h], is the tangent vector containing h. When we don’t want to specify a
particular member curve we might denote tangent vectors at p by upper case Latin
letters, such as X, Yp or Zp, but remember that these tangent vectors correspond
to sets of curves and in a calculation with tangent vectors a representative curve
will often be (and can always be) extracted or produced.

Don’t confuse X,, = [h], with the derivative vector (z o h)'(0) = v € R™. Here,
v is just a parameter, the unique label (for this =) shared by all the curves in [A],.

If & is a differentiable parameterization of a curve through p and the function “h
defined by “h(t) = h(t — a) is in X,, we say X, is tangent to h at parameter
value a. This allows us to talk about tangency to curves that might pass through
a point p multiple times from different directions at different times, or pass through
p at some nonzero time.

Since p = h(0) it is slightly redundant to refer to a tangent vector at p by [h],
and we may sometimes refer to this class of curves by [h].

So the specific tangent vector consisting of all h for which (zoh)'(0) = vis [G, )]
since G, is in this class.

Define the tangent space at p to be the collection of all these tangent vectors,
each an equivalence class of parametrized curves. Exactly one of these tangent
vectors is tangent to each one-to-one differentiable parameterization through p,
and we have seen that the set of parameterizations passing through p at time 0 and
corresponding to any particular vector in R™ is nonempty.

We denote the tangent space at p by the symbols M,,.

It remains to define vector operations on M,.

If 7 is real and [G )] and [G’,)] are two tangent vectors we define
T [G;”p = [G;;’D] and [G;”p] + [G;"’p = [G;’;“’].

Multiplication by r introduces a “speed change” to the parameterizations. The
new class consists of exactly those parameterizations which move r times faster (if
r is positive) as they pass through p.

Adding two tangent vectors produces a class of parameterizations that move
through p in “intermediate direction” between the two summands.
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We are using the archetypal vector space R™ to define these operations, so the
various properties required of vector operations are easily seen to be satisfied: M,
is actually a vector space with these operations.

For historical reasons, and by analogy with facts from Multi-Variable Calculus,
we usually denote [G 7] by % .
And because the notation is, already, cumbersome enough we will write in

place of % |p whenever confusion will not result.

o
oz’

It is easy to see that %, cees 8% forms a basis for M, with these operations.

The ordered basis of M, corresponding to coordinate map x is defined

to be the ordered list of tangent vectors %, ceey %.

Normally, [G; ] will be indicated in terms of this basis as the sum

Ui 9 = 14él,+_ + ”géz,
ozt Y ot Y oz

where on the left we invoke the handy Einstein summation convention.

It is important not to forget, and we emphasize again, that the member v of R™
used here to select parameterizations to form a tangent vector is mentioned only in
context of the coordinate map x, which connects v to the directions you can go, in
M, while passing through p.

The vector space M, is isomorphic to R™ using coordinates in the basis corre-
sponding to x: we send each % to e; and extend by linearity. This map, ¥,, is
given by

W, M, = R", v, (Ui 8_>:viei.

ox*
So if [h] = v' 52 € M, then ¥, (v' 52;) can be calculated as (z o h)'(0) =
dxoh
“a(0)-

(! o h)'(0)

v, <Ui 8?1#) =vle; = (2" o h)'(0)e; = = (zoh)'(0) = (0).
(™ o h)'(0)

The coefficient v* in v* 8‘; is the derivative of the ith coordinate function of x

i_0
oxt”

composed with any member parameterization in v

It remains to decide to what extent all this depends on x. The same parameter-
izations will be differentiable with another chart, but will the sets of parameteri-
zations swap around their members if we choose different coordinates? Even if the
sets stay the same, will vector addition and scalar multiplication be consistent with
the definitions given above if new coordinates are chosen?

In section 9 the answers to these questions are found to be no, yes and yes.
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8. THE COTANGENT SPACE

The cotangent space could be defined, simply, as the dual of the tangent space,
but we will give an independent definition and recognize it as an embodiment of
this dual.

Once again we choose coordinate map x around p and use it in the definition.

Recall that if f € 3"11, then, by definition, (f o x~1)’ exists and is continuous in a
neighborhood of p, and (f o2~ 1) (p,) = %(p) is the row matrix
of of _ _
(5500 gh0) ) = (Dl 05 ) D 027 0))
We define the cotangent space at p, denoted M;, to be the set of equivalence
classes of members of 3"11, where f is equivalent to g when

d _ _ d
L) = (For V) = (g0 V() = S0
Note that if the row o = (01, ..., 0,) € R™ is any possible value of the derivative

then the real function

,fw,o‘z U, = R given by fm,U(Q) =01 xl(Q) +ton xn(Q)

has constant derivative o on the whole coordinate patch U, and is, therefore, among
the class of functions determined by this derivative value at p. If we ever have need
of a function in this class, this would be the simplest choice for coordinate map x.

These equivalence classes are called (synonymously) cotangent vectors, co-
variant vectors, covectors or 1-forms at p. Lower case greek letters such as
up and ¢, may be used to denote generic cotangent vectors.

Vector operations are even easier to define here than in the tangent space.
If f is in cotangent vector y, and g is in cotangent vector ¢, and 7 is real
define pp + r ¢, to be the classof f+rg
where the function f 4+ r g is defined on the intersection of the domains of f and g.

Linearity of the derivative operation and its local nature implies this class does
not depend on the representative functions f and g used to define it, and with these
operations M is a real vector space.

Multiplying a cotangent vector by real number r corresponds to a class of func-
tions that is changing their values “r times faster” (if r is positive) in the vicinity
of p. Adding two cotangent vectors changes the level surfaces of a representative
function, which now are “intermediate” to the level surfaces of representatives of
the summands near p.

When f € p, we write dfy, = p, and p, is called the differential of f at p.
For each p the map d: ’J":) — M; is linear.

There is another interesting property possessed by the differential. For each p:

d(f9)p = f(p) dgp + g(p) df, for all f,g € F,.
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The same function g could easily be in a covector at p and a covector at g for
p # q. However we cannot have dg, = dg, unless p = q. To see this let

~v(dgp) = ﬂ {q| ¢ is in the domain of f}.
fedgy

p must be in each of the sets in the intersection and (since M is Hausdorff) no
other point can be in every domain so v(dg,) = {p} and p can be recovered as
the unique point in the domain of all the functions in any particular covector.

Actually, more is true. If O is the domain of any particular function f in covector
ip then {p} is the intersection of the domains of all the restrictions of f that lie in
fp- So just the members of yi, that are restrictions of any single member of p, are
sufficient to “locate” p, as a member of M,,.

Since p is fixed for now we may suppress mention of it when that is not ambigu-
ous, and refer, for example, to df rather than df,.

Of particular importance are the differentials dx’ of the coordinate functions
z': U, — R.

If f is a representative function in covector df it is straightforward to see that
there is one and only one linear combination of these dx’ equal to df, namely

_Of g OF o
df = 575 drt o ool da,

Therefore the ordered list dxl,...,dz™ forms a basis for M, the ordered
basis of M; corresponding to coordinate map x .

Define the isomorphism ®,: M — R™* to be the map sending dz® to standard
dual basis vector e’, extending by linearity.

I df = 00 da', @u(df) = 016 = (01,...,0w) = (F oz~ (p2) = 4 (p)

The coefficient on dz? for df is the ith partial derivative of f o 7! evaluated
at pg. It is also the derivative of f € df composed with the ith coordinate
gridcurve through p for x.

We cause any df to act on any one-to-one differentiable parameteri-
zation of a curve through p with h(a) = p by df(h) = (f o h)’(«) and it
is easy to check this number does not depend on the representative f for df.

But the related action of members of M; on members of M,,, defined precisely
below, makes the critical identification of M} as the dual of M,,.

Suppose h is in the tangent vector [h] = v’ 821- and f is a representative of the

covector df = o; dx’.

Define df([h]) = o; v®.
With this action, df is obviously a linear map from M, to R, and
da'(5%) = 6% In other words, M;, “is” the dual of M.

But this is a bit of a cheat: since the dimensions match we could have assigned
any basis for M7 to act as the basis dual to the standard basis for M, and coordinate
map x. Why pick this action?
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Using representatives f of covector df and h of tangent vector [h] as above we
have an ordinary real valued function f o h defined on an interval. And

(foh)(0)= (foa™ oxoh)(0)=(fou™")(ps) (woh)(0)

1}1

= (o1,...,00) | o | = Pu(df) a([h])

v n

i ii 9 _
o; v =0, dx vjﬁfdf([h]).

In other words, with this definition, causing a covector to act on a contravector
is equivalent to the chain rule applied to the composition of any pair of rep-
resentatives of the equivalence classes. And the calculation can be performed
using the isomorphisms into R™ and R”™ provided by choosing the standard
bases in M and M,, generated by the coordinate map .

There is a way of thinking about, visualizing, these differentials.

Let’s consider a coordinate 2’ and, for specificity, '. This coordinate can be

used to create a myriad of closely spaced “constant x' submanifolds” on M near p
consisting of those points m on M with z'(m) = pl + b for many different small
positive and negative values of b, one value for each submanifold.’

In a specific situation you might start with b = 0 and then increment b by +0.001
a few hundred times, thereby carving out several hundred submanifolds of U, which
may be visualized as roughly parallel (they never intersect and are close to each
other and smooth and of dimension 1 less than the manifold itself) near p.

When you evaluate dz! on a tangent vector vj% and obtain v!, you can in-
terpret this measurement in the following way: if you are zooming along up on M
following a parameterization in v’ % then, at the instant you pass through p, the

rate at which you are punching through these constant-z! submanifolds is v!.

A negative v! would mean you are passing through submanifolds of diminishing

x' value, while if v! is positive you pass through submanifolds of increasing !
value as time (the parameter) goes on. The magnitude of v! tells you how fast you
can expect the b-values on these constant-z! submanifolds you see flashing by to
increase. Of course, this will only hold for a short time interval, very near to p.

More generally, a nonzero linear combination of coordinates of the form f = o;
can be used to create submanifolds up on M each consisting of points m with
f(m) = o; p}, + b for many different small values of b.

If you are passing through p on a parameterization in v’ % then you expect to

see these constant-f submanifolds flash by at rate (O’i dmi) (vj %) =g; 0%

You can think of this in two different ways: from the viewpoint of a moving
eyeball on a fixed parameterization, testing different families of constant-f sub-
manifolds or from the standpoint of a fixed f whose constant-f submanifolds are
being pierced by many different travelers passing through p.

9By Theorem 6.6 these are submanifolds of dimension n — 1.



28 LARRY SUSANKA

In the first case it is f that will vary and you are using the parameterization to
measure how fast these various functions are changing in the direction and at the
pace you are bound to go.

In the second case f is fixed and f “tests” parameterizations by counting how
many of his (or her) constant- f submanifolds are being punctured per unit time by
travelers passing through p on one parameterization or another.

These interpretations are completely clear down in R™. The “level hypersurfaces”
there are the hyperplanes of all vectors S with o (S —p,) = b for various small values
of b and a fixed row matrix o = (01 ... 0y,). The parameterizations can be taken to
be of the form h(t) = p, + vt, since there is a parameterization like this matching
the derivative of each possible differentiable parameterization through p,..

271 transports these surfaces and the parameterizations which pierce them (and
our intuition along with) from R™ up to M.

9. CHANGE OF COORDINATES

Now comes the moment of truth. We need to see how all this works in a new
coordinate map, and how we can translate from one allowed representation to an-
other.

Suppose y: U, = R, and z: U, — R, are two coordinate maps around p € M.
Recall the coordinate gridcurves given by
G.i(t) = Y (p, +te;)) and G,i,t) = yil(py +te;)

and the two Jacobian matrices %(p) = (yox~ 1) (ps) and %(p) = (zoy ) (py)

which are inverse to each other.

The ijth entry of (yoz ™) (p,) is D;(y' oz (p,) = gTy;(p) while the ijth entry
of (xoy 1) (py) is Dj(x* oy~ )(py) = g—z;(p). Dropping explicit reference to p,
since it is fixed for the discussion, gives

o or_,_or o
oxk dyi T Oyk Qi

The jth column of (y o z7')" is the n x 1 matrix (y o G£%,)'(0). This is the
derivative of the coordinate map y confined to (that is, composed with) the jth
coordinate gridcurve of x.

The ith row is the 1 x n matrix (y* o 271)’, the derivative of the ith coordinate
function 3 o 71, a real valued function of n variables.

Consider the inverse (to each other) Jacobian matrices
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dz g _ (o a— B oxt
& — oy ™ () = (D' o)) = (550

and

P —or ) ) = (D, s p) = (F50))

Suppose h is a parameterization through p with h(0) = p and which has been
found to be differentiable using x:

;0
(z o h)' (0) = v for some v € R" so h is a member of v’ B

Then yoh = yox~! oz oh. By assumption, y o 7! is differentiable and so is

xoh so the chain rule implies that h is differentiable using y as the “differentiability
tester.” Its derivative using y is in fact the column

_ dy, . dxoh dy
h / — 1y\/ . h / — = = .
(yohY(0) = (you ) (p) (2o hY(0) = Sp) “2 2 (0) = Lo
A symmetrical argument holds for parameterizations originally tested and found

to be differentiable using y, so the same parameterizations are differentiable using
either x or y.

Another glance at that derivative shows that (y o h)’(0) is a fixed (i.e. indepen-
dent of h) invertible matrix multiple of (x o h)’(0), so the sets of parameterizations
constituting tangent vectors are identical: the derivatives of the member parame-
terizations change, but they all change the same way, together.

So the definition of M, is independent of whether you use coordinate map x or
coordinate map y to define the classes of functions which comprise it.

The same argument holds for differentials. Specifically, for real valued f the
function fox~! is continuously differentiable in a neighborhood of p, exactly when
foy™! = fox~loxoy~!is continuously differentiable in a neighborhood of p,. And
the derivatives of foz~! and gox~! are equal at p, exactly when the derivatives
of foy ! and goy~! are equal at p,,.

In fact if f represents the covector df = o; dz’ then

(For™ V() = (Foa ™ (o) woy™) () = o (p)

dx ) dx
—(p) =0 —.
dy b dy
So covectors defined using = are identical to covectors defined using y.

The question remains of whether the vector operations defined using x match
those defined using y.

For covectors there is nothing to prove: vector operations are defined using
ordinary addition and multiplication by constants applied to the functions chosen
to represent the covectors. So if the classes of functions are the same, vector
operations on them must be too.

The situation is slightly more involved for tangent vectors.

Suppose r is real and consider the combination

(Gyp] +7 [Gyp] = (G5
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The equality in the line above is not a calculation: it is the definition of the
vector operations using the coordinate map .

We did calculate above that s = % ¢ whenever [G;’p] = [G;”p] and by extension,

dx
using B = % (evaluated at p, of course)

(Gy,) 7 [GL ) = [Gabrt] =[G o] = [GRer)] = [Gupr].

The class of functions on the far right is [G;’,p] +r [G;‘fp] calculated using
the coordinate map x, and we conclude that vector operations on M, agree when
defined using x, y or in fact any coordinate map around p.

So with our two coordinate maps = and y we have produced 4 ordered bases:
0 0 0 0

—_— e, d —\. .., —
" gm Ayl yn

and det,...,dz"™ and dy',...,dy" for M.

for M,

The last two are the dual bases for the first two. And the Jacobian matrices %(p)
and Z—z(p) are the matrices of transition connecting coordinates in these bases.

This is reflected (without matrices) in the four useful facts listed below.

0 ozt 0 0 oyt 0

Oyl Oyl Ozt dxi  dxd Oy
R oy
J— i J— i

dx oy dy dy B dx

Using the isomorphisms into R™ and R™* defined earlier we have

(I)y(df) :(f © y_l)/(py) = (f ox tozxo y_l)/(py)
=(foa!)(p2) (woy ") (py) = ®u(df) %

So changing ordered basis in M}, corresponds to the chain rule imple-
mented by matrix multiplication applied to the representatives in R™*.

Now suppose we have a parameterization h in a tangent vector [h].

Uy ([A]) =(y o h)'(0) = (yoa~" 0w oh)'(0)
_ dy
=(yoaz™") (ps) (xoh)(0) = 2 Vallh]).
So once again, changing ordered basis in M corresponds to the chain
rule calculated by matrix multiplication applied to the representatives
in R".
Thus, if df is any covariant vector and [h] a contravariant vector

dx dy

(df) ([n]) = @y (df) U, ([R]) = Pa(df) dy dz Uy ([h]) = Pu(df) Wu([R))-
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In other words, a differential evaluated on a tangent vector can be calculated in
any basis and if you prefer you can do so using representative vectors and covectors
in R™ and R™.

Finally, we arrive at the question of whether all possible changes of ordered basis

in M, can be arrived at by a coordinate change from an arbitrary coordinate map
such as x. The answer is affirmative and follows from the observation below.

Suppose W is any invertible n X n matrix. Any possible change of ordered basis
in M, must generate a matrix of transition of this kind. Let Ry, = { Wu | u € R, }
and Uy = U,. Then the function y: U, — R, given by y(q) = Wx(q) is a coordinate
map.

(yoa ') = (Waoz™l) =W,

10. Two EXAMPLES

Now that we have the basic constructions and facts in hand, let’s look at a couple
of examples.

First, we consider the manifold given by R itself. This one-dimensional situation
is unique in that the identity map ¢, for which ¢(r) = r for all real r, plays three
roles. It is a coordinate map, and also a real valued function on the manifold and
a curve in the manifold.

Other coordinate maps around a point are one-to-one smooth functions with
nonzero derivative defined on an open set containing that point. The one-by-one
“matrix” of transition from coordinate map x to coordinate map y at some point
p is the number (y o z71)(p,).

Let’s specify point p = 7/3 in our manifold and alternative coordinate map x
given by 2(r) = tan(r) on the interval (—7/2,7/2). So p, = /3.

The two Jacobians are

(tor ) (p) = ) (VA) =7 and (2ot (p) ='(p) = sec?(x/3) = 4.

The standard basis vector for R is the number e; = 1.

The unit pace gridcurve through /3 is G tl,ﬂ /3 given by the time-shifted identity
map
Glosr) =m/3+7-1

and the tangent vector corresponding to this curve is normally denoted %’W /30
using the “straight d” rather than the curved one. This tangent vector is the set of
all differentiable curves through 7/3 with derivative 1 with respect to the identity

coordinate map at time 0, at which time they all pass through 7/3.

Any curve in a tangent vector at /3 is a multiple of this one:

where the number v is h'(0) and h(0) = 7/3.
/3

d
hle/s=v —
[ }Tr/3 v dt

Similarly, thinking of ¢ as a real valued function and if f is any differentiable
real valued function defined around 7 /3 then df = o dt where o = f/(7/3).
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Causing df and [h] to act on each other we have

B d\ df dh _d(foh)
df([h]) = cvdt (dt> T dhdt  dt

where in the second-to-last term we have used one of the classic expressions of the
chain rule, where % denotes f'(h(0)) = f'(7/3).

Using better (more intelligible) notation,

df([h]) = f'(w/3) - W'(0) = f'(h(0)) - W'(0) = (f o h)'(0).

Using the two Jacobians, we have alternative expressions for df and [h] in terms
of the x coordinate map.

df =(foa™!) (V3)do = f'(n/3) - (™) (v3) dw = % da

and  [h] = (z 0 h)(0) % — 2/(x/3) - K (0) % . %.

A small movement in the manifold generates changes in both x and in t values.
But = changes faster than ¢, so f is changing at a smaller rate compared to x than
compared to t. So df is a smaller multiple of dx than of dt.

On the other hand, % corresponds to the family of curves containing
1 ool
G, 5(r) = tan (V341r-1).

These curves are moving at a quarter of the rate that the curves in % move as they

pass through 7/3. Compared to these slower curves h is changing 4 times faster.

As a second example let’s consider the submanifold M of R? consisting of the
half-plane { <;§) ’ T > O} at the point p = <\{§>

We consider two coordinate maps, the identity map and polar coordinates, each

defined on all of M. Explicitly, the identity coordinate map is given by I <§) =

(;), which is its own chart, while polar coordinates are given by

o [0)
o)
il ehant o1 (r) BE (9> _ (rcos(9)>’

0 y (2) rsin(6)

()

arctan(y/x)
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So pc = <73 6) and the two Jacobian matrices at p = p; and p¢o are
(To 1Y (pe) = ge S\ fcos(0) —rsin(0)\  [(V3/2 -1
be) = oy oy ] = \sin(0) reos(®) )\ 1/2 V3

and

(CoI Y (p) = <% g_y) _ <$/\/x2+y2 y/\/:c2+y2> _ (\/5/2 1/2 >

\g g —y/(@®+ ) z/@+y?))  \~1/4 V3/4

Suppose given a row matrix (a,b) which represents the differential a dz 4+ bdy in
the standard basis of the cotangent space using coordinate map I.

And suppose the column (Z) represents the tangent vector r % + s 3% in the

corresponding basis of the tangent space.

Causing adz + bdy to act on pa% +q B% yields the number ap + bg and this
number is invariant: it has physical meaning and cannot depend on the coordinate
map. That means if we change to polar coordinates the coefficients must change in
a coordinated way so as to preserve this invariant.

o oro 900 o oro 000

Slnce%—%a—f—%% and a—y—a—yaﬁ-a—y%

%dr + %dﬁ and dy = 8—:;{dr + @dﬁ

and - dv = 5 a0 P a0
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in our case at point p we have
ap + bq =(a,b) (p) = (a,b) (2; gf,) (ag ag> (p)
g or o9) \oz ay) \
—(a.b) Vv3/2 =1\ (V3/2 1/2\ (r
O 12 V3)\—-1/4 3/4) \s
ot i) =an Q)
= Z2a+=b, —a+V30b 2 21 | = (A, B = AP+ B
(2 2 —ip By “ B0 Q

where these same differentials and tangent vectors are A dr + B df and P % +Q %
in the standard bases formed from polar coordinates.

11. POINT DERIVATIONS

So we now have two definitions of tangent vectors. First as a vector space whose
vectors are classes of curves. Second as the dual of the space of differentials. This
section provides a third way of thinking of tangent vectors.

Suppose z: U, — R, C R™ is a coordinate map on M as above.

We can cause M, to act on F according to

T =v 2wy =v Do s

i
vt ——
ox?

It is clear that if vi%(p) = wi%(p) for all f € Fp° then v = w’ for all i (since
the coordinate functions z* are in "J"go) so tangent vectors are uniquely characterized
by their action on F°, a rather small subset of 3'"117.

Let’s denote by W (f) the action of this tangent vector v® a?ci on f.

It is obvious that if r is a real number and f, g € 9’117
W(f+rg)=W(f)+rWl(g) and W(fg)=f(p)W(9)+9)W(f)

The last equation corresponds to the Leibniz rule for differentiation of ordinary
functions.

A point derivation on ff’; is any real-valued function defined on 3"’; and which
satisfies the linearity condition and Leibniz rule.

Let D, denote the set of point derivations on F°.

D, is a vector space with vector operations defined “pointwise,” i.e. for real 7,
point derivations W and U and any f € J,

W +rU)(f) =W(f) +rU(f)

The action of a tangent vector as described above is a point derivation on ?;, SO
with this action (by restricting domain to Fr ) each tangent vector in the tangent
space M), can be identified with a member of D,. Distinct tangent vectors are
easily seen to correspond to different members of D,. And the vector operations
on M,, coincide with those in D), so that M, “is” a subspace of D,,.
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We will show that every point derivation on F;° corresponds to the action of a

tangent vector on Fp° and so the two vector spaces are isomorphic!®

advertised alternative way of thinking about tangent vectors.

providing the

This will be useful: if we have a real valued linear map defined on F;° and can
show it satisfies Leibniz rule then it will be a member of M, and we can take it
from there to make further deductions.

Suppose W' is a generic point derivation on F;°. We will assemble some facts
about W.

Let B, denote the ball of radius r around p, € R, for any r.

If Bs. C R, for the positive number &, then (adapting the ideas from Section
5) there is a real valued function g: R, — [0, 1] which is infinitely differentiable at
every point of R, and ¢(q,) = 1 for every point ¢, of B, and for which g(g,) =0
for every point g, of R, outside of By.. Welet h =1 — g.

Now suppose F' € F° and F is 0 for all points in a vicinity of p. Select € so that
Fox71(q,) is defined whenever q, € Bs. and F(q) = F o x71(q,) = 0 whenever
qz € Ba.. Form differentiable functions g and h as above.

So F' is equal to the arithmetic product of two functions (F) (h o x). Applying
the point derivation to this product yields
W(F) = W((F) (hoz)) = F(p)W (ko) + h(p,) W (F) = 0+0.

If G = F in some neighborhood of p we examine the difference F' — G and find
that W(F — G) =0 so W(F) = W(G). The value of W on F is determined by the
behavior of F' on any vicinity of p, no matter how tiny. The values of F' outside
any neighborhood of p are not involved in any way.

If 1 denotes the constant function equal to 1 everywhere, we have
W =w(@l-1)=1-WQ)+1-W(Q1Q)=2W(1).

So W(1) = 0 and we conclude W (F') = 0 when F' is a constant function, or even
a function that is constant on any neighborhood of p.

‘We will show that

L OF
W(F) = W(ﬂ)% for all F € 5

identifying W as (the action of) the tangent vector W (x?)
Select F' € F°.

el
oxt*

We suppose that F = F oz~ ! is defined on some ball B with center p,.
For any ¢, € B we have

Flq) = Flas) = F(p)+ /

F(pas + t(Qw _px)) dt

dt

SF () + Y (18 / Di(F)(po + s — po) dt.

10Tangent vectors are point derivations on 3"11). However the space of point derivations on ?I;
for 1 < k < oo is known to be infinite dimensional (except in trivial cases) so M, is a small
subspace of these more general point derivations.
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Evaluating W at this representation of F' (valid only for ¢ near our fixed p, of
course, but that is all we need)

sz; W((zi —p) /01 Di(F)(pe + t(z —ps)) dt)

W(F)

ZW(l‘l)/o Dl(F)(pz +t(px _pw))dt

+) ok — k) W(/Ol Di(F)(pe + t(z — pe)) dt)

i=1

n 1 n
Zw(xi)/o Di(F)(p,)dt = Zw(xi) Di(F oz Y(pg).

This is exactly what we were trying to show, and we conclude that every point
derivation on JF,° corresponds to an an explicit tangent vector with its action re-
stricted to the subspace F° of 5'"117:

0
ozt »

The point derivation evaluated on a member F' of F7° corresponds to this tangent

W = W(x%)

vector applied to the member of M7 corresponding to F', namely %(p) d:v{,.

W(E) = () ds}) (WW‘) s ) W) 2E ).

So a point derivation on F° is actually determined by what it does to the n
coordinate functions z°.

The argument above does use the assumption that our point derivations are
on F°. If W had been a point derivations on 3"’; for positive integer k then

fol D;i( F)(ps +t(x — py)) dt is only guaranteed to be in C*~! and might be outside
the domain of W, causing the argument to fail.

On another note we record an obvious fact that will be used later. Suppose given
four members f, g, h and k of F3°, and suppose further that h(p) = k(p) = 0. If W
is any point derivation and f = g + hk then W(f) = W (g).

In other words, if f and g differ by the product of two functions
whose common value at p is 0, or any finite sum of such products,
then W(f) and W(g) coincide.

12. THE COTANGENT SPACE AS A QUOTIENT ALGEBRA

So far we have seen covectors at a point as equivalence classes of certain real
valued functions on a manifold and recognized them as members of the dual of the
tangent space at that point, defined as equivalence classes of curves in the manifold.

In the last section we saw that tangent vectors can also be thought of as point
derivations and we explore the concept dual to that now.
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Consider J,°, the set of infinitely differentiable real valued functions defined an
open subset of M containing p. Two functions f and g in F;° are said to be germ-
equivalent if they coincide on some neighborhood of p. This is an equivalence
relation on Fp° and the classes are called germs, for historical reasons having
something to do with a (slightly labored) analogy to wheat, seeds, stalks, sheaves,
and so on.

If (f) is the germ of function f then every function in (f) agrees with f at p, so
we can define (f)(p) = f(p).

The set of these germs form a ring with pointwise operations'! applied to rep-
resentatives and constitute a real vector space, an algebra denoted G,. The set of
germs whose functions are 0 at p is an ideal in this ring and a subspace, denoted
Jp. We will define 512) to be the ideal generated by all products fg where both f
and g are in J,. This is the set of all finite sums of products of this form. It too is
a real subspace of G,.

Finally, let €, denote the quotient ring J,/ 312,. It is a real vector space and is
intrinsically defined: that is, it is built from functions deemed to be differentiable
using an atlas, but otherwise coordinate maps are not involved in its formation.

Recall the discussion of Taylor polynomials from Section 2. Suppose (g) € 7,
and z is a coordinate map around p. The function value g(q) = gox~!(g,) (possibly
restricted to a small neighborhood of p or p,) can be written as

n
dg i i
9@) =2 5, 0" () —pz)

i=1

+ 3 @) - P (g) — pi) / (1— u)D;i(g oz~ )(pe + u(z(q) — ps)) du.

ij=1

The germ of each summand on the last line involving integrals is in 3127.

So (9)+72 =31, gfi (p){z' —pL) 472 and it follows from this that the members
<xi—p§c>+3§ cépfori=1,...,n
span &, and therefore the dimension of £, cannot exceed n.

We will show that the dual of €, can be identified with the point derivations on
F,°, thereby establishing its dimension as n. &, itself is then identified with the
dual of the set of point derivations; that is, with the space of covectors at p.

First, suppose W is a point derivation. Define W on &p by

W((f) +33) = W(f).
By the remarks in Section 11, W(f) does not vary if you add any finite sum
of products of functions which are 0 at p. And W(f) = W(g) if f and g are two
members of the germ of f. So W is well-defined on Ep-

Linearity of W is easy to show, so W is a member of the dual of €p. And this

operation associates W + cU with W + ¢ U for real constants ¢ and derivations W
and U and so is a homomorphism from derivations to the dual of &,.

HThe sum or product of two real-valued functions defined on a neighborhood of a point is
defined pointwise on the intersection of their domains, which is also a neighborhood of that point.
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On the other hand, suppose « is a member of the dual of &,,.
Define @ on F° by
a(f)=a((f = f@)+7;).

It is easy to see that @ is linear on F°. And if f and g are in F}°

a(fg) =a( {fg ~ f@)op) +7)
(((f = f®)(g = 9(p) + f(P)(g — 9(p) + (f — F(0))g(p)) +T;)
(
(»

(f®) g —9®)) + ) +al{(f = fP)g(p)) +T5)
)a({g—g(p) + 95 ) +9p) al{f = f(P) + T} )
(p)a(g) +g(p)a(f).

So @ is a derivation. And if W is any derivation and f € F°

W) =W = F@)+T5) =W = [(p) =W(]).
So the dual of £, (and hence &, itself) has dimension at least n, and coupled
with our earlier observation its dimension is exactly n. These two associations are
inverse (to each other) isomorphisms.

o
o
f
f

13. THE TANGENT AND COTANGENT MANIFOLDS

Let’s suppose given a smooth n-manifold M.

The tangent bundle for M is a set endowed with several types of structure.
The underlying set is
TM) = J M,
peM
We define w: T(M) — M by 7([h],) = p. In this context 7~ (p) = M, is called
the fiber over p and as we have seen each fiber is isomorphic to R".

For each coordinate map x: U, — R, C R"™ we identify T(U,) with |
and define the map

peU,
z:T(U;) = R xR" CR" x R"”

by z(X,) = (z(p), ¥+(X,) ) or, using coordinates,
) > = (pm U)
P

i 91 _ i 0
: (U Oa' p) - (x(p%% (U ox!

where v is a member of R”, a column with coordinates v!, ..., v™.

Giving R™ x R™ its natural topology, we define the topology on T(M) to be
the weakest topology for which all these z are continuous for all # in any atlas

generating the differentiable structure for M.

We then make T(M) into a manifold, the tangent manifold, using the set of
these z as the atlas to generate the differentiable structure.'?

12Strictly speaking, these are not coordinate maps. Their codomain is R x R™, not R2".
Make the obvious identification to deal with this technicality.
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If K is a k-dimensional submanifold containing p every differentiable parame-
terization of a curve through p in X is also a differentiable parameterization of a
curve through p in M so the equivalence classes that comprise the tangent vectors
in X, are each subsets of corresponding tangent vectors in M,,. In this context we
will identify these tangent vectors, and so regard X, as a vector subspace of M,,.

Each T(X) is a submanifold of T(M), and in particular each T(U,) is an open
submanifold of T(M).

Sometimes T(M) is diffeomorphic to M x R™, in which case the tangent manifold
is called trivial. Lie groups are important examples of manifolds with trivial
tangent manifold, but there are others.

Following the same procedure, we define the cotangent bundle for M, as a
set, by
T = | g
peEM
Again, there is a natural projection 7 given by m: T*(M) — M by n(df,) = p.

7 (p) = M is called the fiber over p for this cotangent bundle. Here, fibers
are explicitly seen to be isomorphic to R™*.

For each coordinate map z: U, — R, C R™ we identify T*(U,) with Uper M
and define
z: T(U,) - R, x R™ C R" x R™
by z(7p) = (z(p), ®(7p) ) and in coordinates this is

E(Gid:c;)) = (z(p), @, (Gidx;)) = (g, 0).

Giving R™ x R™ its natural topology, we define the topology on T*(M) to be
the weakest topology for which all these = are continuous for all z in any atlas
generating the differentiable structure for M.

T*(M) is a manifold, the cotangent manifold, using the set of these ¥ as a
generating atlas.!3

Each 7*(U,,) is, as with the tangent space, an open submanifold of T7*(M). How-
ever if K is a submanifold of M of dimension lower than M there will be many
incompatible ways to extend a smooth function f: N — R to all of M so T*(N)
cannot be automatically regarded as a submanifold of T*(M).

As a final comment, we note that the atlases used to generate the differentiable
structures on T(M) and T*(M) only contain coordinate maps of a special type. In
each case the first n coordinates are used to identify a member p of M while the
last n coordinates specify the member of M, or M7 using a special basis which
is determined by the first n coordinates. No “mixing” of coordinates from these
two groups can occur and if there is a reason to use a different basis for the last
n coordinates than the natural one produced by the first n coordinates the map
using these will not appear among those in the generating atlas.

You might wonder why anyone would choose to describe a coordinate patch in

the tangent or cotangent manifold using one of these unusual coordinate maps. One

13The codomain is R™ x R™*, not R?™. We make the obvious identification and declare these
T to be coordinate maps.
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answer comes from the universe of Hamiltonian and Lagrangian Mechanics,
where these coordinates are most helpful in describing “constants of the motion”
or periodicities and other important features of a physical system as it evolves
from one state to another. The language of Differential Geometry (in its older
form originally, but in its fully modern form in most recent treatments) is used
to clarify and extend those subjects. The transformation from simpler coordinate
maps to one of the more useful ones is implemented through a so-called canonical
transformation of coordinates.

14. ONE FINAL REPRESENTATION OF TANGENT AND COTANGENT SPACES

The representation of tangent vectors as equivalence classes of curves in the man-
ifold and covectors as equivalence classes of real functions defined on the manifold
has the advantage that these definitions are intrinsic. However they do depend
on the atlas. The functions in the equivalence classes are functions deemed to be
differentiable by that atlas. Unless you have some other way of knowing which real-
valued functions and curves are to be differentiable, coordinate maps are involved
from the very beginning.

A similar point can be made for the representation of tangent vectors as members
of Dy, the point derivations on F°, or covectors as members of the quotient ring
Ep=17p/ 312).

Given that, the following definition of tangent vector has some advantages, even
if it does include specific reference to charts. You really can’t get away from them.

For n-manifold M with differentiable structure A and p € M let
8, ={(x,p,v) |z € AwithpeU, and v eR"}.
Define equivalence relation ~ on gp by

(xvpa ’U) ~ (y7p7 U)) — (y Ox_l)/(px)v = w.

Thus, in case of equivalence, w’ = 9% (p) v/ and v = ng (p) wi.

Using Jacobian matrix % = (%(p)) = (yox~1)(p,) and its inverse we have

dy dx
w=—v and v=—w.
dx dy
Define [z,v], to be the equivalence class of (z,p,v) and let 8, be the set of

equivalence classes on gp. We make 8, into a vector space as follows.
Define [z,v], B, [z, W], = [2,v + w]p and 7 O [z, w], = [z, 7 w]p.

Suppose [z,v], = [y, w], and [z, 2], = [y, u],. Then
d
[z, 0]p @ [, 2]p = 2,0+ 2], = [y, o+ Z)}
dx »

dy dy
= [y,dxv} ®y {ydajz] = [y, wlp, ©y [y, ulp
p p
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so this addition does not depend on the coordinate map used to define it. Similarly,
the scalar multiplication is independent of chart. And these operations clearly sat-
isfy the requirements for vector space operations, making 8, with these operations,
henceforth denoted + and -, into a vector space.

Now define (M) = (J, ¢ Sp and for each coordinate map z: U, — R, define
z: 8(Uy) = Ry x R™ by z([z,v]p) = (pz,v) and give (M) the weakest topology
making all these z continuous.

§(M) is a differentiable 2n-manifold** with this topology and differentiable struc-
ture generated by these z, and with this structure (M) is obviously diffeomorphic
to T(M).

i_0

The diffeomorphism associates each X, = v 55| = [c]p to
dxoc
00, (), = Lo (200 (O, = |2, 525 0)] = [ovel
P

There are advantages to using (M), mostly associated with the effort required
to write down one of its members, and the distinction between §(M) and T(M) can

be regarded as, essentially, notational. So we will feel free to refer to a member of
T (M) using the member of §(M) with which it is identified.

In a similar way, we define
S; ={(z,p,0) |z € A withp e U, and o0 € R™ }.
Define equivalence relation ~ on g; by
(z,p,0) ~ (y,p,7) = T=0(xoy ) (py).
Thus, in case of equivalence, 7; = Ui%(p) and o; = TigTy;(p) or, using Jacobians,

d d
T=0 d—z and o=7 %
Define [z, 0], to be the equivalence class of (x,p, o) and let 85 be the set of these

equivalence classes on g;.
We make 8 into a vector space just as we did for §,, .
Define [z, 0], + [z, ul, = 2,0 + ], and 7 [z, 0], = [z, 7 0],

By very similar argument to that given above, these operations are independent
of chart and make 8 into a vector space.

Now define §*(M) = UpeM 8y and for each coordinate map z: U, — R, define
T: 8(Uy) = Ry x R™ by Z([x, 0]p) = (pa, o) and give 8*(M) the weakest topology
making all these T continuous.

As before, 8*(M) is a differentiable 2n-manifold'® with this topology and differ-
entiable structure generated by these 7.

14Here we identify R™ x R™ with R2".
1‘F’Actually7 T is not a coordinate map. The map sending [z, o]p to (pz, of), where the transpose
on the second factor maps R™* to R™, is the one we really want.
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8*(M) is, again, diffeomorphic to T*(M) with diffeomorphism associating each
Tp = dfp = 0y dx;, with

0 @a(rly = o (705~ ()l = |2 )] =Ll

p

When convenient, we may refer to a member of T*(M) using the associated
member of 8§*(M).

S$(M) and 8* (M) may be the cleanest representations of T(M) and T*(M), respec-
tively. However v € R™ and covector o € R™ in this representation are somewhat
removed from curves in the manifold representing the actual motion of particles or
real valued functions on a manifold, representing something like temperature.

It is not uncommon to see discussion begin with curves or real functions as in
T(M) and T*(M) followed by calculations using v and o from §(M) and 8* (M),
with coordinate map x and point p often left out as “understood.”

Some authors are dedicated to a single representation and refuse to use tech-
niques better adapted to another. This is inefficient, since all of the aspects of
tangent and cotangent vectors which we have discussed are actually used.

On the other hand, hopping around among representations, where you pick the
representation that makes the calculation you are trying to do as easy as possible,
can contribute to a certain amount of confusion.

As a case in point, we have defined actions of tangent vectors on three different
sets: F° and two versions of the cotangent space.

Suppose X, = [c],, is a tangent vector and o, = df, for f € F;° is in M.
We have
op Xp =df Xp = Xp( (f = f(p)) JFJ;% )
=Xp(f) = (foc)(0).
X,(f) = dfy, X, looks a bit odd, but these (equal) numbers represent the ac-

tion of X, on F° and the equivalence classes that comprise the cotangent space,
respectively.

These actions, though related, have different properties. For instance the action
of X, on F° has an infinite dimensional kernel while the action on M7 does not.

And o, acts on individual one-to-one smooth curves b with b(a) = p as well as
equivalence classes [c], of curves by the same general formula:

op(b) = (fob) () and oplcly = (f0¢)(0).

These two actions are not the same, they have different properties. For instance
the first action on the set of one-to-one curves through p is not linear because that
set of curves is not a vector space and this failure is irreparable. The second action
on the classes of curves is linear, and its properties make the cotangent space the
dual of the tangent space.

The reader is hereby warned: From this point on we will not distin-
guish among these various representations unless strictly necessary, us-
ing whichever of their essential features and applying whichever action
seems most convenient.
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The next section consists of some tables to help keep it all straight.

43



44

LARRY SUSANKA

15. THE TABLES TO HELP KEEP IT ALL STRAIGHT

In the shortest form, our assembled facts give:

v=(z00)(0) = (% 0 c)(0) e = =2 (0)

[z, v]p ¢ [c]p ¢+ 0

i
&rp

With more detail, we have the following.

[c]p is the equivalence class of those differentiable
curves c¢ through p for which

v =422 (0) = (2 0 ¢)'(0).

G;},p given by G;:),p(t) =2 Y (p, +tv) is a conve-
nient curve in this tangent vector.

Vector operations are given by
[Gag,p]p +r [G;}lfp]P = [G;j,}grw]p-
Here, for each i,
)

oxt , is defined as [z°],, so [¢], = v Bt

p

Here the symbols 8‘21-

» denote point derivations
on F,°. These are directional derivatives acting
on real-valued functions defined around p.

% v is the point derivation that gives a rate-of-

change 1 when acting on the coordinate z*.
() =Di(f oz )(ps) = 5% (p).

And if ¢ is a curve in the previous representation
and f € F5° then [c], = v' 52| and

p
;0
v oz’

Generally %

) (f) = (f o) (0) = H<(0).

The interpretation of these triples is given above.
The notation is stripped here to bare essentials.
Vector operations are given by:

[,v]p, + 7 [z, W], = [, v+ 7 w],.
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dfy = 0; dx),

of i
= azfi (p) dLCp

df, is an equivalence class of real-valued
functions ¢ defined around p for which
o = (goz~ 1) (p,) and the function f is
a representative of this class.

This means o; = D;(gox™1)(ps) = gfi (p).
The simplest representative is o; 2°.

Vector operations are given by

dfy +rdgy =d(f +79)p

gp = jp/jg

-

s
I
-

oi{xt —pl) + 312)

oi{x? — pL) is the germ of a real-valued
function that is 0 at p. The sum is 0
there too and hence in J,.

We learned that every smooth real-
valued function g for which g(p) = 0
and (gox~1)(p,) = o differs from this
one by a member of J2.

Sp

[z,0]p

Vector operations are given by:

[z, 0]p + 7z, 7], =[x, 0 +7T]p.

Tangent vectors and covectors act on each other in coordinate-independent form
using representatives of their defining function classes. But for changing coordinate
maps one either uses the 8, and 8, forms or gyrations that are equivalent to that.

Act on each other by ... Go from x coordinates o
and v to y coordinates T
and w by ...
i '’ dx
ojdzdv* S| =oivt=ov Tza(aﬁ(p»—ddf
oz’ |, y Y
M, and M* — (9y ) — dy
T e dldy = (fe0r) w=(#0)r =ik
vt 0 ia(wi— Y+ ) =0
ozt \iZ Pe r)
D, and &,

or [cp({g)+73) =(g00)(0)

8, and 8,

[z, 0]p[z,v], =0V
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16. A CLOSER LOOK AT ZERO

This short section is unusual for the early part of these notes because it uses
second derivatives. We point out the intriguing idea that there is a “copy” of the
whole tangent space at p inside each zero tangent vector.

Suppose ¢ is any curve in the zero tangent vector at p. So 0, = [c], = [p], € M,,
where in the last term we abuse notation to double-use a symbol, denoting both
the point itself and the constant “curve” at that point by p.

So ¢(0) = p and (zoc)'(0) = 0 for one, and hence every, coordinate map = around
p. We have [c], = [z,0], in any coordinates.

The curve c(t) = 27! (pz + % v) for ¢ near 0 and vector v € R™ is an example
of a curve like this. In this case (z o ¢)”(0) = v.

Because (zoc)’(0) = 0 the curve ¢ has an unusual property: its second derivative
changes in new coordinates in the same way the first derivatives change with more
general curves through p. If y is a second coordinate map around p

(yoo)(t)=(yoz towoc)(t)
=(yox™) (c(t)s) (xoc)(t) = A(t) (xoc)(t)
The last term is a matrix product of two functions of time. The product rule has
(y0¢)"(0) = A'(0) (x0¢)'(0) + A(0) (z0)"(0) = (y o ™) (ps) (x 0 ¢)"(0).
We conclude that if v = (z 0 ¢)”(0) and w = (y o ¢)”(0) then [z,v], = [y, w],.
Define the function Y.: 3° — R by
Yo(f) = (£ 2.0)"(0).
Y. is obviously linear. In coordinates this is calculated in two steps as
(foe)(t)=(foa tozoc)(t)
= (for Y (c(t)s) (woc) (t)

for row matrix function (f oz~1)/(c(t),) of time. Calculating the second derivative
by the product rule and using (z o ¢)’(0) = 0 gives

Ye(f) =(foe)"(0) = (foz™) (ps) (x0¢)"(0)
=(foa ™) (ps) (woy™) (py) (yor™") (pa) (x 0¢)"(0)
=(foy™ ") (py) (y20)"(0).

This calculation illustrates several things.
For instance, if g € df,, then Y.(g) = Y.(f).
And if df, = [z, 0], and (z 0 ¢)”(0) = v then
Yo(f) =0ov=[z,0], [z, 0],
In other words, Y, = [z, v],.

Every member of M, corresponds to Y, for a class of curves ¢ € 0, = [z,0],, and
these classes exhaust 0,.
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17. THE TANGENT MAP (PUSHFORWARD) ON TANGENT SPACES

We are going to think about how to transport (information about) tangent and
cotangent vectors from one manifold to another; we will produces functions which
implement this association between the two tangent spaces and also, in the next
section, between the two cotangent spaces.

Suppose H: M — N is a smooth map between manifolds and = and y are
coordinate maps around p € M and H(p) € N, respectively.

Select tangent vector X, = [z, v], € M,.
Define H,p,: My — Ny p) by

dyo H
v

e = [y, w]H(p)-
dr ]H(p) (p)

{51 = [l (0 2872 5 Y () ol — [y

In words, you left-multiply v by the Jacobian of H to get w.
H

/(/(/p "",{a:;’ /yh‘m
¥ )%

n Jaco bian H{M

R (yo HoRVR)

Le £+ -Mu\l—}p\J

This map is interpreted as the best linear approximation to H near p, applied
to M, and Np(p), which are themselves the best linear approximations to M and
N near p and H (p), respectively.

It is, of course, necessary to verify that this map does not depend on charts and
we check that now.

Suppose § and T are also coordinate maps around H(p) and p, respectively.
Thus [z,v], = [T, g—z v]p = [, 7].
Applying the chain rule gives
{ dyoH] [ dyo H dx :|
Y, — v = ) -V
ar ) dvdr ],

_[ydydyodeU:| _|:y dyoHU}
Ay dT o de gy [T dr g

So you produce the same tangent vector in N, whichever coordinate maps
are used to calculate H.,p.

For each p € M this map is linear, and H.,(M,) is a subspace of N,y whose
dimension is the rank of H at p.

We call H,, the pushforward or tangent map of H at p. Using the active
verb, H.,, is said to push a tangent vector into N ().
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H,, takes the class of a curve h through p to the class of a curve through H(p)
in the most direct way possible, by composition to form H o h.

If [h], € M, then H o h is indeed a differentiable curve and at H(p) at time 0
and therefore a member of a tangent vector in Np(,). We have a fixed value for
(x 0 g)'(0) whenever g € [h], so for coordinate maps x and y

(yoHog)(0)=(yoHox ") (ps) (x0g)(0)
=(yoHox ") (py)(x0oh)(0)=(yoHoh)(0).

Therefore this tangent vector is not dependent on choice of representative h.

For every X, € M, the tangent map for smooth H: M — N at p
H.,: M, = Ny may be given by H,,(X,) = Hup([h]p) = [H o bl

for any curve h € X,,.

If we examine Theorem 6.3 we see how to use special coordinate maps = and y
to “straighten out” H. When H has rank j at p there are coordinate maps x and
y for which

1

a
al Ev al 0
J
yoHox ' | : 7/1jf1 (a) forall a=| : near p, =
a” . a” 0
¥*(a)

If H has constant rank in a neighborhood of p the v may be chosen to be
identically zero, or are absent if j = k.

In any case, the Jacobian (yo H oz 1) has the j x j identity matrix in the upper
left block in a neighborhood of p,.

If v € R" define curve b, by b,(t) = H oz~ !(tv) for t in some (possibly) small
interval around 0. This is a smooth curve entirely in H(U,) C H(M).

[bu] i) = [¥> (2 b0) (O] 1) = [y, (y o H o™ ") (pa) v )

The first j coordinate gridcurves formed from x are, when composed with H,
taken to curves corresponding to j linearly independent tangent vectors which there-
fore span the range of H,,.

In case H has constant rank in a neighborhood of p we have a cleaner result.

17.1. Theorem. If H has constant rank j in a neighborhood of p we
can pick coordinate maps x and y so

., ([G5,],) = [GZTH@)}H(,,) fori=1,...,j

which form, therefore, a basis of subspace H.,(M,) of Ngpy.

We will not hesitate to use this characterization of the tangent map (i.e., use
coordinate maps of this kind) when that is convenient.
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Members of F37 ) (N) may be constant on the part of H(M) in their domains.
In the situation of Theorem 17.1, where H has constant rank in the vicinity of p,
when k£ > j the coordinate gridcurves of that theorem, GZ’;H(p) fori=j541,...,k,
are k — j examples.

In the constant-rank case, if f is any member of Iy, (N) which is constant on
the part of H(M) in its domain then

+1
dfrp) = Uj+1dy£?p) +-t deyf'{(p)

since if dfp(p) had any nonzero component involving dy}{(p), ey dy}'{(p), say for
specificity dy}{(p), then f o G:IH(p) would have nonzero derivative at 0. But f o

G?H(p) = fo H oGyg',, contradicting constancy on the image of H.

The following corollary is an easy consequence, characterizing the members of
the subspace H.,,(M,) as all and only those members of N (,,) which act as the zero

tangent vector when applied to smooth functions that are constant on the image
of H.

17.2. Corollary. If H has constant rank j in a neighborhood of p let
S={feTFHpN) | f(z) =0 for every z in both the domain of f and H(M) }.
So Hupy(M,) ={X € Ngp) | Xf=0 VfeS}.
Many texts denote H., by dH, and call the tangent map the differential, but we

don’t because we have already used that vocabulary for real valued functions f on
M, and f,, and df,, are slightly different for these functions.

As we have defined it df, is given for function f from M to R™ where m = 1.

If m is any positive integer we can expand that definition to dfy: M, — R™
given by df,([z,v],) = (f o2~ !)/(p;) v. This is a linear map from M, to R™.

df, and f,, are obviously related, and the difference corresponds to how seriously
you intend to take the identity map on R™ whether R™ is to be taken on its own
or as a range manifold.

Thus fup([7,v]p) = [id, dfp([z,v]p)]#(p) for identity map id on R™.

So we have found a way to transform members of M, into members of N, for
any p € M. Only points of N in the range of H are targeted by any of these maps.

Remember, H need not be one-to-one. If H(p) = H(q) for p # g then there will
be two maps “pushing forward” tangent vectors into Ny (,) = Np(g)-

If K: N — Wis also a smooth map between manifolds and p € M then KoH (p) €
W. So we can define the tangent map of K o H at p.

It is straightforward to show that
(K e} H)*p = K*H(p) o H*p.

This map pushes tangent vectors from M, into tangent vectors in W (,), and
we can “push forward” tangent vectors as far as we want this way.

We have defined the tangent map applied to [h], as [H o h]g () and this has a
serious advantage: no coordinates are directly involved in this application.
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We have defined the tangent map on a coordinate representation of a tangent
vector, [z, v]p, as [y, (yo Hox ™) (py) v] () and this has the advantage that it tells
us exactly what we need to calculate to implement the pushforward.

If you take a random walk through the literature you are likely to find formulas
that don’t look like this at all but which purport to define the tangent map or
differential of H as well. It is a notation problem, founded in historical choices that
made sense at the time, rendered ineradicable by long-use and ubiquity.

The story behind this version goes as follows.

A tangent vector at p is a derivation on Fp°(M). Usually the “partial derivative”
notation is employed in older texts. Tangent vectors there have the form vk% |p.

Derivations are determined by how they act on real-valued functions. So to push
a tangent vector at p to a tangent vector at H(p) we need to prescribe what the

result does to a generic member of 7 (N).

Select f € 3"%0(1)) (N). You may see a calculation similar to
of

dyioH), . 0
_ .k

(f)

H(p)

followed by the conclusion that

) Oy o H) )
k _ [k
Hep (v Ok p) (v ozk (p)) oy’

Using the modern partial derivative notation allows us to make sense of this.

0
k

H(p)

> (f) =v"Di(foHoa ) (p) =v Di(foy toyoHoa " )(p)

=v"Di(foy ")(yo H(p)) Di(y’ o Hoz ") (p)
= (V*Dr(y" o Hox ") (p)) Di(f oy ") (y(H(p))).

Though identical in meaning and (after a bit of unpacking) explicit, I personally
find this laborious notation and expanded calculation to lack several qualities I look
for in good notation. It was even worse before the advent of the Einstein summation
convention. And the notation fails to compensate for its visual clutter by guiding
me to a better understanding of the nature of a tangent vector.

I recommend sticking to the earlier approach when possible.
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18. PULLBACK ON COTANGENT SPACES

In this section we use the same setup as in the last: M and N are manifolds and
H: M — N is a smooth map. z and y are coordinate maps around p € M and
H(p) = H(p) € N, respectively.

Suppose g € ??{O(p), the real-valued functions defined and smooth on some neigh-
borhood of H(p) in N. Then go H € F°.

And if (goy ™) (H(p)y) = (foy ') (H(p)y) for some f € TG, then
(goHox ') (ps) =(goy ' oyoHox ") (p,)

(9Oy Y (HPp)y) (yo Hox ") (ps)

(foy V) (H(p)y) (yoHox 1) (ps) = (fo Hox™) (pa).
That means d(go H), = d(f o H),.

So H can be used to identify in each of its domain cotangent spaces M, a covector
related (through H) to each covector in its range cotangent space N’;I(p).

We define for each p and smooth function H: M — N
H}: N;{(p) — M3 by Hj(dg,, )=d(goH).

Hy is called the pullback of H at p. One pulls back covectors from Nj{(p)

into M. The pullback is linear. The dimension of the range in My is the rank of
H at p.

As with pushforward, the pullback process can be extended through composi-
tions.

If K: N — W is smooth and p € M then K o H(p) € W.
So at each p the pullback of K o H at p
Ko H(p)": Wicompy =My, is (Ko H)y(dgy,p,, ) =d(go Ko H),.
A quick examination shows (note reversal of order) that
(KoH),=H,oKy,.

Select cotangent vector wy(py = df,, = [V, 0]u(p) € Nt

So o= (foy™ ) (H(p)y).
As we did with the tangent map, we want to calculate the value H,([y, o]r(p)) €
M, of the pullback map applied to this cotangent vector.

It will be of the form [z,7],, where 7 = (f o H o 27 1)/(p).

Hy([y,0lm) = [z, (foy™ oyo Hoa™ ) (ps)lp

= [x,a(yoHoxil)’(px)]p = |:l’,0’

‘T?T]p'

dyoH} 0
dx »

In words, you right-multiply o by the Jacobian of H to get T.
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Members of tangent and cotangent spaces are determined by how they act on
each other. Suppose [c], = X}, € M, and df,, ,, = w,,, €N}

H(p) H(p)"
de(p) H*p([c]p) :de(p) [H © C]H(P)
=(foHoc)(0)=d(foH)yld,=H,(df ;) lclp-

Pulling back df(, to act on [c], gives the same result as using df

e directly
to act on the image of [c], pushed into N, by the tangent map.

W (p) H*p(Xp) = H; (wH(p)) Xp.

(e LP ¢ duea

==

- " H
Vo T

Ei) 6
\}z\{ 28

1A

=

As with tangent maps some sources use an older, more cumbersome, notation
for pullbacks. You will see a formula similar to

* i _ 8(yZ o H) k
Hy(oidy,, )= (oi &nk(p)) dz;,.

When o; dy’, = dfy,, for smooth real-valued function f defined around H (p)

we have o; = gyfi (H(p)) = Di(foy ) (y(H(p))) for each i and the chain rule gives

O(foH
13 df, ) = 22 gy ank = a0 ),




MANIFOLD NOTES PART I (DRAFT) 53

This can all be obtained easily from our definitions, of course, but in older texts it
may be obtained by reasoning that the pullback of a cotangent vector is determined
by what it does to curves through p. Let ¢ be a smooth curve with ¢(0) = p and
apply o; dy%(p) to the smooth curve H o ¢ through H(p). The chain rule yields the
same result as the right-hand side applied to ¢, thereby justifying the formula or
providing an interpretation of the definition, depending on where this formula first
appears in the pullback discussion.

19. PUSHFORWARD AND PULLBACK ON TANGENT AND COTANGENT MANIFOLDS

We now will extend this concept to apply to tangent and cotangent manifolds,
not just individual tangent and cotangent spaces.

The map H.,, has been defined on M, for each p. So we can define a map
H,: T(M) - T(N) given by H,(X,) = H.p(X,)
and this is a smooth map between the two tangent manifolds.
If H is a diffeomorphism so is H,.

Differentiable curves in any manifold are important entities, and they are im-
portant in tangent manifolds too.

Suppose ¢: (a,b) — M is any smooth curve in M.

Then the function c.: T((a,b)) — T(M) is defined by c.([h]o) = [co Al for
each a € (a,b).

The nicest possible non-constant smooth curve in the manifold (a, b) corresponds
to the identity map id on (a,b), and [id, 1], = %|a is tangent to the identity map
at every o € (a,b).

The curve b: (a,b) — T((a,b)) given by b(a) = [id, 1], = %’a would have to
qualify for consideration as the nicest curve in J( (a,b) ).

For each o € (a,b) let k* denote the time-shifted curve given for each ¢ in

(a,b)N(a—a, b—a) by k*(t) = ¢c(a+1t). We use this translate to produce a curve
in (a,b) with the same derivative at ¢t = 0 as that possessed by ¢ at t = a.

Composing ¢, with b gives a smooth curve in T(M):

d
e o b(a@) = e (dt ) = [ke(a) = [z, (x 0 €)' ()] e(a)-
(a7
Tangent vector c, o b(«) is tangent to ¢ at every «. If M happens to be R™ this
can be visualized as an arrow attached to the curve ¢ “pointing the way” along the
curve, and whose length is the speed of the motion.

There are issues trying to use the point-by-point pullback maps to create a map
H*: T*(N) — T*(M) between the two cotangent manifolds, as we just did for
tangent manifolds.

First, the map cannot be defined at all off H(M) so if H is not onto N we have
one problem.
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Second, if H is not one-to-one the map is not well-defined: when H(p) = H(q)
for p # q we would have H*(wg(,)) multiply defined as a member of both M, and
M.

But if H is a is one-to-one and onto all is well, and

H*: T*(N) = T*(M) can be given by H* (w,,,) = Hy (w,,,) -

p
As with H,, if H is a diffeomorphism so is H*.

20. VECTOR FIELDS AND 1-FORMS

A function X : M — T(M) for which X, € M, for all p € M is called a section
of the tangent bundle, and a vector field on M.

Be warned of a notation expansion. Previously, X, stood for a generic member
of M, and the p subscript served as a reminder of “where it was at.” Now X is
a function whose value at each p happens to lie in M, and this function value is
denoted X, = X (p).

For each coordinate map z: U, — R, any vector field can be represented as

X, =v'(q) for g € U,

i
qu

1

and the vector field is called smooth if each coefficient function v* o z~! is smooth

for all coordinate maps in a generating atlas.
The set of smooth vector fields on M will be denoted T*(M).

In coordinates x the formula shown above on the right actually defines a member
of TH(U,). Every member of T'(M) can be restricted to U, to produce a member
of TH(U,). However it is possible that T%(U,) may contain vector fields that are
not restrictions'® from vector fields on M.

For specific ¢ and another coordinate map y: U, — R, for which ¢ € U,NU, the

coefficients w'(q) on in a representation of X (¢) in y coordinates is specified

)
oyt
by the change of coordinates formula:

w'(q) = gi; (a) v (q)-

Similarly, a function §: M — T*(M) for which 6, defined as 6(p), is in M} for
all p € M is called a section of the cotangent bundle, and a covector field on M.

For each coordinate map z: U, — R, the restriction of any covector field on M
can be represented as a covector field on U, by

0y = 0i(q) dx; for g € U,
and as in the case of vector fields, a covector field is called smooth if each coefficient

function o; o ™! is smooth for each .

16Certain U, have vector fields that would, of necessity, be discontinuous if extended to M.
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With ¢ € U, N U, as above we have 6, = 7;(q) dy;, where

oz’

A smooth covector field is called a 1-form on M and the set of all such will be
denoted J7 (M).

Both T1(M) and T;(M) with the natural pointwise operations are real (infinite
dimensional) vector spaces, but they are also F°°(M)-modules, and can be made to
act on each other as members of dual vector spaces at each point in the manifold,
and the result of such an action is a member of F°(M).

7i(q) = 0i(q)

In this context, members of F°°(M) are sometimes called number fields on M.

The differential linear operator d: 3"11) — M, defined at each p induces a similar
map, also called the differential, defined on the number fields F°° (M), given by

d: F (M) = T (M) given by df(p) = df.
The differential obeys the rule:
d(fg) = fdg+gdf forall f,geT=(N).

It is, of course, not true in general that every member of T7(M) can be repre-
sented as df for some f € F*(M), and “exact” conditions under which a given
covector field has such a representation is an interesting question.

We can now extend the pullback and tangent map to act on number fields, vector
fields and 1-forms in some cases.

Suppose H: M — N is a smooth map between manifolds.
We define H*: F*°(N) — F(M) by H*(f) = fo H.

This is not only a homomorphism from one real vector space to another, it is
an algebra homomorphism between these two commutative unitary algebras: that
is, H*(fg) = H*(f)H*(g) and H*(1x) = 1y, where 15 denotes a function that is
constantly 1 on set B.

Note that any two members of F°°(N) which agree on the image H(M) of H
will be sent to the same member of 7°°(M). So if H(M) # N then H* will likely'”
have nontrivial kernel. But if H is a diffeomorphism H* is an isomorphism.

For 1-form w € T1(N) define member H*(w) of T1(M) to be the 1-form given on
M by H*(w), = Hj(w for each p € M.

Note that only the part of w defined on the range H(M) C N of H is relevant
to this definition. If § and w agree on H (M) then H*(w) = H*(0).

This is the pullback of H,
H*: T]_(N) — T]_(M)

H(P))

1714 is possible for H* to have trivial kernel on F° (N) even if H is not onto. Let M be the
unit circle with the point (1,0) removed and let N be the unit circle, both with subspace topology
from the plane. Let H be the inclusion map of M into N. Then H* is one-to-one on F°°(N).
However it is not onto F°°(M), which contains functions with different limits as you head toward
(1,0) from above or from below along the circle.
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Soifw € T1(N) and w,, ,, = dg,,,, then
H*(w)p = H;(wH(p)) =d(go H)p.
We summarize the pertinent facts now.

When y and z are coordinate maps around H(p) and p, respectively, and if
WH(p) = ¥ 0)H(p) Where o = (goy 1) (H(p),) for some real-valued function g,
then

H*(‘-"’)p =H;([ya O']H(p)) = [wao' (y oH o w_l)l(pm)]p
=[z,(goy™ ) (H(p)y) (yo Hoz™") (pa)lp
=[z,(go Hoz ") (ps)lp = d(g 0 H)p.

To apply H* directly to [y, o]p(p) you move from N to M and right-multiply o
by the Jacobian of H. Other equalities are just the chain rule.

This is @ second usage of the symbol H*. Formerly it was a map from one
cotangent manifold to another. Here it is a map from covector fields to covector
fields. Context indicates which is intended!

H* cannot be an F°°(N)-module homomorphism for a number of reasons, such
as the domain mismatch between members of F°°(N) and members of F>°(M).
However if f € F°(N) then fo H € F°°(M) and the point-by-point definition of
H* gives us the relation

H*(fw)=H*"(f)H (w) for f € F*N) and w € T1(N).
We now suppose H is one-to-one and onto.

For vector field X € T1(M) define member H,(X) of T*(N) to be the vector field
on N given by H.(X)g(p) = Hip(Xp) for each p € M.

Had H not been onto this would only serve to define the vector field on the
range of H, not all of N. Had H not been one-to-one the function would fail to be
well-defined.

The map H, is the pushforward or tangent map of H,
H,: T' (M) = T'(N).
So if X € T1(M) and curve ¢ € X,, then
H.(X)H@p) = Hip(Xp) = [H 0 c]H(p)-

Here again we have a second usage of the symbol H,. Formerly it was a
map from one tangent manifold to another. Here we take vector fields to vector
fields. Context will make clear which we intend.

If we want to calculate this in coordinates select coordinate maps y and x around
H(p) and p, respectively. If X, = [z,v], where v = v(p) = (zoc)’(0) for some curve
¢ € X, then



MANIFOLD NOTES PART I (DRAFT) 57

H*(X)H(p) = H*P([ma v]p) = [ya (y oHo m_l)/(pm) v]H(p)
=[y,(yo Hoz ') (pz) (x 0 c)(0)]a(p)
=[y,(yo Hoc)(0)]uwp) = [H o up)-

To apply H, directly to [z, v], you move from M to N and left-multiply v by the
Jacobian of H. The rest is the chain rule.

If f€F>°(M) and in case H is a diffeomorphism then fo H~! € F°(N).

So we can define a map H,: F° (M) — F>°(N) by H.(f) = fo H™ L.

This map H, is an algebra isomorphism of F°°(M) onto F*°(N).

As before, the point-by-point definition of H, gives us the relation
H.(fX)=H.(f)H.(X) for f € JF>°(M)and X € T"(M).

If H is a diffeomorphism H* and H, are vector space isomorphisms. H, and
H ' = (H,)™! serve to identify T1(M) with T1(N), and the two pullbacks H* and
(H=Y)* = (H*)~! identify T1(N) with T3 (M).

Because of the way we defined tangent vectors and differentials the

tangent maps and pullbacks of coordinate maps are trivial to apply.

When z: U, — R, is a coordinate map T(U,) may be regarded as an open
submanifold of T(M) and T7*(U,) as an open submanifold of T*(M).

Any diffeomorphism whose domain is an open submanifold of M is called a
neighborhood diffeomorphism on M. (Note the distinction between a neigh-
borhood diffeomorphism and a local diffeomorphism. The latter are defined on all
of M and may not be one-to-one.) Since z is a diffeomorphism from submanifold
U, of M onto submanifold R, of R™ it is an example.

The tangent maps x,: T*(U,) — T'(R,) and pullbacks z*: T1(R,) — T1(U,)
are vector space isomorphisms and almost F°°-module isomorphisms, except for
the domain mismatch issue mentioned above.

Suppose X € TY(U,) and 0 € T1(R,).
There is a curve ¢ in M with ¢(0) = p and function g: R, — R for which
[c], = X, and dg,, =0,,.

Define column vector v = (x o ¢)'(0) and row vector 7 = ¢'(p,.).

Thus X, = [¢], = [z,v], and 8, = dg,, = [id,T]p, .

Applying the tangent map z, to X at p we have

2:(X)p, = Tap([2,v]p) = 24p(Xp) = [wo ]y, = [id, (w0 ¢)'(0)],, = [id, V],
For the pullback we have,
z*(0), = x;(epa:) = x;([id, T]pz) = x;(dgpz) =d(gox), = [x>7—]p'

Moving around among these vector and covector fields involves noth-

ing more than switching the identity map in R, with x in U, and the

point p, with p when using the “ordered pair” version of the vector and
covector field values.
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Theorems about vector or covector fields, such as theorems about solutions of
differential equations determined by a vector field in R™, have local variants on
manifolds, transported there by x, and z* and their inverses.

For neighborhood diffeomorphism x from manifold M onto
an open subset of R™ and p in the domain of x

w;([ida Tlp.) = [®,7]p and  z.p([z,v]p) = [id, v]p,-

Applying (z71)* = (z*)"! and (z7 1), = (2.) ! can be useful too, and the boxed
equations help with that as well.

21. SPECIAL CASES OF TANGENT MAP AND PULLBACK

We will discuss these constructions involving smooth functions
f: M —=R and smooth curve c¢:R—M
and a point p € M and r € R with f(p) = r and ¢(0) = p.

Ry is the equivalence classes of real-valued functions on R with common deriva-
tive at time 0, which is when they pass through 0. If % ., 1s the tangent vector of
the identity map ¢d on R then

4 = [id, h'(0)]o.
0

The tangent map c.o: Ry — M, takes [h]p to [c o h],. The Jacobian of ¢ with
respect to coordinates x around p and id around 0 is

(xocoid ') (id(0)) = (z o c)'(0)
so  cwol([h]o) = cuo(fid, W' (0)]o) = [z, (x 0 ¢)'(0)R'(0)],
—(0) [, (0 ) (O)] = H(0) e

These tangent vectors are all numerical multiples of the single tangent vector at
p determined by c itself.

Now lets examine the pullback ¢f: M7 — Rg.

Each pullback value should be characterized as some numerical multiple of the
differential dty of the identity, since the range of this pullback is 1-dimensional.

If dg, € M, for g: M — R then cj(dg,) = d(g o ¢)o-
co(dgp) = 5[z, (g 0 271 (p2)]p) = [id, (g 0 c 0 id™")' (id(0))]o
=lid, (g0 ¢)'(0)]o = (g0 ¢)'(0) [id, 1]o = (g © ¢)'(0) dto.
So in the identity coordinate map the numerical multiple is just the directional
derivative of g in the direction determined by ¢ at p.

Now let’s find the tangent map and pullback for f: M — R.
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If [h], € M, and h(0) = p then the tangent map f.,: M, — R, will take
[h]p = [z, (x 0 h)'(0)], to

d

[id, (id o f o ) (0)]» = [id, (f o )" (O)]; = (f o h)'(0) —| -

If f represented something like temperature on the manifold, the numerical mul-
tiple is the rate at which temperature is rising as you move through p on h. The
numerical coefficient is dfy, [h],.

This highlights the distinction between the closely related maps df, and fp.
They both are linear maps operating on tangent vectors, but their range is different.
One produces a tangent vector while the other produces a number, the coordinate
of that tangent vector in a preferred basis.

d
dt|,

Finally, we come to the pullback f;: RY — M7, Suppose h is a real valued
function defined on an interval containing 7.

fo(dhy) = £y ([t (hot ™) () = f5 ([t 0 (1)) = [z, (ho foa™) (pa)]p
= [z, W (") (f o™ (pa)lp = W(r) [, (f 0 271) (pa)lp = (1) dlfy-

f: M — R — f*p(Xp) = [Zda dfp(Xp)]T = dfP(Xp)

So f;(dh;) is always a numerical multiple of df;,.

As a special case, if h = id we have f;(dt,) = df,. This pullback takes the
differential dt of the identity map in R to df.

22. DIFFERENTIAL EQUATIONS ON AN OPEN SUBMANIFOLD OF R"

At this point we have all we need to solve differential equations on manifolds, as
we did in R™ in Section 3.

We start with an open submanifold R of R™ and a particularly nice vector field
Z €T (R).

For this vector field Z there is a smooth vector-valued function g on R for which
Zy = lidg, g(a)]le for every a € R
where ¢dp is the identity coordinate map on R.

According to the results in Section 3 for each p € R there are numbers r and K
and a smooth local flow

S:[—2r,2r] x B,(2K) — B,(4K) C R
for the DE determined by the smooth vector-valued function g.

For each a € B,(2K) the function ¢, : [—2r,2r] — B,(4K) given by c,(t) = S;(a)
is differentiable for all ¢ in (—2r,2r) and for these ¢ values

c(0)=a and ¢é.(t) = g(eq(t)).
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S is unique in the sense that any solution to this IVP must agree with the one
provided by S on the overlap of their domain time intervals.

In Section 3, the number r was chosen so that

cq(t) € Bp(2K) for a € B,(K) and t € (—r,r).

For open ball By(K) and t € (—2r,2r) define open set R; = S;(By(K)).

So Ry = By(K) and R; = S;(Bg(K)) C By(2K) C Rfor all t € (—r,7).

The restricted map S;: Ry — Ry is a diffeomorphisms for each t € (—2r, 2r).

And for any s,t € (—r,7) and any a € By(K) we have

So(a) =a and Sgii(a) = Si(Ss(a)) and Sg(R¢) = Rsys.

For any t € (—r,7) and a € By(K) it follows that

Ca(t) = lim Stie(a) = Si(a)

timg 22 =20 (5, (a)) = glea(t)) = 9(cs,@(0) = E5,(a) (0)

Among other things, this means for a close to p
Se(a) —a

. = [idR, ¢4(0)], -

a

Zy = lidg, g(a)], = {idR, lim
e—0
The following result has a certain visual appeal.

22.1. Theorem. If p =0 € R and Zy = [idg, e1]o where ey is the first basis vector
in R™ then there is a coordinate map y: Uy, — R, around 0 so that

Z,=ly,e1lqy Vg€ U,.

In other words, Z, = 8%1 for all q in this coordinate patch, and on the
q

entire patch the integral curves are just the coordinate gridcurves, G, .
Proof. Assume the conditions on Z and that for smooth vector valued g
Zy = [idR, g(a)]a for a € R.
Let S: [—2r,2r] x Bo(2K) — By(4K) be the local flow for Z as discussed above.

For each a the curve ¢, (t) = S¢(a) is a solution curve for the DE determined by
¢ with initial condition ¢,(0) = a, and using the other vocabulary ¢, is an integral
curve for the vector field Z. In fact [cu]a = Z4 50 ¢0(0) = g(a) for every a.

Suppose [ is the lesser of K or r and a € B3(5).

We temporarily suspend, for typographical convenience, our insistence that mem-
bers of R™ be represented by columns.

Define the function ¢ by
(b(a) = Sa1(07a27 R ’an) = Sal(a — (ll eq )

To calculate ¢(a) start from the projection of a onto the first-coordinate-zero-

hyperplane and follow the integral curve (the solution to the IVP) for time a®.

Note that ¢(0) = 0 and, in fact, ¢(0,aq,...,a,) = (0,az2,...,ay).
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For every a in the open ball B§(/5)

1 2 ny _ 2 ny _

D1¢(a):11m d)((l +e,a%,...,a ) ¢(a’): im Sal—i—s(ovav'”,a ) ¢(a)

e—0 IS e—0 g
— lim S:(Sq1(0,a2,...,a")) — ¢(a) — lim Se(d(a)) — ¢(a)
e—0 e e—0 5
=g(¢(a)).

We don’t have as much information about the partial derivatives in other direc-
tions, but we can do calculations at (0, as,. .., a,). Specifically, for all other partial
derivatives

Dj¢(0;a27...7an) = lim (ZS(O,G;Q,...,CL]' +E7“.’an) — ¢(O’a2’.”7an)
e—0 S
_ lim 0,a2,...,a; +¢,...,an) — (0,a2,...,ay)
e—0 3
= 6j.

In particular, the derivative matrix of ¢ at the origin is the n x n identity matrix.
And the first column of the derivative matrix is, everywhere on the open ball, the
vector given by g at that place.

That means several things. For instance there is an open set A with 0 € A upon
which ¢ is a diffeomorphism between A and B = ¢(A). Recall that A C B3(8) by
assumption, and by restricting to smaller open neighborhoods of 0 if necessary we
may without loss presume that B C Bg(8) too.

Note that the intersection of A and B with the hyperplane is the same: both ¢
and ¢! are the identity on that intersection.

You find ¢~!(a) as follows. a' is the time parameter that got you to a from the
hyperplane. Thus S_,1(a) is on the hyperplane. So ¢~ (a) = a'e; +S_,1(a).

Let’s examine the form of Z on points in the coordinate patch B for coordinate
map ¢~ 1.
So Za =lids,g(a)la = [, (67) (a) g(a)la

where idg is the identity coordinate map on B C R.

g(a) is, everywhere on B, the first column of ¢’(a). Therefore (¢~1)(a) g(a) = e1
everywhere on B. That is:

Zy = lidg, g(a)]la = [¢7 1, e1], for all a € B.
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23. DIFFERENTIAL EQUATIONS ON A MANIFOLD

Using the results from Section 22 we will now solve differential equations on more
general manifolds.

We suppose given vector field X € T* (M) and coordinate map z: U, — R, on
manifold M and p € U,.

Let’s restrict our attention temporarily to the open submanifold U, of M and
let Y be the restriction of X to this submanifold.

There is a smooth vector-valued function v: U, — R"™ so that for all ¢ € U, we
have X, =Y, = [z, v(¢)],.

idp, denotes the identity coordinate map on R,. Let v = go x.

For each q € U, 24 (Y)g = 24qg(Xy) = [idr,, v(¢)]q, = lidRr,, 9(qz)]q. -
Let Z = 2,(Y) € T' (R,).
Zy, = lidr,, 9(¢z)]q, for every q € U, or, as is frequently more convenient,
Z, = lidg,, g(a)ls for every a € R,.

Select K so that the closed ball B, (4K) of radius 4K for positive K centered

at p, is contained in R,.

According to the results in Section 22 there is an r > 0 and a local flow
S: [—2r,2r] x By, (2K) — By, (4K) for the DE determined by the vector-valued
function g. The curve ¢, given by ¢, (t) = Si(a) is a solution curve to the IVP given
by g with initial condition ¢,(0) = a.

Now let

T:[-2r,2r] x 27 (B,,(2K)) = 2 (B, (4K))
be defined by
T,=2 1080z for te [—2r, 2r].

z71(B,,(2K)) is a compact neighborhood of p and Tj is the identity on this
set. For ¢ € [—r,r] the restriction of T} to 2~ *( By _(K)) is a diffeomorphism of this
open submanifold of M onto its image.

For s,t € [-r,7] and any ¢ € 7' ( By (K)) we have
Tovt(q) = To(Ts(q))-
Suppose I is an open interval and b: I — M is a smooth curve.

b is called an integral curve of the vector field X and X itself is said to be
everywhere tangent to b if X, is tangent to b at a for every o € I.

We have found that X, () is tangent to the curve by = 27! o ¢, for each
g€z (B (2K)) and at each o € (—2r,2r).

We call T a local flow for the vector field X and X is called an infinitesimal
generator for T.
zoT.(q) —z(q)

— : — / -1 o
Xq= .lﬁ,ilil(l)f q—[x,(ﬂcObq) (0)], forgez"(B) (K)).
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We can carry out this procedure for any point p € M. There is a local flow
“around” p with infinitesimal generator X for every p in M.

23.1. Theorem. For every smooth vector field X on manifold M and each point
p € M there are open neighborhoods U and V containing p and an interval
(=2r,2r) and a local flow T: (—=2r,2r) x U — V for X.

By this we mean that the vector field X is everywhere tangent to
by: (—2r,2r) =V defined by by(t) = Ti(q) for every t € (—2r,2r).

And every curve b defined on an interval to which X is everywhere tangent
and for which b(0) = p agrees with b, on some neighborhood of 0.

T is smooth and each T; is a diffeomorphism and
Tivs =Ts0T; forall s,te(—rr).

We have just used our ability to solve differential equations in R™ to produce
integral curves to vector fields at every point on M. We know integral curves exist.

Suppose by, is the integral curve of Theorem 23.1 and p is on a (possibly) different
integral curve by: I; — M for vector field X. By applying a time-shift to b; we
produce integral curve by for which b2(0) = p. By restricting to a smaller open
interval if necessary we may presume bs3: I3 — U,. Then the curve c3: I3 — R,
defined by c3 = zobs is a solution to the IVP that was used to find ¢, in the previous
discussion. By the uniqueness of such solutions ¢, and c3 agree on the intersection
of their domain time intervals, which contains 0, and ¢,, (0) = ¢1(0) = p. So by and
b, agree, at least on the interval I3 N (—r,r) around 0. This is “local uniqueness.”

Now suppose f: I; = M and h: Iy — M are two integral curves for vector field
X defined on open intervals and f(tg) = h(t1) = p. If f(to + t) ever differs from
h(ty + t) at some positive time ¢ there would be a greatest time t > 0 so that
f(to +t) and h(t1 + t) agree for ¢t € [0,t2]. But then f(tg + t2) = h(t; + t2), and
f(to +t) and h(t; + t) differ for ¢ in an arbitrarily short open interval around ¢,
contradicting local uniqueness. The same contradiction obtains if f(¢o + ¢) and
h(t; + t) differ at some negative time t.

We conclude that f and h must agree wherever both are defined after a single
time-shift to match up the times at which they are both at p.

23.2. Theorem. For smooth vector field X and p € M there is a unique integral
curve ¢: I — M for X for which 0 € I and ¢(0) = p with largest
open'® interval domain I.
Every integral curve through p is a time-shifted restriction of this one.

Proof. Let 8§ denote the set of integral curves b: I, — M for X where 0 € I, and
b(0) = p. 8 is nonempty and by the previous discussion two members of 8§ agree on
the intersection of their domains of definition. Let

I:UIb.

bes

181f you extend consideration to allow one-sided derivatives at endpoints, the interval still must
be open if it is largest and X is everywhere tangent to c, since the local existence and uniqueness
theorem would allow us to extend ¢ beyond a closed endpoint.
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I is the union of open intervals all containing 0 and so is itself an open interval.

We can now define ¢: I — M by c¢(t) = b(t) whenever ¢ € I. O

So how big is this interval I = (u,v)? Must it be all of R?

The answer to this is no. In fact easy examples (with M = R) show that a
solution curve might “go to infinity” or “go to the edge” in finite time.

In fact, that characterizes such curves. Suppose ¢(I) is contained in some com-
pact set K. Since M is locally compact we may presume there are open sets U and
V each with compact closure and such that

cl)cKcUcUcVcV.
There is a member f: M — [0, 1] of F°(M) for which
Uc f 1) and support(f) C V.

Let Y = fX. Then Y agrees with X on open U so any integral curve for Y that
never leaves U will be an integral curve for X too. In particular our curve c is an
integral curve for Y. And Y has compact support in V.

Now for each point ¢ in V we can create a local flow 77 where
T9: [=2ry,2ry] x Ay — By
where T (z) = z for all z € A, g itself is in the interior A7 of A,, and A, C B,.

The various Aj form an open cover of V so we can select a finite subcover
Ag s, Ag . Let 1 be the least of all the ry,,...,7q,.

q1’
Now define T': [—2r, 2r] x M — M by setting, for ¢t € [—2r, 27],
Ti(q) =qwhen ¢ ¢V and Ty(q) = T” (q)when q € Ag,
Every g € V is in at least one Agj and by the local uniqueness of integral curves
we know the values used above cannot conflict if ¢ is also in Ag, and i # j.

Since we have T defined for a fixed short time interval [—r, 7] on all of M we can
extend T to all times too.

Suppose we have defined T on all of M on time interval [0, kr] for some positive
integer k, as we have at the outset for k = 1. For ¢t € (kr, (k4 1)r] define

Ti(q) = Ti—r(Thr(q)) Vg € M.

By an induction argument we have T defined for all positive T" and extend to
negative ¢t by a similar method.

Getting back to our integral curve c: (u,v) — M, we have shown if the image of
¢ is contained in any compact set then (u,v) = R.

Conversely, suppose (u,v) # R. For specificity, say v # oo. Then [0,v) must
extend beyond every compact set: either c leaves each compact set permanently
after some time in [0, v) or it returns and leaves again infinitely often.

The corresponding fact for negative times is true if u # —oo.

During this discussion, we have actually proved the following theorem.
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23.3. Theorem. If the smooth vector field X has compact support there is a
global flow T: R x M — M for X. By this we mean that for each p € M

(1) cp: R = M, defined by c,(t) = Ti(p) is an integral curve for X.
(i1) Every integral curve through p is a time-shifted restriction of c,.
(iii) T is smooth and each Ty is a diffeomorphism and Tjy is the identity on M.
(iv) Tyys = Ts o Ty for all s,t.
As a final result we generalize Theorem 22.1.
23.4. Theorem. For every smooth vector field X and every point p for which

Xp # 0 there is a coordinate map y: Uy, — R, around p so that
Xq=1[y,e1lq Vg e U,y,. (e is the first basis vector in R™.)

In other words, X4 = aiyl for all q in this coordinate patch, and on the
q
entire patch the integral curves are just the coordinate gridcurves, G,.
Proof. To begin the discussion, suppose X is a smooth vector field for which X, # 0
and x: U, — R, is any coordinate map around p.

There is a smooth vector-valued function v: U, — R"” so that for all ¢ € U, we
have X, = [z,v(¢)],-

So for each ¢ € U, we create Z,, € (R,),, for which
Zg, = 2:(X)g = 24q(Xq) = [idr,,v(q)]q, = [idr,,9(qx)]q.
where g o z = v, which determines a smooth vector field Z on R,.
So Z, = [idg,,g(a)]a-

Modify « if necessary so that p, = 0 and g(0) = e;: replace “old 2”7 with a “new
x” given by A(x — p,) for appropriate invertible matrix A if the “old x” doesn’t
satisfy these properties.

Z now satisfies the conditions of Theorem 22.1 and in that theorem we find that
there is a diffeomorphism ¢: A — B where both A and B are open neighborhoods
of 0 and contained in R, and for which

Zy = lidg,g(a)]le = [0 ", e1]s for all a € B.
Using the handy representation of pushforward by a coordinate map we have
(0™ wa(Za) = (07 sallids, 9(a)la) = (6™ ua([671 €1]a)
= lida, e1g-1(a) € Ap-1(a)-
So let’s start again with vector field X but this time restricted to open neigh-

borhood € = z7!(B) of p in M. For ¢ in this set we can push forward X, to Z,,
using x, and then push forward one more time to [ida, €1]3-10q(q) using ot

The calculation is, for any ¢ € C,

((‘2571 0x).(X))q = (‘1571 0 2)q(Xq) = (‘Z’il 0 z)q([z,v(q)]q)
(0™ sq, © Taq([2,0()]g) = (97 sq, ([idz, 9(40)]g,)
(0™ sq. (071, e1l,) = [ida, er]g-1(q,)-
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y = ¢! o x confined to coordinate patch € containing p is a composite coordinate
map which satisfies the conclusion of the theorem.

Xg=1[zv()q =y, el VaeC.

24. TENSOR FIELDS

We have built a vector space M, and its dual M at each point p on M. Therefore
we can define at each point the whole vector space structure of tensors, and can
specify a type of tensor and a particular tensor of that type at each point in M.
Such a specification is called a tensor field on M.

Recall that if V' is any vector space we define J7 (V) to be the tensors on V
covariant of order s and contravariant of order r. The set of r-forms on V is
indicated by A,.(V), the set of alternating members of T2 (V).

If each selection of our tensor field on M is in T (M,) = Ag (M,) = R we have
an ordinary real valued function on M.

When z: U, — R, is a coordinate map on M then a tensor field can be repre-
sented within U, like this:

0

Tt (o) o ©+ @ 5o @ do¥ @ ® do

axi,.

and alternating tensors can be represented as

Riy. i (z)d2" @ - ®@dz' (R is alternating, sum here on all indices.)

= Ry, i (v) dz"* A--- Adz'". (Sum here on increasing indices only.)

il

where the numbers T;llj (x) and R;, .. ;. (x) can, in principle, vary wildly or
randomly as we move from one point to another in U,.

However wildly they might change from point to point, if y is another coordinate
map and at any particular point in U, NU, the number Tﬁ;s (2) will be related to
the number T;:J“ (y) according to the standard change-of-basis pattern for tensor
coefficients.

Specifically we must have, evaluated at each point in U, N Uy,

oyt Qyvr dzir O
Ox™ Oxir Qyhr  Oyhs’

Ty () = T4 ()
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An important case is the situation with A, (M,) for n-dimensional M. The
dimension of the space of n-forms at each p is 1: they are all multiples of any
nonzero n-form. In coordinate neighborhood U, any field of n-forms A is a real
function of position times dz' A dx' A --- A dx™. If y is another coordinate system
then the same field can be represented on U, NU, as

M) dz! Ada® A Adx™ = Ay)dy* Ady? A--- A dy™.

The change of basis formula here reduces to A(y) = A(z) det (%) which can be

found by examining the nonzero terms in the expanded wedge product using
da — oz’
oyt

i

oz’ ox
dy' + S5 dy® + -+ ——dy™.
vt et oy
We are not generally interested in tensor fields that change randomly as we
move across M. Requiring the coefficient assignments to have tensor character is
not enough: to capture features of most physical phenomena they should change
smoothly as we move from point to point.

We will define J7 (M) and A, (M) to consist of those tensor fields of the in-
dicated type for which the coordinates T;l’“"“ (z) are infinitely differentiable

1-0s
functions on U, for every coordinate map x for M. It is sufficient to require
this differentiability condition for a collection of coordinate maps whose domains

cover M.

All the standard tensor constructions and operations, such as tensor and wedge
products and contraction, can be performed pointwise without lowering the differ-
entiability of the coefficients. T% (M) and A,.(M) are real vector spaces, but also
Fo° (M)-modules.

Note that T§ (M) = Ay (M) = F°(M).
Also T (M) = T§ (M) and T3 (M) = T9 (M) = A1 (M).
For n-manifold M the collection of formal sums
Ao (V) ® Ay (M) @+~ A, (M) @ {0} @ -+
with wedge product constitute the Grassmann algebra G(M) on M.

It too is an F*°(M)-module. Elements of the Grassmann algebra are called
multi-forms, though the vocabulary is usually deployed when more than one term
in the formal sum is nonzero.

An important example is a choice of volume element on each My, a never-zero
member of A, (M) for n-dimensional M.

On the domain of coordinate map x a volume element v can be expressed as
v = odx’ A -+ A dx"™ where o is never 0. This defines an orientation on the
submanifold U, of M as follows. For p € U, if v1, ..., v, denotes any ordered basis
of M, then this ordered basis is said to have the orientation determined by - if
v(p)(v1,...,v,) > 0. Thus every basis of every M, is one of two types. Such a
basis either has the orientation determined by + or not

Another approach to orientation is given by an atlas of coordinate maps for
which the determination of orientation by da' A --- A dz™ on U, is consistent on
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the overlap of the domains of atlas members. M is said to be orientable with
orientation determined by this atlas.

A third approach is to specify directly an ordered list of smooth vector fields
Xy, Xo,..., X;,, on M which are linearly independent at each p € M. These can be
used to identify charts in a consistent atlas, and thereby an orientation, as above.

Not all manifolds are orientable, though it is interesting (and not too hard to
see) that all tangent manifolds, T(M), are orientable.

Another common construction is a choice of metric tensor G = G; ;(z) da’ @ da?
in 9 (M). This allows or produces constructions such as raising and lowering
indices and (together with an orientation) a volume element and the Hodge star
operator.

Yet another example might be a process that creates a linear function F,: M, —
M, for each p. It is easy to show that this corresponds to a member of T} (M,). If
this process is smooth enough we will have a member of T3 (M).

It is important to note (we used this before and record it here again) that sub-
manifolds of M can be used to define “sub-objects” in a natural way.

If p is a point in submanifold N of M then each tangent vector X, € N, contains
only differentiable parameterizations with range in N, while a member of M, may
contain curves with range outside N. However there is one and only one member
Y, € M, with X, C Y}, and when we identify N, with a subspace of M, it is this
implied association that is intended.

Also, if U is an open subset of M, every member of M, corresponds to some
tangent vector in U,. T(U) can be regarded by this identification as an open
submanifold of T(M), and both have dimension twice that of M.

Similarly, if U is open the covector df (p) € U, contains only real valued functions
with domain in U, while a member of M contains functions with (possibly) larger
domain. However there is one and only one member of M} containing all of df (p),
and we identify df(p) with that member. And every member of M} contains a
unique member of U as a subset.

By this means T*(U) is regarded as an open submanifold of T*(M).

Finally, for each r and s the F*°(U)-module of tensor fields T7 (U) is not contained
in the F°°(M)-module T7(M). However the restriction of every member of T7 (M)
to U is a member of T%(U).

Note also, if U is a proper open subset of M there may be members of T7(U) that
are not restrictions of members of J7(M). In particular, there may be members of
F°(U) that cannot be extended to a member of F°°(M).

25. DERIVATIONS AND F*°(M)-MoODULE HOMOMORPHISMS

Going on to a different matter, we make another examination of derivations.
A derivation on the number fields Ag(M) = F>*°(M) is a function D: Ag(M) —
Ao(M) for which for any constant function ¢ and functions f and g in Ag(M) we
have D(cf +g) = ¢D(f) + D(g) and D(fg) = fD(g) + gD(f).
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We discussed point derivations on F5°(M), the real functions smooth on some
neighborhood of p, in section 11, and concluded that action by tangent vectors
exhausts all possible point derivations. In fact, these point derivations are in many
treatments taken to be the tangent vectors at p.

Evaluation of the output of a derivation at p € M looks like it will produce a
point derivation on each F7°(M). Specifically, if g € Ag(M) we can define W(g) =
D(g)(p). It also suggests that a selection of point derivations, one for each p € M,
might be used to create a derivation on Ag(M).

There are some problems with this, however. Members of F,°(M) are not nec-
essarily differentiable (or even defined) away from a vicinity of p, so every F,°(M)
contains more functions than Ag(M). There is a domain mismatch.

But we saw that if x is a coordinate map around p, a point derivation at p
is defined by what it does to the coordinate functions z on an arbitrarily small
neighborhood of p. Off this neighborhood x* can be extended to a smooth function
defined on all of M, and D is defined on these extensions. So there is one and only
one point derivation at p which agrees with W on all of Ag(M).

Going the other way requires something extra. A selection of a point derivation
W, (that is, a tangent vector) for each p € M must vary from place to place on
M in a smooth way if the output values W,(g)(p) are to combine to produce a
differentiable function (i.e. a function in Ag(M)) on M for all g € Ag(M).

We close this section with the following important point. Suppose A € T79(M) =
A1 (M). At points in a coordinate neighborhood U, it can be represented as \; da’
for certain smooth coeflicient functions A;.

Any such A can be used to create a map
Z:TEM) = F°(M) by Z(X)(p) = A\pX,.

Z is not only a real vector space homomorphism, but actually it is an F>°(M)-
module homomorphism.

(92)(X)(p) = 9(P)Ap Xp = Xp 9(0)Xp = Z(9X)(p)-
In other words, gZ(X) = Z(gX).

It is interesting to note that the converse also holds.

25.1. Theorem. Suppose Z: TE(M) — F*°(M) is any F°(M)-module homomor-
phism. There is a unique covector field A\ € TO(M) for which Z(X) = A X for every
X € TH(W).

Proof. We first note that if X and Y are any two members of T4(M) and Z is an
F°(M)-module homomorphism and if X and Y agree on any neighborhood of a
point p then Z(X)(p) = Z(Y)(p). To see this let V be an open neighborhood of
agreement. Then there is a smooth function f: M — [0, 1] for which supp(f) C V
and f(p) = 1. But then

Z(X) = f(p) 2(X)(p) = 2(f X)(p) = Z(fY)(p) = f(p) Z(Y)(p) = Z(Y)(p)-
So Z only notices the behavior of a field X in arbitrarily small neighborhoods of
a point p when it calculates Z(X)(p).

We expand on this point below.
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There is an atlas for M consisting of coordinate systems x: U, — R, with the
following properties. (i) There are open sets V, C V, C W, C W, C U,. (ii) The
sets V,, also form an open cover of M. (iii) There is a smooth function f,: M — [0, 1]
for which V,, C f,1(1) and supp(f.) C W.

Suppose X is a generic vector field from T (M).

So X can be represented everywhere within U, as

0

qaxiq

0
ox?

X, = X'(z) where X'(x) € T5(U,).

If we define vector field X to be f_fX on U, and the zero tensor off U, we have
created a member of T} (M) that agrees with X everywhere in V, and is the zero
field off W,. For notational convenience in the following calculation we declare
f2(¢) X (z), to be the number 0 and f,(q) % , to be the zero tensor whenever
f=(q) = 0, providing a meaning for the coefficients and the coordinate form of the
tensor even when ¢ ¢ U,. With that temporary convention we have

X = fu X(2) fo % everywhere in M.

Now suppose p is a point in V,, and Z: T§(M) — F°°(M) is an F°°(M)-module
homomorphism.

2(X)(6) = 2000) = 22 X00) = 2 () () = 2 (£, X'0) 5 ) 0

1) X @0 2 (£ 5 ) ) = K@D Z (fo 5 ) 0
We now define covector A, to be Z (f, 52) (p) dz?

..
Note that A\, X, = Z(X)(p).

Since Z produces smooth functions A defined in this way is a member of T¢(V,,).
The only property used about f, was its smoothness and the fact that it is 1 on
a neighborhood of p and 0 outside an open set whose closure is contained in U,.
With the remark at the start of the proof, any f, will produce the same A,.

The only question that remains is the extent to which all this depends on the
coordinate system .

Suppose y: U, — R, is another coordinate system around p. We may replace
fo and f,, with a similar smooth function g which is 1 on f;'(1) N f,7'(1) and zero
off W, N Wy.

Following the same procedure we create a covector

=2 (3 ) W = 2 (¢ 50 ) () o

B z? 0 y' . ozl Oy 0 .
=2 (0559555 ) ) G ) dsh = o) G0 5500 2 (950 ) ()

. 9 9 ,
:5§Z<gaxj) (p)dw;:Z<9M> (p) dx, = Ay
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Our conclusion is that the covector field A can be defined at every point in
the manifold by a process that is independent of coordinate system, and which
represents the homomorphism Z. O

25.2. Corollary. Suppose
Z: TIM) x - x TIM) x TE(M) x -+ x Tg(M) — F=°(M)

r covector field factors s wvector field factors

is F°(M)-multilinear. By this we mean it is an F*°(M)-module homomorphism in
each “slot” separately. There is a unique tensor field T € T5 (M) for which

Z(01,...,0p,X1,...,Xs)=T(01,...,0,,X1,...,Xy)
for all choices of covector fields 0; € TY(M) and vector fields X; € Ts(M).

Proof. The proof is directly analogous to the last. This time examine f2"" "% Z and
distribute copies of f, to all factors to establish the local nature of Z. O

26. TENSOR OPERATIONS IN A COORDINATE PATCH

We suppose x: U, — R, is a coordinate map for manifold M. All functions and
tensors on submanifold U, are assumed to be restrictions to U, of similar smooth
objects defined on M.

A member T € T7(U,) is of the form

0
Ozt R Ox'r
() defined on U,.

»»»»» Js

®d$j1®--~®dl‘js

T3 (@)

We write T ;11]“ for T;;;T (z) when coordinate map z is fixed.
If ¢ is the identity map on R, C R" this can be pushed via z, and z71* to
P 0 0 - ,
Tpll ot g @ © gy @ @@ dt” €T(Rs)
and calculations carried out in R™ if you prefer.

For S, T € T§(U,) the tensor product P =S ® T of S and T is given by

P=pv"2 — — = Sue - -
Ox™ @ Ox? Ox™ @ Ox
Similarly, for o, 7 € TY(U,.) the tensor product § = ¢ @ 7 of o and 7 is given by
0=0;, ;,dv"" @da?” = o), 7j, da’* @ dx’> € TY(U,).
The mixed tensor product M =T ® 7 € T1(U,) is

€ T2(U,).

M = M? ® da?.

J axl ® dxj = TiTj

oz’
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One contravariant index can be contracted against a covariant index in a “trace”
operation given by number field

CHM) =M =T'r;.
Applied to a more general mixed tensor, the C operator specifies the index
symbols that are to be replaced by an otherwise unused generic index and summed

over. This reduces the degree of the original tensor by two: one covariant and one
contravariant index disappear.

Now we come to wedge product.
Let P, denote the set of permutations on the first L positive integers.

Suppose 0 € TY(U,,), o0 € TO(U,,) and 7 € TP (Uy).

1 y .
Alt(0) = A Z sgn(Q) 0;y... iy Az @ - - - @ dz'R)
T QePyL
1 ' 4
- Z sgn(@Q) Oig ) ,.onsiqr) Azt ® - @ da'*.
T Qe?y
(Sum on an index pair ip, and igg) whenever m = Q(q).)

and
1 3 .
Sym(é) = ﬁ Z eil,...,iL dr'eM @ -+ @ dx'ew)
" Qe?y
1 ) i
:ﬂ Z aiQ(l) ----- iQ(L)dx1®"'®d;UL'
" QePL

(Sum on an index pair i, and i) whenever m = Q(q).)

Alt(8) = 0 if and only if 6 is alternating, while Sym(0) = 0 if and only if 6 is
symmetric.

In some applications the coefficients of Alt(#) and Sym(6) are indicated in co-
ordinates by

Alt(0) = Oy, ... dz" @ -+ @ dz't and Sym(0) = 0,....,

For f € °(U,) and 0 € T (U,.) we define fAO =0 A f = f0.
Define wedge product between s-forms and ¢-forms by

s5+1t)!
ONT = (S! t!) Alt(c @ 7).

From the standpoint of calculation this can be impossibly arduous in view of the
fact that Py, has L! members. However, it is not completely unmanageable when L
is 4 or less, as it usually is.

Suppose now that M is a 3-manifold and ¢ = 4da' +8dz? and 7 = 6 da' + 5 dz>.

P contains two permutations only: the identity and the permutation that
switches 1 and 2.
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(2)!

11!
=2 Alt(24dz' @ da' +20dx' @ da® + 48 da* @ dat + 40 d2? ® da®)
=24dr' @ da' 4+ 20da' @ do® + 48 dx? ® da' + 40 da® @ da®
— (24d2' ® dz' +20d2® ® do' + 48 da' @ da? + 40 dx® @ da?)
=20 (dz' ® da® — da® @ da') — 48 (da' ® da? — dax® ® dxt)
+ 40 (do? ® do® — do® ® dx?)
=20dz' Ada® — 48da' A da® + 40da® A da®.

Yy=0AT= Alt(c @ 1) =2Alt(c @ T)

Finally, we define the interior product.

If S is a tangent vector field and f is a smooth function, a member of Ag(U,) =

F°(U,) we define the “angle” operation, also called the interior product of
Son f by Sif=0.

More generally, for v € A,.(U,) we define S1~, the interior product of S with
7, to be the contraction of the tensor product of S against v in the first index of ~.

So Suv € A,—1(U,) for each r > 0.

If » = 1 this is nothing more than the trace, the evaluation of S at ~.

Suppose r = 2 and

v =20dx! Ada® — 48 dat A dz? + 40 da? A da®
% + % —-20 %
Distributing, using the expanded representation of ~y, gives
Soy = 448 dxt + 1232 dx? — 140 da®.

A faster route to the same result is to use the identity

Si(oAT)=(Sao)AT+(-1)"aA(SaT).

and S=-9

27. PULLBACK ON COVARIANT TENSORS

We have seen before that if H: M — N is smooth we can pullback a covector
field w € T7 (N) to a covector field H*(w) € T1 (M).

For each H(p) € N the tensor wg(py is dfp(p) for real valued smooth function f
defined in a neighborhood of H(p).

The tensor H*(w), € M is just d(f o H),.

For each p € M there are coordinate neighborhoods U, around H(p) and U,
around p for which H=(U,) C U,.

For points g around H(p) the tensor w(q) = w;(q) dy}, for certain smooth func-
tions w;(q).
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Then for points p € U, we found that

d(yto H)

H*(w)p = wi(H(p)) d(y' o H), = wi(H(p)) 927

J
dacp.

The procedure for more general covariant tensors is essentially identical. For
each p € M and w € T, (N) there is a representation, valid for ¢ near H(p),

w(q) = wiy,....i, (9) dyél R ® dyﬁ}.
We then have

H*(w)p = Wiy,..ip, (H(p)) H*(dy™), ® -~ @ H* (dy'*),
= Wiy,...ir (H(p)) d(y“ © H)p Q- & d(yiL o H)p

Ay o H ; oyt o H .
= Wiy i (H( ))%dlﬂ,l@“-@%dx;

Oy o H Oyt o H . )
— <wi1 _____ i, (H(p)) (8xj1 ) (8ij )> dxf;@"'@dxif

There is a similar formula for the alternating tensors w € Ay (N). There, in a
neighborhood of H(p) we have

w(q) = wi,....i, (@) dyit A+~ Adyi. (Sum on increasing indices only.)

Below, H*(w), is given as a sum where ii,...,4; are increasing indices but
J1,-..,Jr can take any values:

Oy*oH) d(y'*oH)

H*(W)P = (wll,zL(H(p)) OxJt OxiL > dzél /\/\dI%L

If any of the values on the list ji,...,j; are duplicated in a term, the wedge
product is 0, and any two lists that permute the same ji,...,j; values can be
combined to a single term with increasing ji,...,7jr by introducing a minus sign
where appropriate.

The case of n-forms when the dimension of N and M are also n will be of special
interest. In that situation the tensor spaces are 1 dimensional at each point, so the
formula becomes

d(y'oH) 9(y"oH)
Oxir Oxin

H*(w), = w(H(p)) ( ) dac{} /\---/\d:):g)“.
Upon introducing the factor sgn(P) when j1,...,J, is an odd permutation of
1,...,n we see that

d(yo H)
dx

1 n
)d:vp/\-~-/\d;vp.

H @)y = () det (
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28. THE METRIC

A metric tensor on M is a symmetric nondegenerate member of To(M). In
this generality they are often called semi-Riemannian metrics.

Semi-Riemannian metrics are (not necessarily positive definite) inner products
on the tangent space on M, at each point ¢ on the manifold.

A positive definite metric tensor is called a Riemannian metric.
In a coordinate patch U, a metric tensor g has the form
g = gi,j d.’L‘l ® d{Ej.
The coordinates g; ; are functions depending on the point p of the manifold
and on the coordinate map z, but the notation (g,); ;(x) is too cumbersome for
daily use, so it is expected that the user understands that these functions are to

be evaluated at p for each x and in these coordinates g is to be applied to pairs of
tensor fields X and Y also evaluated at p and represented in coordinates using x.

In this patch, symmetry amounts to the condition g; ; = g;; for all 4, j and this
means g,(X,,Y,) = ¢,(Yp, X,p) for all pairs of vector fields X and Y and all p € M.

Nondegeneracy is defined “pointwise” using vector fields. ¢ is nondegenerate if
for each point p in each coordinate patch the only way that g,(X,,Y},) can equal 0
for all possible Y, is if X, itself is 0.

Positive definiteness is the condition that g,(X,, X,) > 0 for all vector fields X
and all p € M.

At a point p (not on a neighborhood, just at p) every semi-Riemannian metric
can be diagonalized, to yield a representation of the form

n
g= Zgi’i dz' ® dx'  where each gii = 1 at p.
i=1
Continuity and non-degeneracy of g on M imply that 4f M is connected the
number of ones and minus ones in any such representation cannot change on M.

The metric is said to be of type (k,!I) if there are k ones and [ minus ones in a
representation of this kind. Note k& + [ = n where n is the dimension of M.

We will be interested in two types of metrics: the positive definite ones which
have type (n,0) and which generalize the ordinary Euclidean metric, and metrics
of type (3,1) which are semi-Riemannian and generalize the Minkowski metric of
space-time.

There is a commonly used “raising or lowering index” operation obtained through
the services of an inner product at each point in U,,.

We specify metric tensor g = g; ; dz’ @ dz? € To(U,).

The matrix obtained using the coefficients of ¢ in this basis is symmetric and
invertible. Let ¢g"/ denote the entries of the inverse to this matrix.

The conjugate metric tensor, which we will denote g*, is defined by g* = g* 8% ®
% and is also symmetric and nondegenerate and defines an inner product on M
for each q € U,.
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To “lower” an index on vector field T' = T" 5 i
and contract, creating

b(T) =b(T); dv? = g; ;T" da? .

To “raise” the index on 6 = 6; da’ take the tensor product g* ® 6 and contract,
turning 6 into
9 9
0)=40) — =g"76; —.
HO) = $0)' 5 = 490 5
These processes are inverse to each other and the sharp and flat symbols are
intended to suggest turning a flat object, a covector, into a sharp object, a vector.
One “sharpens” a covector and “flattens” a tangent vector.

It is unfortunate that standard practice is to think of these vectors and cov-
ectors as “the same” and leave off the notational distinction. You deduce what
has been done to T or € by inspecting the location of the index, high or low, in a
representation in a basis.

Here is an example. Let M be a 4-manifold and suppose on the patch U,
9= Gij de' @ do? = —dat @ dat + da? @ da? + d2? @ da® + dz* @ dz?.

Here we are supposing a situation that is not at all generic: we suppose it is
possible to diagonalize g on a whole neighborhood, not just at one point.

In this case the matrix of coefficients is its own inverse and
g =g o
ozt ~ OxJ
0 o) 0 0 0 0 0 0

T T %ot "o P e T 08 ¥ 0 T 501 © Bt

Given vector T = 8 61 + 452 8 -2 6x3 +25 4 we can flatten T to —8dx! +
4dz? —2dx® + 2dzt and then sharpen it again Wlth the reverse operation.

T has constant inner product g(T,T) = —64 + 16 + 4 + 4 = —40.

29. INTEGRATION ON MANIFOLDS

There is no natural way to define the integral of a real-valued function defined on
a smooth manifold M that matches the properties of ordinary Riemann integration:
additional structure is required.

We will use concepts from R™ and coordinates to provide this structure, carving
out pieces of our manifold and integrating forms on these pieces, in much the same
way as the Riemann integral is initially defined on closed intervals or n-dimensional
rectangles.

We deal with a trivial special case first. We define [0, 1]° to be the real number
0 and a singular 0-cube in manifold M is the selection k(0) of a point in M.

Now if f is any O-form on M (that is, a smooth function) we define

/A:fww»
h
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For k > 0 a smooth function h: [0,1]* — M will be called a singular k-cube
in M and the inclusion function I*: [0,1]* — R* is the simplest case, called the
standard k-cube.

When dealing with issues of integration in the manifold R¥, we will let 2 stand
for the identity coordinate system there. So x agrees with (i.e. is) I* on [0, 1]*.

Since Ax([0,1]¥) has dimension 1 at each point any k-form A € A, ([0, 1]¥) can
be written as
fdaxt A Ada®
where f is smooth on [0, 1]*.

We define the integral [ 1 A of the k-form A on the standard k-cube by the usual
iterated Riemann integral

/IkA:/Ol"'/olf(x)dxl...dxk'

If h: [0,1]F — M is a singular k-cube in n-manifold M then we can define the
pullback
h* s Ap(M) = Ak([0,1]%).

If p € [0,1]% then h(p) is in some coordinate neighborhood U, in M. So if
A € Ap(M) it can be represented near h(p) as

Niyooiin Y™ Ao Ady'™
where we sum here on increasing indices only.
Then h*()) is given near p by
(Niy ooy © B) d(y™ o h) A== Ad(y™ o h).
The terms in this sum are all multiples of dx! A--- Adz* and so, as before, h*())
is fdx' A--- A dz® for some smooth function f defined on all of [0, 1]*.

The function f has a particular form near p. Defining the function

yrt = (YY)
from an open neighborhood of h(p) € M to R* and using the properties of wedge
product and d(y* oh) = dej we see that a factor of the Jacobian determinant
appears:

d(yil,...,ik o h)

d(yiloh)A---Ad(y“oh)=det< )dxl/\-~-/\dxk.

dx
If M is a k-manifold there is just one increasing index sequence and that factor
is simply det (%). In any case, near p we have the function f as

h*()‘) :()‘h,...,ik oh) d(yil o h) A A d(yik o h)
D1 yeeeslke
=(Aiy,...i, ©R) det (d(yOh)

I )dxl/\~--/\dxk
=f(x)dz' A--- Ada®.
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And if M is a k-manifold then

F(z) = (Aoh) det (W) .

We now define the integral of the k-form A over the singular k-cube h by

/h)\/lkh*(/\)/01~-~/01f(:1:)dx1~~dxk.

At this point we have identified a way of “carving out” a piece of a manifold (the
image of a singular k-cube) and integrating k-forms on that piece. It is obvious by

our definition that
/()\-i-cu):/)\—i-c/u
h h h

for singular k-cube h and k-forms A\ and p and real ¢ so our definition of integral on
manifolds also has the vital linearity property possessed by the Riemann Integral.

Now suppose s: [0,1]* — [0,1]* is a diffeomorphism. This implies that 42 is
invertible on [0,1]* and so (since [0,1]® is connected) det (4£) is nonzero with
constant sign. The diffeomorphism is said to be orientation preserving if this
determinant is positive everywhere, and orientation reversing if the determinant
is negative everywhere.

The function g = h o s is called a reparametrization of the singular k-cube h
and g is also a singular k-cube.

We want to know the relationship between [, A and fg A= [, A for k-form .
If h*(\) = f(z)dx' A--- Adz® then
g*(A) = (hos)*(\) = s*(h*(\)) = s*(f(z)dz" A -+ Ada).

But that means

/g)\:/hos)\:/sh*(/\):/Sf(x)da:l/\--~/\dxk
:/01.../01@05)(3:) det (3;) da - do*
:i/ol--~/01f(m)dx1--~dxk:i/h)\

by the ordinary change-of-variable formula for Riemann integrals, where the “plus
or minus” choice is determined by the sign of the determinant.

In other words, any singular k-cube that is a reparameterization of a
given singular k-cube will yield the same integral when applied to any
k-form, up to a sign determined by the “orientation” of the reparame-
terizing diffeomorphism.

For Riemann integrals the Fundamental Theorem of Calculus provides a tool to
actually calculate integrals, relating the integral of the derivative of a continuously
differentiable function on a closed interval with values of the function itself on
the boundary of that interval, with a minus sign associated with one of the two
boundary points.
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There is an analogue of this result for our integral, contained in Stokes’ The-
orem, which we will prove after we have created a way of differentiating forms on
a manifold.

30. SINGULAR k-CHAINS AND THEIR INTEGRALS

In this section we set the stage for Stokes’ Theorem by forming objects called
singular k-chains and the boundaries of these.

First, is the easy part.
A singular k-chain is any finite formal sum of the form
C=mihy+---+mh

where the m; are all integers and the h; are all singular k-cubes into the same
manifold M.

We declare that the order of these terms doesn’t matter'® and mq h + maoh =
(mq 4+ mg) h for integers mi, ms and singular k-cube h.

Singular k-chains are added by combining the coefficients on identical k-cube
summands. The formal additive identity will be denoted 0, which may be realized
as 0 h for any singular k-cube h.

We make these formal sums into a module over the integers in the obvious way.

We define?® the integral of k-form A on singular k-chain € by

/)\:ml/ )\+~-~+mt/ A
c h1 hy¢

We now define the boundary of singular k-chains.

Recall that a singular 0-cube is defined to be a selection of a point in a manifold.
We define the boundary dh of a singular 0-cube h to be the number 1.

A singular 1-cube is a smooth map h: [0,1] — M. We define the boundary dh
of a singular 1-cube h to be the singular O-chain h(1) — h(0) where we interpret
h(1) to denote the 0-cube which “selects” h(1) € M and interpret h(0) similarly.

The boundary of the standard k-cube I*: [0,1]* — R¥ is a (k — 1)-chain com-
posed of 2k different singular (k — 1)-cubes, each of which corresponds to one of
the 2k “faces” of the cube.

Following Spivak’s notation, we define for k > 1landi=1,...,kand j =0,1
If,j 1 [0,1]* = [0,1]% via (@1,...,%5-1) = (T1,. 0y T, §, Ty Tho1)-

Then the boundary of the standard k-cube is given by
E

oIk = (—1)'If, + (—1)"*1f,

i=1

19The formal definition of the equality of two formal sums of singular k-cubes in terms of
equivalence classes of all the formal sums we intend to be equal is left for the energetic reader.

207, may be obvious that this definition does not depend on the representative of € used to
define it, but that fact does require a tedious little proof.
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and more generally for any singular k-cube h: [0,1]F — M
dh = Z )Y holfy+ (~1)"holk.

And finally, if € = myhy + -+ + myhy is any singular k-chain we define the
boundary of € to be the (k — 1)-chain

o0C = mlahl —|— oo —I— mtaht.

We are going to use these boundaries when we prove Stokes’ Theorem, but for
now we just want to prove a fact that will be important in applications of that
theorem: that 99C = 9?€ = 0. A boundary has no boundary.

If we can prove this fact when applied to the standard singular k-cube the result
will follow for more general singular k-chains with minor adaptation. And we
restrict attention to k at least 1.

Considering the case k = 1 first we have I' = 1 — 0 where in this case 1 — 0
represents the difference of two singular 0-cubes. So 9?I' =901 —90=1—-1=0.

So what happens when k = 27 Hoping to be forgiven for rather loose function
notation, we calculate

0’17 =0 ( (=1)(0,2) + (1,2) + (2,0) + (=1)(z,1) )
=(=1) [ (=1)(0,0) + (1,0) + (0,0) + (=1)(0,1) |
+ D0, +(1,1) + (1,0) + (=1)(1,1) ] = 0.
For larger k£ we have
k
IR = (=1)'0If, + (-1)"torIf,
i=1
k k-1
= Z Z(_ Z—irLIko ° IE ot (- )H_LHIk Iﬁ 11
i=1 L=1
+ (‘UHHLI;H °© 1251 + (_1)i+1+L+1I£1 °© Illjjl
We have four double sums each consisting of k(k — 1) terms, a huge sum of
singular (k — 2)-cubes. Each term in the sum is a function whose values are of the
form
(:L']_, ey Ts—1, Aﬁrst7 TLgyeoey Tt—1, Bseconda Ttyeo- 7',1;1672)
or
(xla ey Ts—1, Aseconda Lgyeoey Tt—1, Bﬁrsta Ttyen- 73;]{:—2)
where the A and B values are either 0 or 1 and the subscript indicates which of the
two summation indices (¢ first, L second) put that particular value there.

As indicated, each one of these terms for specific A and B will occur twice,
first when the summation on ¢ puts the appropriate value at A, and then the sum
on L must put the appropriate value at B. And then a second time when the
summation on ¢ puts the appropriate value at B, and then the sum on L must put
the appropriate value at A.

In the first case ¢ = s and L = ¢ but in the second case ¢ =¢+1 and L = s.
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Each of these two terms has a sign attached, and the signs are opposite, so the
entire sum is 0 and the result is proved.

31. EXAMPLE INTEGRALS
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